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Summary. A new model to describe the latitude dependence of the angular 
dispersion of the palaeomagnetic field (palaeosecular variation) is developed 
following previous models, but with crucial differences. It is shown that if the 
probability distribution of virtual geomagnetic poles (VCPs) is circularly 
symmetric about the rotation ax is  then the geometry of the distribution of 
field directions is latitude dependent. This has a significant effect on the 
latitude dependence of dispersion and is accounted for in the model. The 
dipole and non-dipole parts of the field are not artificially separated but are 
intimately linked through an observationally determined relation that the 
time averaged intensity of the non-dipole field is dependent upon the 
intensity of the dipole field. It is shown that a consequence of this relation is 
that no knowledge of the probability distribution of the geomagnetic dipole 
moment is required. This is a fundamental improvement over previous 
models. 

The model provides excellent fits to the palaeodata and, unlike previous 
models, is not inconsistent with the latitude variation of the non-dipole field 
dispersion determined from the present field. For the past 5Ma the point 
estimate of the VGP dispersion due to dipole wobble is 7.2" and of the VCP 
dispersion at the equator due to variation in the non-dipole field is 10.6". 
This estimate of the dispersion due to variation in the non-dipole field is in 
excellent agreement with the value predicted from an analysis of the variation 
in field intensities over the same period. Fits of the model to data from earlier 
periods indicate that dispersion due to variation in the non-dipole field is 
essentially independent of the geomagnetic reversal rate while dipole wobble 
is positively correlated with reversal rate. 

1 Introduction 

Studies of the geomagnetic secular variation in historic times are made by analysing changes 
with time that have occurred in various geomagnetic parameters. Such studies have been 
extended back to 10 000 yr or more by measurements of the magnetic signal preserved in 
*Both now at Division of Geophysics, Bureau of Mineral Resources, GPO Box 378, Canberra, ACT 2601, 
Australia. 
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slowly deposited lake sediments. Master curves for the changes in declination and inclination 
with time over the past 10000 yr are now available for Great Britain (Thompson & Turner 
1979) and SE Australia (Barton & McElhinny 1981). Unfortunately, on the longer (geological) 
time-scale it is not possible to obtain detailed sequential records of the variations in the 
geomagnetic field at any locality. However, it has long been recognized (Creer, Irving& Nairn 
1959; Creer 1962a, b) that the directional dispersion of the palaeofield at a given locality is 
accessible and provides valuable information regarding the secular variation. Cox (1 962) 
extended the analysis to the corresponding virtual geomagnetic poles (VGPs). Studies of the 
latitude variation of the angular dispersion of the geomagnetic field, as measured from 
palaeomagnetic results, are now generally referred to as pulueoseculur variation ( P S V )  
studies. For a fuller account of the development of PSV studies reference should be made to 
the review by McElhinny & Merrill(l975). 

Models of PSV commonly ascribe the angular dispersion to variation in the non-dipole 
field, dipole wobble (changes in the orientation of the central dipole, such that on average 
the dipole axis coincides with the axis of rotation) and variation in the dipole moment 
(dipole moment is used throughout this paper as the magnitude of the dipole vector). 
Variations in dipole moment do  not contribute a separate source as such but affect the 
dispersion from variations in the non-dipole field (however, see Section 3). Consequently 
the dispersion ascribed to variations in the non-dipole field includes any effects from varia- 
tion in the dipole moment. Even though it is physically unrealistic to separate the dipole and 
non-dipole components it is an intuitively appealing approach because of conceptual 
simplicity and, provided the mathematics of the model does not require an actual separation 
or different sources, it is quite acceptable. Using the nomenclature of Irving (1964) the 
models which have been suggested are as follows. 

(1) Model A (Irving & Ward 1964) considers an axial geocentric dipole of fixed moment 
perturbed by a central dipole of fixed magnitude but random direction. 

(2) Model B (Creer et ul. 1959; Creer 1962a, b) assumes a wobble of the main dipole 
which follows a Fisher (1953) distribution. Non-dipole components are not considered. 

(3) Model C (Cox 1962) combines dipole wobble with non-dipole components based on 
parameters derived from the present field. 

(4) Model D (Cox 1970) supersedes model C and again combines dipole wobble with 
non-dipole components but uses generalized statistical models to specify the non-dipole 
field. 

( 5 )  Model E (Baag & Helsley 1974) proposes that the sources of dispersion are not 
independent and attempts to account for the observed variations in dispersion using a 
correlation function. 

( 6 )  Model M (McElhinny & Merrill 1975) follows model D but uses a different 
latitudinal variation for the average intensity of the non-dipole field components. Contri- 
butions to the non- dipole dispersion arise from two sources, one producing components 
having symmetrical field direction distributions and the other components having 
symmetrical VGP distributions. Unfortunately an error in their analysis has subsequently 
shown the model to be incorrect (Harrison 1980). 

Each of the above models has been singularly unsuccessful in matching the latitude 
variation of the angular dispersion determined from the present geomagnetic field. Harrison 
(1980) tried to circumvent this problem by modifying the equations in model M to obtain a 
match to the present field variation (essentially a curve fitting process). His resulting 
equation is, however, physically unrealistic. Modes A and B are clearly too simplistic and 
model C has the implicit assumption that the latitude variation of the present non-dipole 
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A physical model for palaeosecular variation 81  1 

field is characteristic of the time-averaged variation (see Section 2 for discussion). A major 
problem common to models D, E and M is that they require knowledge of the probability 
distribution of the average intensity of the non-dipole components and of the dipole 
moment. Each of these models has used as a probability density for the dipole moment the 
density implied by Cox’s (1968) model of an oscillating dipole moment. It is now known 
that this probability distribution is incompatible with the observed distribution of virtual 
dipole moments (VDMs) following the analyses of Kono (1972) and McFadden & 
McElhinny (1 982). 

