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Abstract
We recently proposed a phase-sensitive x-ray imaging method called multiple-
image radiography (MIR), which is an improvement on the diffraction-
enhanced imaging technique. MIR simultaneously produces three images,
depicting separately the effects of absorption, refraction and ultra-small-
angle scattering of x-rays, and all three MIR images are virtually immune to
degradation caused by scattering at higher angles. Although good results have
been obtained using MIR, no quantitative model of the imaging process has yet
been developed. In this paper, we present a theoretical prediction of the MIR
image values in terms of fundamental physical properties of the object being
imaged. We use radiative transport theory to model the beam propagation,
and we model the object as a stratified medium containing discrete scattering
particles. An important finding of our analysis is that the image values in all
three MIR images are line integrals of various object parameters, which is an
essential property for computed tomography to be achieved with conventional
reconstruction methods. Our analysis also shows that MIR truly separates the
effects of absorption, refraction and ultra-small-angle scattering for the case
considered. We validate our analytical model using real and simulated imaging
data.

1. Introduction

Diffraction-enhanced imaging (DEI) (Chapman et al 1997) was the first planar, phase-sensitive
x-ray technique to produce separate images of absorption and refraction effects. The DEI
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method allows the visualization of weakly absorbing features of soft tissue, which otherwise
are obscured by the presence of scattered radiation. Despite the spectacular images produced
by DEI, the method has significant drawbacks. Most notably, DEI incorrectly neglects ultra-
small-angle x-ray scattering (USAXS), an effect in which microstructure of the object causes
small refractive perturbations to the beam. Since biological tissue has structure on the scale
needed to create USAXS, DEI images almost always contain artefacts that become very
noticeable if used for computed tomography (CT) reconstruction (Brankov et al 2004). DEI
also assumes a simplified model of the intrinsic rocking curve of the imaging system (which
is the angular impulse response function of the crystal optics system). This approximation
yields additional artefacts, particularly at strong refraction boundaries. As a result, images
produced by the DEI method do not truly portray attenuation and refraction, but instead some
nonlinear mixture of these effects with USAXS (Brankov et al 2004, Wernick et al 2003).

We have proposed the multiple-image radiography (MIR) method (Wernick et al 2003)
as an alternative to DEI. Similar methods have also been independently proposed by others
(Pagot et al 2003, Rigon et al 2003). MIR corrects errors inherent in DEI (in refraction and
absorption images), is more robust to noise than DEI and explicitly produces an additional
image of a USAXS parameter, which conveys information about microstructure of the object.
We have also extended the planar MIR method to a CT implementation, which yields slice or
volumetric images of the object (Brankov et al 2004), and we have shown that these images
significantly lessen the artefacts seen in DEI CT images.

Although we have made significant progress in applying MIR, we have not yet presented
a thorough explanation of the physics of this imaging method. In this paper, we use radiative
transport theory to derive expressions for the three MIR image parameters in terms of
fundamental properties of the object. To make the problem tractable, we model the object as
a collection of discrete scatterers embedded in an inhomogenous medium. Such an approach
to modelling of tissue properties has precedent in the area of optical scattering, where discrete
scatterers were used to form a tissue-equivalent model (Schmitt and Kumar 1998).

An important goal of this paper is to demonstrate that the MIR image parameters represent
line integrals of various quantitative descriptors of the object, which is a necessary condition
for implementing CT by conventional means. Another key aim of the paper is to show that
the MIR methodology indeed isolates the effects of absorption, refraction and USAXS in the
three images that it produces.

In the following section, the MIR method is briefly reviewed. In section 3, we introduce
the object model and propagation model. In section 4, we solve the propagation model for our
problem, and in section 5 we use this solution to predict the values of the imaging parameters
measured by the MIR method. In section 6, we validate the theoretical model experimentally
and present conclusions in section 7. Some details of the derivations are provided in
appendices A and B.