Roy & Wagner (1982) have presented a PSV model based on a pair of unequally sized 
current loops in the core. This model does have the appeal that there is no artificial separa- 
tion into dipole and non-dipole parts. However, 14 time-dependent parameters are required 
to specify the pair of loops and estimation of these parameters, together with their time 
dependence, from palaeosecular variation data is a formidable task. Roy & Wagner use a 
fit, presented by Zidarov & Petrova (1979), to the well-specified 1950 field and allowed time 
variations only through orientation of the loops. The model is entirely deterministic and so 
a fit to the parameters and their evolution would require accurate dating of PSV data with 
extensive global coverage at each (precise) age. Present PSV data represent, at best, samples 
at random times and random positions. For the forseeable future therefore it would be 
inappropriate to attempt to fit a deterministic model to PSV data. Instead the stochastic 
sampling of the deterministic processes should be recognized and attempts made to fit 
statistical models. 

This paper thus aims to produce a statistical model for the latitude variation of angular 
dispersion without the inconsistencies of previous models. A model is required which: (a) is 
not inconsistent with the latitude variation in the angular dispersion obtained from the 
present field, (b) retains an intimate link between the dipole and non-dipole parts of the 
field and (c) is not inconsistent with our present understanding of the variation in the 
intensity of the field. Consistent with previous nomenclature, the model is referred to as 
model F. 

2 Model non-uniqueness and the present-day field 
McElhinny & Merrill (1975) have previously discussed the fact that, given a set of PSV data, 
it is not possible to separate the effects of dipole wobble and non-dipole variation in a 
unique manner. A brief resume of their argument is presented here for completeness. 

It is now well-known that the angular dispersion of geomagnetic field directions decreases 
with latitude. This is true both for the dispersion caused by dipole wobble and the dispersion 
caused by variation in the non-dipole components. However, if the field directions are trans- 
formed to virtual geomagnetic poles (VGPs) then the dispersion caused by dipole wobble is 
independent of latitude and the dispersion caused by variation in the non-dipole com- 
ponents increases with latitude, the resulting overall dispersion therefore also increases with 
latitude. The latitude independence of the dispersion from dipole wobble in the VGP frame 
of reference makes this the natural frame of reference for estimation of model parameters. 
Hence the model for dispersion from the non-dipole field is developed in the direction frame 
of reference and then transformed to the VGP frame of reference for addition of the dipole 
wobble dispersion and parameter estimation. 

The overall angular dispersion of VGPs, S, is usually written as 

SZ=S:, + S i W 2 ( X )  (1) 

(e.g. see review by McElhinny & Merrill 1975) where SD is the angular dispersion of VGPs 
caused by dipole wobble, h is the latitude, SN is the angular dispersion of VGPs at h = 0 
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Figure 1. The solid curve represents the actual timeaveraged latitude variation. (a) Variation about this 
curve from independent observations (i.e. the sampling is carried out on a stochastic time-scale). (b) 
Systematic variation from the time-averaged curve obtained by sampling at different latitudes but at a 
fixed time (i.e. the sampling is carried out on a deterministic time-scale). Each observation in (a) is 
therefore a single point from a deterministic curve such as the dotted curve in (b) but each one is drawn 
from a different, independent curve. 

caused by variation in the non-dipole components and W( A) is the latitude variation in the 
non-dipole dispersion with, by definition, W ( 0 )  = 1. 

Consider now a set of palaeosecular variation data from which the dispersion of VGPs 
is known as a function of A the value at the equator ( A  = 0") being 13" and at the pole 
( A  = 90") being 19". If it is assumed that the dipole wobble gives SD = 5" then s ~ W ( 0 )  = 12" 
and SN W(90) = 18.3". Consequently the latitude variation W(9O)/W(O) for the non-dipole 
dispersion is 1.53. However, if it is assumed that the dipole wobble gives SD = 12.5" then 
SNW(O) = 3.57" and s ~ W ( 9 0 )  = 14.31", giving the latitude variation W(9O)/W(O) ~ 4 . 0 1 .  
Thus a very different latitude variation is required depending on the amount of dipole 
wobble. Furthermore, the shape of the latitude variation will also alter. Consequently many 
different models, all predicting different functions W(A), can be made to fit the palaeo- 
secular variation data by adjusting the amount of dipole wobble. The only way to overcome 
this modelling non-uniqueness is to require that the model predict a W( A) which is consis- 
tent with the latitude variation of the present-day non-dipole field. However, there is also a 
slight problem associated with this approach, as is shown below. 

When angular dispersions are obtained from a set of palaeomagnetic measurements, then 
it can be assumed that individual observatioos, both at the same and different latitudes, will 
tend to be separated enough in time that each observation is independent. Essentially there- 
fore sampling is being carried out on a stochastic time-scale. The observations can thus be 
expected to group around the correct curve as shown in Fig. l(a). With the present-day non- 
dipole field the situation is somewhat different. By rotating the present non-dipole field 
around lines of latitude, an estimate of the latitude variation of the angular dispersion, based 
entirely on the present field, may be obtained. However, because a real field has been used 
and rotated, the angular dispersions obtained for different latitudes are not independent of 
each other. These dispersions are then not observations on a stochastic time-scale but are 
observations on a deterministic time-scale. From the equator to the pole there appears to be 
about one 'wavelength' of non-dipole features. It is thus unlikely that more than three of the 
observations from equator to pole are independent. This means that it can be expected that 
the shape of the curve derived from the present non-dipole field would differ from the 
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A physical model for palaeosecuhr variation 813 

shape of the curve derived from the time-averaged field (Fig. lb). However, it can still be 
expected that the ratio W(9O)/W(O)  will be similar for the two fields, so that much of the 
non-uniqueness can be removed by requiring that this be the case. However, it is still to be 
expected that the shape of the two curves will vary in a deterministic manner (Fig. lb). 

3 Model assumptions 

Cox (1970) points out that low latitude present-day field directions are not symmetric but 
their corresponding VGP positions are approximately symmetric. It seems reasonable there- 
fore for modelling purposes to assume that the VGPs, rather than the field directions, 
exhibit symmetry. As the basic structure for the model, with regard to dispersion due to 
non-dipole components, it has thus been assumed that the field at a given point and given 
time may be considered as resulting from a dipole M, which is itself the resultant of the 
actual dipole M perturbed by another dipole m (representing the non-dipole components), 
as shown in Fig. 2. Changes in the direction of M are then associated with dipole wobble and 
the dipole moment, M, is just the length of this vector. If the dipole moment is sampled on 
a stochastic time-scale the resulting distribution of M will have some probability density, 

Figure 2. Geometry of vectors assumed for the VGP frame of reference. M represents the dipole vector, 
m the nondipole vector and M, the resultant. 
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denoted by PM (M). Variations in the non-dipole components are represented by variations 
in the length and direction of m. The distribution of m will depend on both longitude and 
latitude, A, but in the time-averaged sense it will depend only on A. The assumption of 
spherical symmetry in the VGPs requires that m be uniformly distributed in direction so that 
for a given m (the length of m) and M, the tip of the vector MR will lie on the surface of a 
sphere (Fig. 2). The non-dipole components change over periods from 10 to 103yr while 
the dipole changes over periods of about 104yr (Cox & Doell 1964). Because of this 
difference in time constants there is the possibility that the distribution of m depends on 
the value of M and, as shown below, there is evidence to suggest this is so. Consequently a 
density, p m  (m IM, A), is assumed of m conditional upon given M with a dependence on A. 

For a dipole of given moment M aligned along the spin axis let the intensity be Fo at 
the equator. At some latitude A the intensity, F, from the dipole field will then be given by 

P. L. McFadden and M. W. McElhinny 

F = F o d m .  (2) 
Consequently in the case of field directions it may be considered that the dipole vector M 
has been mapped into a field vector F and the density P M ( M )  will have been mapped into 
some density PF(F, A), the dependence on A arising from equation (2). For a given M and 
A the vector m will map into some field vector v (Fig. 3) and the resultant vector MR will 
map into the resultant field vector FR. However, unlike the tip of M R ,  for a given m, Mand 
A, the tip of F R  is not distributed on the surface of a sphere. Instead it is distributed over a 
surface which is more like an ellipsoid of revolution with axes a, 0 and y (a f 0 f 7) 
(Fig. 3). If f” is the average of uz over this surface (i.e. for given m, M and A) then, as M 
maps into F, so also m maps intofand p,(mlM; A) maps into the density pf(flF; A). 

On the basis of archaeomagnetic results McElhinny & Senanayake (1982) suggested that, 
to first order, the average intensity of the non-dipole components has been proportional 
to the dipole field. This was confirmed by a statistical analysis presented by McFadden & 
McElhinny (1982) of VDMs from the past 5 Myr. In their analysis McFadden & McElhinny 
(1982) showed that an excellent fit to the distribution of VDMs is obtained by assuming 
that for a given dipole moment (or dipole field intensity F )  the variance in observed VDMs 
consequent upon non-dipole components is proportional to the square of the dipole 
moment (or FZ) .  This suggests that to first order 

f2pf(fl F; A) d f =  < f 2  I F )  = k Z F Z  (3) 

Figure 3. Geometry of field direction vectors at observation point. The vectors M, m and M, from the 
VGP frame of reference (Fig. 2) map into the vectors F, v and F, respectively. A spherical surface in the 
VGP frame of reference maps into a non-spherical surface with axis lengths a, p and y (see text). 
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where the integration is over all possible f, ( $ 1  F ) is the expectation off’ conditional upon 
given F and k is a constant. This equation is equivalent to stating that at any latitude the 
time-averaged energy density in the non-dipole field is a constant proportion of the energy 
density in the dipole field and this linearity is assumed throughout the analysis. 

AS is shown later the angular variance in directions from variations in the non-dipole field 
is proportional to the expectation of ( f’/F2). Therefore, from equation (3), as F varies so 
does the distribution o f f  so that the dispersion due to variations in the non-dipole field 
remains constant. Consequently, in the present model, variations in the dipole moment do 
not affect the dispersion. Hence, even if the dipole moment, M ,  is correlated with the 
direction of M this does not imply any correlation between dispersion from dipole wobble 
and dispersion from variations in non- dipole components. However, as dipole wobble occurs 
the magnetic latitude at a given geographic latitude will vary and this does imply a 
correlation of the two effects through A. However, this will be a second-order effect and so 
for this model it is assumed that the resulting covariance between SD and S, is negligible. 
Hence it is assumed throughout the analysis that equation (1) is valid. 