2. Multiple-image radiography

The MIR imaging technique has been described in detail before (e.g. Wernick et al (2003)),
but we review the salient features here for completeness. In MIR, as in DEI, the object
is illuminated by a highly collimated, quasi-monochromatic x-ray beam, which has been
prepared by using diffracting crystals as shown in figure 1. After penetrating the object, the
beam strikes a third crystal, called the analyser, which diffracts principally the portion of the
beam travelling in a particular direction. By rotating the analyser, and collecting images along
the way, an angular intensity spectrum of the transmitted beam can be obtained at each pixel.
The angular intensity spectrum describes the beam intensity as a function of angle; thus, it



A physical model of multiple-image radiography 223

Figure 1. Schematic diagram of the MIR imaging system.

contains the information needed to measure the absorption, refraction and USAXS properties
of the object.

In MIR imaging, these properties of the object are assessed at every pixel as follows. The
absorption coefficient is inferred from the integral of the beam’s angular intensity spectrum
(i.e. the total transmitted intensity); the total net refraction angle of the beam is estimated as
the displacement of the centroid of the angular intensity spectrum from its direction when
the object is absent; and, finally, the angular divergence of the beam caused by USAXS is
quantified by the second central moment of the angular intensity spectrum.

By displaying these three parameters, one obtains three distinct images conveying different
physical characteristics of the object. Thus, MIR produces a rich description of soft tissue
and shows promise for clinical imaging. Owing to the persistence of refraction and USAXS
contrast at x-ray energies characteristic of a tungsten source, therefore MIR can be performed
at higher energies and, therefore, much lower dose than conventional mammography, which
is performed using a molybdenum source. Because MIR eliminates image degradation due to
scatter, MIR may also reduce the need for breast compression during mammographic imaging,
because it significantly limits scatter, and lessens dose dramatically if used at tungsten energies;
however, some breast compression may still be desirable for purposes of limiting superposition
of structures.

An example of MIR images is shown in figure 2 to illustrate the MIR technique. The
object shown is a human foot, illustrating how MIR clearly shows soft tissues that are not well
visualized by conventional radiography.

While MIR imaging appears quite promising, no quantitative theoretical model of the
imaging process has yet been developed. The main goal of this paper is to derive expressions
for the three MIR parameters (absorption, refraction angle and the USAXS parameter) in terms
of the physical object parameters that give rise to them, specifically: the linear absorption
coefficients of the medium and scatterers, the index of refraction distribution of the medium
and several properties of the scatterers.

Most importantly, we show that all three MIR parameters are line integrals of various
descriptors of the object, which is a desirable property that enables MIR to be used in a CT
mode. Linearity is also helpful in planar imaging, where it can facilitate meaningful image
interpretation.

3. Theoretical model

MIR measures only beam components travelling within microradians of the forward direction.
In this regime, interactions are dominated by refractive effects caused by object features that
are large compared with the x-ray wavelength. The interference effects due to free-space
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Figure 2. MIR images of a human foot. The MIR absorption image is similar to a conventional
radiograph, but exhibits much less scatter degradation. The MIR refraction and USAXS images
show soft-tissue structures, such as cartilage, which are poorly visualized, or even invisible, in a
conventional radiograph.

wave propagation can be neglected, since the object–analyser and analyser–detector distances
are small. Thus, in MIR imaging, the relevant interactions of the x-ray beam with the object
are well described by geometrical optics. In such situations, it is convenient to model beam
propagation using radiative transport theory (Ishimaru 1997), an approach which accounts for
average net energy flows within a medium. We model the object as a stratified medium with
discrete scattering centres, as explained in the next section.

3.1. Stratified medium with discrete scattering centres

We model the object to be imaged as a medium characterized by a linear absorption coefficient
µ(�r) = µ(z) that is slowly varying in the z-direction and by a spatially varying refractive
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Figure 3. Incoming and outgoing scattering directions and corresponding incremental solid angles.

index n(�r) given locally as a function of x and z by the following:

n(�r) = n0 + nx(z)x, (1)

where �r = (x, y, z)T denotes the spatial coordinates. In equation (1), which is a Taylor-
series approximation of a potentially more-complicated refractive-index distribution, the factor
nx(z) is the refractive-index gradient and n0 is a constant. Note that the medium can have
refractive-index variations in the y-direction as well by introducing an appropriate rotation of
the coordinate system about the z-axis (see appendix A).