In the next section the model for palaeosecular variation is developed solely from the 
above assumptions. It is rather surprising that these assumptions are sufficient but, as will be 
shown, there is no need to make any assumptions regarding the distributions PF(F, A) and 
pf( f I F, A) apart from the relation of equation (3). 

4 Development of model F 

As the latitude, A, of observation varies so do the relative lengths of the axes a, /3 and y in 
Fig. 3. Consequently, for a given ratio ( f / F ) ,  the angular dispersion observed will be latitude- 
dependent. This mapping is difficult to perform analytically and so it has been done 
numerically. If a = /3 = y = f < F then it is a trivial matter to show that 

where 6; is the angular variance of field directions with 6d  in radians. Thus it can be 
expected that for the actual mapping, for a given f and F, the function will be similar to this 
but with a term describing the latitude variation and also terms describing the correction for 
finite f. It has been found by the numerical process that an extremely close fit to the actual 
mapping is provided by the function 

2 1 +aexp(-bh’) f” f’ 6;( A) = - - = C(A) . 
3 4- F2 

The term 4 m A  accounts for the latitude variation in the relative lengths of the axes 
a, and y and, strangely enough, this effect has been completely ignored in all previous 
models. The term [ 1 + a exp(-bA’)] is a correction factor for finite .f and so both a and b 
depend on the angular variance of field directions at the equator, i.e. Si(0). However, over 
the range of interest, both a and b vary slowly and their values may be obtained by linear 
interpolation from Table 1. 

As f and F vary the time-averaged angular variance of the field directions, 4( A), must be 
given by 
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Table 1. Values of a and b as a func- 
tion of 6d(o). 

0.2430 

0.2400 

0.2349 

0.2278 

0.2186 

0.2073 

0.1939 

0.1788 

0.1615 

0.1442 

Note 

(1) In this table 6 d(0) is in degrees and 
the value of b given assumes that in the 
equation [l+aexp[(-bA2)],  A is in 
degrees. 
( 2 )  The nature of the correction is such 
that Od(0) may be substituted for 6d(o) 
and the values of a and b are still 
sufficiently accurate. See text. 

where the integration is over all possible values of f  and F. The function C(A) is, through 
a and b,  weakly dependent on the ratio cf /F)  and therefore on the density pf(flF; A). 
However, this dependence is dominated by the ratio (( f 2 1  F ) / F )  and so if the values of 
a and b are determined from G(0) rather than 6:(0) the function G(A) may be considered 
as independent of pf( f I F; A) and only very small errors will be introduced in the correction 
for fmitef. Substitution for 6 i ( A )  from (5) into ( 6 )  then gives 

Substitution from (3) then gives 

and it should be noted that this result is essentially independent of the distribution of either 
f o r  F, i.e. of pf( f I F; A) and ~ F ( F ;  A). This is a distinct advantage over previous models. 
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A physical model for paheosecuhr variation 817 

It now remains to  transform from the angular variance of field directions, $d(A), to the 
angular variance of VGPs, ."p( A). Denoting the transformation by H (A, $d( A)} where 

then 

o2,(A)=k2G(A)H{A, Ui(A)} . (10) 

If $d(A) is very small then H (A, ui(A)) is a function only of A and Cox (1970) has given 
the transform as 

2(1 t 3 sin'h)' 
H {A, G(A)+O) = 

5t3s in2A . 

However, for typical values of u$( A) this relation is not accurate enough and the transfor- 
mation has to be performed numerically. This has already been done by Cox (1970) and the 
transformation presented in tabular form (see his table 5). This tabular transformation is 
reproduced here as Table 2 and interpolation within the table may be performed as a linear 
interpolation for $d( A) and a non-linear interpolation for A assuming the functional form of 
equation (1 1). 

Using the notation of ( l ) ,  (1 0) may be rewritten as 

= s;: w'( A) 

where 

s;: = k'G(0)H {O, a'd(0)) . 

Table 2. Transformation function H {A,  oi(A)) from angular 
variance of field directions to angular variance of VGPs as a 
function of A and &A). 

oo 0.40 0.41 0.42 0.44 0.48 0.54 

10' 0.47 0.41 0.48 0.49 0.52 0.57 

20' 0.68 0.68 0.67 0.66 0.66 0.68 

30' 1.07 1.04 1.02 0.99 0.94 0.89 

40' 1.61 1.57 1.54 1.48 1.37 1.22 

50' 2.25 2.21 2.17 2.09 1.94 1.69 

60' 2.91 2.87 2.81 2.13 2.56 2.23 

70' 3.48 3.44 3.39 3.30 3.11 2.74 

80' 3.86 3.81 3.70 3.69 3.50 3 .11  

90' 4.00 3.97 3.92 3.83 3.64 3.25 

Note 

In this table A is in degrees but U&) is in radians. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/78/3/809/650768 by guest on 21 August 2022



818 P. L. McFadden and M. W. McElhinny 
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Figure 4. Non-dipole latitude variation, W( A), predicted by model F with an assumed value of od(0) = 
12.4". W,( A), W , ( A )  and W , ( A )  indicate the effects of ignoring different aspects of finite nondipole 
dispersion. 

The latitude variation, W ( A ) ,  of the non-dipole dispersion according to this model is 
shown in Fig. 4 for an assumed value of (Td(0) = 12.4". For comparison purposes approxi- 
mations to W ( A )  have also been plotted in the same diagram. W,(A)  assumes that in ( 5 )  
a = 0 and uses (1 1) for the transformation to the poles. Hence the corrections for finite 
dispersion have been ignored both in the dispersion of field directions and in the trans- 
formation to the poles. W2( A) uses the correct values for Q and b in ( 5 )  but still uses (1 1) 
for transformation to the poles. Hence the correction for finite dispersion has been ignored 
only in the transformation to the poles. W,( A) again assumes Q = 0 in ( 5 )  but uses the correct 
transformation to  the poles. Hence the correction for finite dispersion has been ignored only 
in the dispersion of field directions. 

5 Estimation of model parameters 

From ( l ) ,  

S2 = S2, t S; W'(A),  

a plot of the overall angular variance S2 against the latitude variation W 2 ( A )  will be linear. 
Thus, least squares linear regression techniques may be used to estimate the parameters 
SD and SN. Because of the nature of sampling, the observations at different latitudes have 
different precisions and therefore a weighted least squares regression has been used. 

The relationship is such that the parameters actually estimated are Sh and S i  and 
simply taking the square root of the estimates for these parameters will give biased estimates 
for the parameters SD and SN. Furthermore, W'(X) depends implicitly upon ui(0) and 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/78/3/809/650768 by guest on 21 August 2022



A physical model for palaeosecular variation 819 

therefore on S i ,  one of the parameters to be estimated. Hence an interative least squares 
regression, on <(O) or equivalently S;, has to be performed. This lack of independence 
means that the usual estimates of error in the least squares fit will be at best rough estimates 
of the actual error involved. To overcome these problems a jack-knife technique (see e.g. 
Cox & Hinkley 1974) has been used to obtain the estimates and their errors. Briefly, the 
technique is as follows. Consider a set of n observations y I ,  y 2 ,  . . . , y ,  used to obtain the 
estimate 8 n ( y 1 ,  y z ,  . . . , y,) of some parameter 8. The parameter 0 is again estimated but 
ignoring the observation yi, then the estimator 8-j can be defined as 

0-j  = 0,- I ( Y I ,  YZ, . . . 9Yj-1 , y j+l> . . . , ~ n > .  (14) 

8-i is computed for j = 1 ,2 ,  . . . , n and the n pseudo-values e p j ,  j = 1 , 2 , .  . . , n defined by 

epi = ne, - ( n - l ) e - j  (15) 

can be computed. The jack-knife estimator 
values and so 

is given by the average of the n pseudo- 

The bias of (8,)' is less than any bias the original estimator 8,( y l ,  y l ,  . . . , y,) might have 
had an approximate confidence interval may be found for the parameter 0 by treating 

as a Student's t distributed variable on (n-1) degrees of freedom where 

The acceptability of the regression may be tested with the common chi-square test. If 
the regression has been performed on m observations then, under the null hypothesis that 
the model is correct, the sum of the weighted residuals will be a chi-square distributed 
variable on (m-2) degrees of freedom. Thus if the sum of the weighted residuals does not 
exceed the critical value of the relevant chi-square distribution then there is no statistical 
reason for rejecting the null hypothesis. 

6 Comparison of model with present field data 

In Section 2 it was noted that an acceptable model for the latitude variation of PSV should 
not be inconsistent with the present field data. A least squares fit has been performed to 
the 1965 IGRF non-dipole field (from McElhinny & Merrill 1975) and this fit is presented 
in Fig. 5. The fit was performed with the constraint that S D  = O  with the 'observations' 
(see Table 3) taken as the variances at 10" intervals in latitude. Because the measurement 
errors in this case will be much smaller than the variation with time, equal weight was given 
to each of these observations. From Fig. 5 it is immediately apparent that the model is not 
inconsistent with the present field data and that the shapes of the two curves differ in a 
systematic manner, as was suggested in Section 2 should be the case. 
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820 P. L. McFadden and M. W. McElhinny 

LATITUDE 

Figure 5. Least squares fit of model F to the 1965 IGRF non-dipole field. 

7 Data selection 

McElhinny & Merrill(1975) have outlined data selection methods for use in analysis of PSV. 
For the last 5Myr it can be assumed that continental drift has been small and that all 
measured palaeodirections can be referred to the present axis of rotation. Lee & McElhinny 
(1984) have summarized a new data set for the past 5 Myr and these are summarized in 
Tables 4, 5 and 6. The analytical technique of McElhinny & Merrill(l975) has been used in 
which the VGPs are averaged over latitude bands. Separate analyses are given for normal 
(Table 4) and reversed (Table 5 )  data, but as Lee & McElhinny (1984) point out, incomplete 
demagnetization of rock samples tends to increase the dispersion of the reversed data and 

Table 3. Angular dispersion 
of the 1965 IGRF non-dipole 
field. 
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A physical model for palaeosecular variation 

Table 4. Normal polarity data for last 5 Ma. 
Lat 1 tude 
Range A m  5 f  L  su 

0-15 2.7 361 12.0 11.4 12.7 

15-25 19.8 194 13.7 13.1 14.4 

25-30 27.7 226 14.8 13.9 15.8 

10-40 36.7 146 15.1 14.2 16.1 

40-50 45.4 160 16.9 15.7 18.3 

50-60 55.7 103 17.1 15.6 19.0 

>60 66.3 230 18.8 17.7 20.1 

Notes 

h,is the average latitude of the observations. 
N is the number of observations in the lati- 
tude range. 
sf is the mean dispersion of VGPs in the 
latitude range and is the observed estimate of 
Sin equation (1). 
SL and su are the lower and upper 95 per 
cent confidence limits for S within the lati- 
tude range. 
All latitudes and dispersions are given in 
degrees. 