For simplicity, we assume that the object is permeated by a collection of identical discrete
scatterers having number density ρn(�r) = ρn(z) that is slowly varying in the z-direction. The
results that follow can be generalized readily to accommodate the more general case in which
the scatterers are not identical. As demonstrated in section 6.1, this is achieved by averaging
over the known probability distributions of the particles’ properties. Each particle will be
characterized by its extinction cross section σext(z)ρn(z) (which is a sum of the scattering
cross section σs(z) and absorption cross section σa), and phase function, p(�r, �̂s, �̂s ′), which is
the incremental fraction of radiation scattered from solid angle dω in the incoming direction �̂s ′

into solid angle dω′ in the outgoing direction �̂s (see figure 3). We assume isotropic scattering,
which results in a phase function of the form p(�r, �̂s, �̂s ′) = p(z, �̂s − �̂s ′). The scattering
cross section can be described in terms of an effective radius R as σs(z) = R(z)2π . In our
calculations, we will use a quantity called albedo, which is defined as

W0(z)
�= 1

4π

∫
4π

p(z, �̂s − �̂s ′) dω′(�̂s ′) = σs(z)

σext(z)
. (2)

3.2. Radiation transport model

To begin our derivation, let us first define the specific intensity I (�r, �̂s) as the radiation density of
the x-ray beam at position �r = (x, y, z) in the direction �̂s = (sin θ cos φ, sin θ sin φ, cos θ),
where �r and �̂s are defined as in figure 4. The propagation of x-rays through the object is
described by the following radiative transport equation (see figure 4):

�̂s · ∇�r I (�r, �̂s) = −µ(�r)I (�r, �̂s) − ρn(�r)σaI (�r, �̂s) − ρn(�r)σs(�r)I (�r, �̂s)

+ �b(�r) · ∇�̂sI (�r, �̂s) +
ρn(�r)σext(�r)

4π

∫
4π

p(z, �̂s − �̂s ′)I (�r, �̂s ′) dω′, (3)
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Figure 4. Illustration of terms in the radiation transport equation.

where

�b(�r) = ∇�r ln n(�r) ≈ nx(z)

n0 + nx(z)x
�i ≈ nx(z)

n0

�i �= bx(z)�i (4)

is a constant vector, and �i is the unit vector in the x-direction.
The first three terms on the right-hand side of equation (3) account, respectively, for

radiation loss from the direct beam due to (1) absorption by the medium in which the scatterers
are embedded, (2) absorption by the scatterers and (3) scattering from the forward direction
into other directions. The fourth term in equation (3) represents the transfer of radiation into the
forward direction from other directions by refraction. The last term in equation (3) represents
the transfer of radiation into the forward direction from other directions by scattering. An
equation similar to equation (3) appears in standard treatments of transport theory such as
(Ishimaru 1997); however, these presentations generally omit the fourth term, which describes
the refraction effect. The form of this refraction term in equation (3) is not obvious; therefore,
we derive it in detail in appendix A.

For radiation propagating in the ultra-small-angle regime (very near the forward direction),
a small-angle approximation (Ishimaru 1997) can be made to equation (3), yielding

∂

∂z
I (z, �ρ, �s) + �s · ∇�ρI (z, �ρ, �s) = −(ρn(z)σa + µ(z))I (z, �ρ, �s)

+ �b(z) · ∇�sI (z, �ρ, �s) +
ρn(z)σext(z)

4π

∫ ∫
R

2
d2�s ′p(z, �s − �s ′)I (z, �ρ − �s). (5)
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4. Solution of the transport equation

The general solution of equation (5), which can be obtained by the Fourier transform method
in a manner similar to the derivation is in (Ishimaru 1997), is given by