Table 5. Reverse polarity data for last 5 Ma. 

N S  f S  L SU 
Lat 1 tude 
Range 'm 

0-15 3.9 97 15.1 13.7 16.8 

15-30 24.9 301 14.2 13.4 15.1 

30-45 31.2 76 15.6 14.0 17.6 

45-60 55.0 89 20.2 18.3 22.6 

'60 64.9 199 20.6 19.3 22.2 

For symbol definitions see Table 4. 

Table 6. Combined polarity data for last 
5 Ma. 

~ a n g e  'm "f  = L su 
Lat i tude  N 

0-1 5 2.9 458 12.7 12.2 11.3 

15-25 20.1 541 11.4 12.9 14.0 

25-30 28.0 380 15.1 14.4 15.9 

30-40 16.7 211 15.5 14.5 16.i 

40-50 45.1 188 16.7 15.6 18.0 

50-60 56.4 175 19.0 17.7 20.5 

> 60 65.7 429 19.5 18.6 20.5 

For symbol definitions see Table 4. 

82 1 

decrease that of the normal data. Combining the normal and reversed data tends to cancel 
out this effect (Table 6). 

For data from rocks older than SMyr, continental drift must be taken into account. 
Euler rotations for the main continental plates are now known fairly precisely for the past 
200Myr. It is possible therefore to reconstruct the relative positions of the continents at 
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any time during this period. The palaeomagnetic data then determine the axis of rotation 
at any time. Lee & McElhinny (1984) have compiled data suitable for PSV in this way. 
At any point in time the departures of the VGPs from the calculated axis of rotation can 
be determined. 

Because the data become very much fewer beyond SMyr, the VGP scatters can be 
accumulated over any length of time until sufficient data are available. A more detailed 
analysis of pre-5 Myr old data is given by Lee & McElhinny (1984) in terms of model F. In 
this paper the data are accumulated over three time spans 5-45,45-110 and 110-195 Myr 
(Tables 8- 10). Details are given by Lee & McElhinny (1 984). 

P. L. McFadden and M. W. McElhinny 

8 The last 5 Myr 

Although it can be expected that separate normal and reverse PSV data will give lower and 
higher angular dispersions than expected respectively, a separate analysis has been carried 
out here to see if any differences can be determined. Best fitting parameter estimates are 
given in Table 7 and least square fits to the data are shown in Fig. 6 .  In both cases the model 
provides an acceptable fit to the data, although the fit to the normal polarity data is clearly 
better. This probably just reflects the fact that there are more data available for the normal 
field over the past 5 Myr. From the jack-knife results in Table 7, it is apparent that there is 
no discernible difference between the parameters for the normal polarity fit and those for 
the reversed polarity fit. The parameter estimates for the combined polarity fit are given in 
Table 7 and the least squares fit is shown in Fig. 7. The fit to these data is in fact very good 
with the probability that a chi-square distributed variable with five degrees of freedom will 
exceed 4.42 being 50 per cent. 

Table 7. Parameter estimates for last 5 Ma. 

Lrasc squares resresnion 

;; var(s^i) s, ;; va+ iN O d ( O 1  x2 x& 

Normal  56.5 176.9 7.5 100.8 86.0 10.0 14.70 9.33 11.07 

Reverse 54.1 677.3 7.4 126.4 278.5 11.2 16.22 6.57 7.82 

Combined 51.7 142.0 7.2 113.1 67.4 10.6 15.46 4.42 11.07 

Jack-knife results 

So Var(S,) dof 95% limits SN Var(SN) dof 95% limits 

Normal 7.3 5.15 6 1.7<SD<12.8 10.2 1.26 6 7.5a <13.0 

RPVPrSP 5.8 13.21 4 O<SD<15.9 12.2 1.72 4 8.5<SN<15.8 

Combined 7.4 0.84 6 5 . 2 < S  '9.7 10.5 0.24 6 9.3tSN<ll.7 

Notes 

i b :  estimate ofsb. 
yar (Sb) :  estimated variance of 
SD: estimate of SD (degrees). 
S&: eftimate o f S h .  
yar (Sk): estimated variance of  S& from least squares. 
SN: estimate of SN (degrees). 
X2: value of chi-square test statistic. 
xi . , ,5:  critical value of chi-square distribution at 95 per cent level of confidence. 
do f  degrees of freedom for Student's t distributed variable. 
ud(0):  angular dispersion of field directions at equator (degrees). 

from least squares. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/78/3/809/650768 by guest on 21 August 2022



0 -5 Mo NORMAL POLARITY 

21.0 

z 
In 
LT w 

0 190- 

a 
2 

4 
170- 

0 
z a 

- 

T 

A physical model for palaeosecular variation 
23.0 r 

823 

l 3 O W  I301 

c. I 

I I  01 I J II 01 I 

30 0 60 0 90 0 30 0 60 0 90 0 

0 L A T I T U D E  b L A T I T U D E  

Figure 6. Least squares fit of model F t o  (a) normal and (b) reversed polarity data for the past 5 Myr. 

22 

20 

z 
In 
0 

a 
5 
E 18 
0 

IT 

J 
3 
W 

a 

z 16 a 
a 
W > 

14 

12 

0 . 5 Ma COMBINED POLARITY 

T /  

1 

30.0 60 0 90 0 

L A T I T U D E  

Figure 7. Least squares fit of model F t o  combined polarity data for the past 5 Myr. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/78/3/809/650768 by guest on 21 August 2022



824 P. L. McFadden and M. W. McElhinny 

8.1 C O M P A R I S O N  WITH P R E V I O U S  V D M  A N A L Y S I S  

The fundamental relationship, equation (8), for the latitude variation of angular dispersion 
was derived assuming equation (3), this latter relation following from McFadden & 
McElhinny (1982). Estimation of the parameter Sk is equivalent to estimation of the 
parameter k in (3). Similarly, it is possible to estimate the parameter k given the VDM 
analysis of McFadden & McElhinny (1 982). A more meaningful parameter is ud(0) which is 
given from (8) as 

q(0) = kdT(iG$3 (rad) (19) 
and this has already been estimated as part of the iterative least squares regression for the 
directional data. For purposes of comparison between the two studies (Td(0) will now be 
estimated from the results of the VDM analysis. 

From the analysis of VDMs for the last 5 Myr McFadden & McElhinny (1982) were able 
to show that, to first order, the variance, dMr, of VDMs caused by variations in the non- 
dipole components is given by 

dM, = cZF2 

with c = 0.186. In order to relate this to the dispersion of the directional data some distri- 
bution has to be assumed for p,(m IM). It is reasonable to assume that m is caused by a 
large number of essentially independent variations and that the tip of m therefore has a 
trivariate Gaussian distribution with some variance u i .  The variable m, which is just the 
length of m, will therefore have the distribution p,(m I M) given by 

4m2 
p,(m IM)dm = - exp(-m2/R2)dm 

R34/n 
where 

R = u,42 (22) 

is the mode (i.e. the most likely value) of m. This is in fact the distribution used by Cox 
(1970), and subsequent models, to determine the latitudinal variation of PSV. If 8 is the 
angle between m and M then 

M: =M2 +m2 +2mMcos0 (23) 
and so for given m and M 

mz 

3M 
( Mr ) = M + - 

Var(M,e) = (M: ) - (M, ) =  mz (1 - 2). 
3 

As m varies the overall variance, $Mr, in the VDMs is given by 

4m2 =Jam (: - ") - exp(-m2/RZ)dm 
9M2 R 3 4 r  
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A physical model for palaeosecular variation 

From (20) this must equal c2M2 and so 

Letting 

R = q M  

then 

c 2 = % q 2 - -  5 4  q . 
12 

This suggests that as p f (  f I F )  the density given by 

can be used where R f  is the mode off conditional upon F and 

From (3) this gives 

R f = k a ) F = q F  

and since the distribution of directions does not have the spherical symmetry a function 
of the form 

c2 = uq2 - wq4 (32) 

can be used but u and w may not take on the values of ?h and (5/12) respectively as in (28). 
Integrations over the directional distributions assuming the density of (29) have been 

performed numerically and it was found that for q in the range 0.0-0.6 the value of c is 
given to within 0.1 per cent by (32) with u =0.57483 and w =0.12845. The value of 
c = 0,186 determined by McFadden & McElhinny (1982) therefore gives q = 0.2470. 
Substitution of this result into (19) and interpolating the value of a from Table 1 gives 

(Jd(0) = 15.39". 

This value of Ud(0) has been determined from the fit performed by McFadden & McElhinny 
(1982) to the VDM (i.e. intensity) data and agrees remarkably well with the value of ud(0) = 
15.46" (see Table 6) obtained here by fitting to the directional data for the last 5 Myr. 

It is important to know how sensitive this agreement is to the distribution assumed for f. 
To test this it was assumed that f could only take on a specific value R f  for each value of F 
with 

and 

( f 2  I F ) =  F 2 .  (34) 
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Equation (3) then gives k = q for this situation. Again it was found that with 4 in the range 
0.0-+0.6 an excellent fit is given by equation (32) but now with u = 0.383278 and 
w = 0.135799. The value of c = 0.186 then gives 4 = 0.3055 and substitution of this value 
into (19) gives 

P. L. McFadden and M. W. McElhinny 

~f(0) = 15.54". 

Clearly therefore the value of (Jd(0) predicted from the intensity analysis is not at d 
sensitive to the density assumed for Pf(fl F) .  The reason for this is that (3) is fundamental 
to the model and is essentially a statement regarding the average energy density in the non- 
dipole field and the energy density in the dipole field. Hence, no matter what distribution 
is chosen for f the fit is equivalent to balancing the energy densities and will give consistent 
values for ad(0). 

9 The period 5-195 Ma 

Tables 8, 9 and 10 summarize the VGP angular dispersion data for the intervals 5-45, 
45-1 10 and 1 10- 195 Ma, from Lee & McElhinny (1 984). Parameter estimates from model 
F for these three intervals are given in Table 11 and least squares fits are shown in Figs 8,  
9 and 10. 

Table 8. Combined polarity data 
5-45 Ma. 

5 f  L 5 u  
Larirude A 
Range 

0-1 5 10.9 110 18.6 17.0 20.6 

1 5-30 23.8 274 17.6 16.6 18.7 

30-45 43.3 293 21.a 20.4 22.9 

45-60 5 0 . 3  527 20.1 19.3 21.0 

> 60 62.8 627 21.5 20.1 22.4 

For symbol definitions see Table 4. 