I (z, �ρ, �s) = 1

(2π)4

∫ ∫
R

2
d2�κ

∫ ∫
R

2
d2�q exp[−(i�κ · �ρ + i�s · (�q − �κz))]

× exp

[
−

∫ z

0
(i�b(z)(�q − �κz) + µ(z) − ρn(z)σext(z)) dz

]
F0(z, �κ, �q)K(z, �κ, �q),

(6)

where

F0(�κ, �q) =
∫ ∫

R
2

d2�s
∫ ∫

R
2

d2�ρI0(�ρ, �s) exp(i�κ · �ρ + i�s · �q), (7)

K(z, �κ, �q) = exp

[
ρn(z)σext(z)

4π

∫ z

0
P(z, �q − �κz′) dz′

]
, (8)

and

P(z, �q) =
∫ ∫

R
2

d2�s p(z, �s) exp(i�s · �q). (9)

Assuming a Gaussian phase function for the scatterers we have

p(z, �s) = 4πW0(z)
1

2π |α|1/2
exp

(
−1

2
�sT α−1�s

)
(10)

with

α = 1

2
diag

(
1

αp
,

1

αp

)
, (11)

where diag(·) denotes a diagonal matrix containing elements in the bracket and αp =[
4δ2 ln

(
2
δ

+ 1
)]−1

is an angular beam broadening due to a single spherical scatterer (von
Nardroff 1926). Next it follows that

P(z, �q) = 4πW0(z) exp

(
−1

2
�qT α�q

)
. (12)

Here it is worth noting that the model assumes that the beam divergence due to a single particle
does not depend on the size of the particle because α is not a function of the particle size;
however, the phase function does depend on the particle size through W0(z). This model
is valid for scatterers having diameter in the range of 104–106 times the x-ray wavelength
(Ishimaru 1997).

Thus, equation (8) takes the following form:

K(z, �κ, �q) = exp

(∫ z

0
ρn(z)σext(z)W0(z) exp

(
−1

2
(�q − �κz′)T α(�q − �κz′)

)
dz′

)
. (13)

Of course, the assumption of a Gaussian phase function is only an approximation. However,
we show in section 6 that the Gaussian assumption provides a good approximation of scattering
from spherical particles. The Gaussian assumption can also be motivated on statistical grounds,
because the average phase function can be derived as the convolution of the phase functions
of individual scatterers, which approximates a Gaussian function by the central limit theorem.

Next, let us assume that the beam incident at the object is a Gaussian beam, i.e.,

I0(z, �ρ, �s) = I0
1

2π |β|1/2
exp

(
−1

2
�sT β−1�s

)
, (14)
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where β describes the initial width of the incident beam and |β| is the determinant of the
matrix β = 1

2 diag
(

1
βx

, 1
βy

)
. Substituting from equation (14) into equation (7) we obtain

F0(�κ, �q) = (2π)2I0 exp
(− 1

2 �qT β�q)
δ(�κ), (15)

where δ(�κ) denotes a Dirac delta function. Substituting equations (13) and (15) into
equation (6) yields (after integration with respect to �κ and utilizing the properties of the
delta function)

I (z, �ρ, �s) = I0

(2π)2
exp(−τ ′(z))

∫ ∫
R

2
d2q exp(−i�q · (�s − ��s(z)))

× exp

(
−1

4
�qT β�q

)
exp

(
τ(z)W0(z) exp

(
−1

4
�qT α�q

))
, (16)

where τ(z) = ∫ z

0 ρn(z)σext(z) dz is an optical distance, τ ′(z) = ∫ z

0 (ρn(z)σext(z) + µ(z)) dz is
the extinction length and ��s(z) = ∫ z

0
�b(z) dz is the total beam deflection. Next, by using the

Taylor expansion

exp

(
τ(z)W0(z) exp

(
−1

4
�qT α�q

))
=

∞∑
k=0

[
1

k!