Table 9. Combined polarity data 
45-1 10 Ma. 

S f  sL Bu 
Larirude 
Range Am 

0-15 8.5 12 11.7 10.0 14.2 

15-30 23.9 99 12.9 11.8 14.3 

30-45 40.9 I47 15.3 14.2 16.1 

45-60 47.6 245 19.5 18.4 20.8 

60 64.3 25 20.9 17.4 26.1 

For symbol definitions see Table 4. 

Table 10. Combined polarity data 
110-195 Ma. 

S f  L $11 
Lac iLude 
Range A m  

0-20 11.1 69 18.5 16.6 21.11 

30-40 34.3 66 18.5 16.5 21.1 

,40 61.2 47 20.3 11.8 23.1 

For symbol definitions see Table 4. 
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A physical model for paheosecular variation 

Table 11. Parameter estimates for 5-195 Ma, combined polarities. 

Least squares regression 

827 

5-45Ua 233.8 892.2 15.3 75.1 167.7 8.7 12.90 10.54 11.34 

45-110 Ua 0 ----- 0 151.6 4 3 . 3  12.3 17.52 11.90 13.28 

i10-195 Ma 299.0 4693 17.3 30.9 I182 5.6 8.56 0.22 6.64 

Jack-knife results 

SD Var(SD) dof 95% limits SN Var(SN) dof 95% limits 

5-45 Ua 14.5 4.36 4 8.7~so<20.3 9.4 3.02 4 4.h<SN<14.2 

45-110 Ua 0 ---- - __-----_-__ 12.3 0.76 4 9.9<sN<14.1 

110-195 Ma 17.4 2.73 2 10.3<S0'24.5 8.0 19.53 2 0 <S d7.1 

For symbol definitions see Table 6 .  
xi .99:  critical value of chi-square distribution at 99 per cent level of confidence. 

It is unlikely that the parameters SA and Sf: remained constant over any of these periods 
of time and so the accumulated data within each latitudinal band are probably derived from 
a spread of these parameters. Consequently the 99 per cent level of confidence has been used 
as a rejection criterion for these fits rather than the 95 per cent level of confidence and, 
from Table 1 1, none of the fits may be rejected at this level of confidence. 

The period 45- 1 10 Ma is the most interesting in that it contains the Cretaceous Normal 
Polarity Interval. It was found that if an unconstrained least squares fit was performed the 

1 I 
1 

60 0 90 0 16 01 
30 0 

LATITUDE 

Figure 8. Least squares fit of model F to  combined polarity data for the period 5-45 Ma. 
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Figure 9. Least squares fit of model F to combined polarity data for the period 45-1 10 Ma. 
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Figure 10. Least squares fit of model F to combined polarity data for the period 110-195 Ma. 
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A physical model for paheosecular variation 829 

estimated value of S& was negative - which is physically impossible. The only way to 
achieve a realistic fit was to constrain the model to having Sh = 0. 

From Fig. 10 it is immediately apparent that the data give very little information about 
S i  during the period 110-195Ma but do give some information about Sh, the dipole 
wobble. This is confirmed by the errors given in Table 1 1. 

10 Discussion 

A simple model has been presented for the latitude variation in PSV which not only fits the 
palaeodata but also the data from the present field - an aspect which has eluded previous 
models. There are two fundamental differences between the present model and previous 
ones. Firstly, the effect on the latitude variation of the dispersion of directions caused by 
having spherically distributed VGPs rather than field directions has been taken into account 
- an effect which varies by a factor of more than 4 2  (in the dispersion) from equator to 
pole, yet has been ignored in previous models. Secondly, based on the intensity analysis of 
McFadden & McElhinny (1982), it is assumed that the average energy density of the non- 
dipole field has been linearly proportional to the energy density of the dipole field. An 
important consequence of this is that there is no need to assume a distribution for the 
intensity of either the non-dipole components or the dipole moment. This is a fundamental 
improvement over previous models. 

Comparison of a statistical model fitted by McFadden & McElhinny (1982) to intensity 
data from the last 5 Myr with the present fit to directional data for the same period shows 
an excellent degree of consistency. The least squares fit to the directional data gives the 
angular dispersion of field directions at the equator as 15.4" and from the previous fit to the 
intensity data we would predict this dispersion to be about 15.5" - the precise value 
depending upon an assumed distribution for the intensity of the non-dipole components. 
The fit to the directional data gives the point estimate for kZ as 0.0923 for the last 5 Myr. 
This implies that the average energy density in the non-dipole field at the surface of the 
Earth has been about 9 per cent of the energy density in the dipole field, this ratio being the 
controlling factor in the dispersion caused by variation in the non-dipole components. From 
Tables 7 and 11 it is apparent that the null hypothesis that SN has remained constant from 
195Ma to the present cannot be rejected. If this is so then it is a remarkable feature. 
However, the results are not well constrained (particularly for the period 110-195 Ma) and 
so the inability to reject such an hypothesis is not, at this stage, very meaningful. In contrast 
the behaviour of SD, the dipole wobble, is quite striking in that during the period45-110 Ma 
it is necessary to set SD = 0 to obtain a physically realistic fit. The implication is that the 
dipole wobble was zero (or at least very small) during the Cretaceous Normal Polarity 
Interval and the secular variation was due almost entirely to variation in the non-dipole 
components. 
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