(
τ(z)W0(z) exp

(
− �qT α�q

4

))k
]

(17)

the following expression is obtained from equation (16):

I (z, �ρ, �s) = I0

(2π)2
exp(−τ ′(z))

∫ ∫
R

2
d2q exp(−i�q · (�s − ��s(z)))

·
∞∑

k=0

[
(τ (z)W0(z))

k

k!
exp

(
− �qT [β + αk]�q

4

)]
. (18)

Now let us define

C �= [β + αk] = 1

2
diag

(
1

βx

+
k

αp
,

1

βy

+
k

αp

)
. (19)

Finally, we obtain the following solution for the intensity of the transmitted beam (after
penetrating the object):

I (z, �ρ, �s) = I0 exp(−τ ′(z))
∞∑

k=0

(τ (z)W0(z))
k

k!

1

2π |C|1/2

× exp

(
−1

2
(�s − ��s(z))T C−1(�s − ��s(z))

)
. (20)

It should be noted that this solution assumes an infinite medium; thus, it would not be strictly
valid at the edges of the object. However, we anticipate that this issue will not have major
significance in practical imaging applications.

It is interesting to note that the term in the summation in equation (20) is related to a Poisson
probability law. Indeed, in the simpler case of an incident plane wave, the corresponding
portion of this equation can roughly be derived by a statistical argument in which the random
distribution of scatterers is modelled as a Poisson process (Dexter and Beeman 1949).

5. MIR parameters

In MIR, measurements of intensity are made at many angular positions sx of the analyser
crystal. These measurements can be described by

Im(�ρ, sx) =
∫ ∞

−∞
ds ′

x

∫ ∞

−∞
ds ′

y I (Z, �ρ, �s ′)R(sx − s ′
x), (21)
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where R(sx) is the rocking curve of the analyser crystal and Z is the thickness of the object at
image location �ρ. We define the moments of the rocking curve as follows:∫ ∞

−∞
R(sx) dsx

�= RT ,

∫ ∞

−∞
sxR(sx) dsx = 0,

∫ ∞

−∞
s2
xR(sx) dsx

�= wR. (22)

Our assumption that the rocking curve has zero centroid simply reflects choice of the coordinate
system to align with this direction.

Now we derive the values of the three MIR parameters based on the predicted intensity
function of the transmitted beam. In the following, we assume that the number of
measurements is sufficiently large to avoid sampling artefacts. The impact of sampling
on the accuracy of these parameters will be studied in a future paper.

5.1. Absorption image

It is easy to show that, after passing through the object, the total measured intensity of the
beam at image location �ρ is

IT (�ρ) =
∫ ∞

−∞
Im(�ρ, sx) dsx

= I0RT exp

(
−

∫ Z

0
(ρn(z)σa + µ(z)) dz

)

= I0RT exp

(
−

∫ Z

0
µ̄(z) dz

)
, (23)

where µ̄(z)
�= ρn(z)σa + µ(z) is the net linear absorption of the medium (including the

embedded scatterers). Equation (23) is simply an expression of Beer’s law, which can be
inverted in the usual way to obtain

AMIR(�ρ)
�= − ln

(
IT (�ρ)

I0RT

)
=

∫ z

0
µ̄(z) dz. (24)

Thus, as expected for this case, the MIR absorption image AMIR is a line integral of the net
linear absorption coefficient of the object.

5.2. Refraction-angle image

In MIR, the net refraction angle of the beam by the object, denoted by �sMIR, is inferred
at every pixel by estimating the angular shift of the centroid of the beam’s angular intensity
spectrum. We have defined the coordinate system such that, with the object absent, the centroid
is at sx = 0; therefore, the shift is simply the value of the centroid of the measured intensity
when the object is placed in the beam. Therefore, using equations (20) and (21), one can
readily show that the measured refraction-angle image is

�sMIR(�ρ)
�= 1

IT

∫ ∞

−∞
sxIm(�ρ, sx) dsx =

∫ z

0
bx(z) dz, (25)

where bx(z) is defined as in equation (4). Thus, the MIR refraction image is seen to be the
line integral of the scaled refractive-index gradient bx(z).

5.3. USAXS-parameter image

In MIR, we use the second central moment of the beam’s angular intensity spectrum to
measure beam divergence induced by the presence of scatterers. To determine the effect of
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the object alone, we must subtract the second central moment of the intrinsic rocking curve
of the imaging optics WT = (1/βx) + wR (i.e. the overall reflectivity function with the object
absent), as explained in Wernick et al (2005). Thus, the MIR USAXS-parameter image is
defined as

wMIR(�ρ)
�= 1

IT

∫ ∞

−∞

(
sx −

∫ z

0
bx(z) dz

)2

Im(�ρ, sx) dsx − WT . (26)

Substituting from equation (21) into (26), one can show that, like the absorption and refraction
parameters, the MIR USAXS parameter wMIR is also a line integral; specifically, it is given by

wMIR(�ρ) =
∫ Z

0

[
ρn(z)σs(z)

2αp

]
dz. (27)

A detailed derivation of equation (27) is lengthy, so we defer this calculation to appendix B.

5.4. Summary of results

Equations (24), (25) and (27) show that (1) each of the MIR image parameters is the line integral
of some property of the object, and (2) the three MIR images separately and independently
depict the effects of absorption, refraction and USAXS. We have assumed this separability
property to be true in our previous work, but it has not before been demonstrated through
an analysis of beam propagation. Equation (27) provides an explanation of the scattering
property measured by the USAXS image. When imaging biological tissue, which is not truly
a collection of discrete scatterers, equation (27) can be interpreted as a particle-equivalent
tissue model, which may be helpful for interpreting the USAXS parameter in relation to the
object’s microstructure.

6. Experimental validation

In this section, we will validate our theoretical model experimentally and through computer
simulations.

6.1. Imaging experiment

First, we performed a simple experiment using the phantom shown in figure 5. This
experiment was described briefly in a previous paper of ours (Brankov et al 2004), where
we empirically demonstrated the linearity of the MIR USAXS parameter, but without any
theoretical explanation. Our purpose here is to verify that the theoretical model presented in
this paper is consistent with these previous experimental results.

In the experiment, a wedge-shaped Lucite container was filled with a suspension
of mPMMA = 1.61 g of polymethylmethacrylate (PMMA) microspheres (scatterers) in
mG = 10.01 g of glycerin. The mean radius R of the microspheres was 3.25 µm with the
standard deviation of 3.25 µm. The densities of PMMA and glycerin are ρPMMA = 1.19 g cm−3

and ρG = 1.26 cm−3, respectively; thus, the volume density of the scatterers was calculated
as ρn = V

/(
4
3R3π

) = 1.01 × 109 cm−3, where V is the total volume of the mixture
given by V = ρGmG + ρPMMAmPMMA = 14.52 cm−3. The difference between the refractive
indices of PMMA and glycerin is δ = 5.4 × 10−8. For spherical scatterers, it can be shown
(von Nardroff 1926) that angular beam broadening due to a single scatterer is described
by αp = [

4δ2 ln
(

2
δ

+ 1
)]−1 = 4.91 × 1012. Here it is worth noting that µ is calculated

as µ = (
µG

ρG

)
mG
V

, where µG/ρG is the mass absorption coefficient of glycerin and that

σa = (
µPMMA

ρPMMA

)
mPMMA
ρnV

, where µPMMA/ρPMMA is the mass absorption coefficient of PMMA.
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Figure 5. Experimental phantom for validation of theoretical model.

The phantom was imaged by the MIR method at 18 keV using the X-15A beamline of
the National Synchrotron Light Source at Brookhaven National Laboratory, and a USAXS
parameter image was computed from the data using the MIR method.

For comparison, we predicted the USAXS parameter image using the theory developed
in this paper (equation (27)). Based on specifications of the microspheres provided by the
manufacturer, we assumed the particle distribution to be a truncated normal distribution,
denoted by P(R), with the range 0.1–6.4 µm and standard deviation of 3.25 µm. One can
compute the average beam divergence according to

wMIR(�ρ) = Z

αp

∫ 6.4 µm

0.1 µm
P(R)ρn(R)σs(R) dR, (28)

where it can be shown easily that

ρn(R) = 3

4πR3

(
mG

mPMMA

ρPMMA

ρG
+ 1

)−1

(29)

and, by definition, σs(R) = R2π .
Figure 6 shows good agreement between the experimental results and theoretical

prediction of the USAXS parameter as a function of object thickness. Furthermore, a least-
squares test of linearity of the USAXS parameter shows the relationship to be significant at
the level p < 10−4.

6.2. Computer simulation

To further validate our theoretical calculations, we developed a computer simulation which
makes the same physical assumptions as the theory, except that spherical scatterers are used
(which do not have a Gaussian phase function). Specifically, we modelled a phantom similar
to the one used in the experiment described above, but we now assume a uniform particle size.
Figure 7 shows projected views through regions of this simulated wedge phantom at various
thicknesses of the object. Where the wedge is thick (Z = 100 µm), many scatterers lie along
the line of sight. In thin regions (Z = 1 µm), fewer scatters appear in the projected view. The
images in figure 7 are refraction-angle values, with white signifying upward refraction, and
black signifying downward refraction.
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Figure 6. USAXS parameter versus object thickness: comparison of experimental results with
theoretical prediction.

Figure 7. Projected views of the particle distribution through various thicknesses within the
simulated wedge phantom. The region of interest is the size of one pixel; thus, the objects shown
are not spatially resolved by the imaging method. Instead, the average net divergence of the beam
is measured. Intensity values shown are proportional to the angle of refraction experienced by a
ray traversing the corresponding position within the phantom. White indicates upward refraction,
and black indicates downward refraction.

In the simulation, we used geometrical-optics ray tracing to predict the transmitted beam
intensity. We then used equation (27) to predict the MIR USAXS parameter for this particle
distribution. Figure 8 shows the USAXS parameter as a function of object thickness obtained
by computer simulation and theoretical prediction. Again, there is good agreement; however,
there is a slight discrepancy between the theoretical and simulated curves due to the non-
Gaussian phase function of the scatterers and randomness in the specific statistical realization
of the spatial distribution of the scatterers.

In each of these experiments (based on real imaging data and computer simulations), we
also validated our theoretical models of the absorption parameter and refraction parameter.
Since these parameters are comparatively simple and well understood, we have omitted the
details of these validation studies. However, we have reviewed them briefly in Wernick et al
(2005).
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Figure 8. USAXS parameter versus object thickness: comparison of computer simulation with
theoretical prediction.

7. Conclusion

While the MIR imaging method has shown promising results, it has not before had a solid
theoretical underpinning. In this paper, using radiative transport theory, we explain the origin
of the three MIR images, and derive expressions for the measured MIR parameters in terms
of the fundamental properties of the object. Most importantly, we show that all three MIR
parameters are linear in object thickness, an important requirement for computed tomography
applications. Our analysis also demonstrates that MIR can truly separate the effects of
absorption, refraction and USAXS into three respective images.
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Appendix A. Derivation of the refraction term in transport equation (3)

Here we derive the refraction term in transport equation (3). In a stratified medium the
refractive index is given by (see figure A1)

n(x ′, y ′, z′) = n0 +


 nxf (z′) 0 0

0 nyf (z′) 0
0 0 0





 x ′

y ′

z′


 . (30)
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Figure A1. Illustration of rotation of an arbitrary coordinate system (x, y, z) into the refraction
plane, which coincides with the (x′, z)-plane of a new coordinate system.

The optical Lagrangian in the (x ′, y ′, z′) coordinate system (figure A1) is as follows:

L(x ′, y ′, z′) = n(x ′, y ′, z′)(1 + ẋ ′2 + ẏ ′2)1/2, (31)

where

ẋ = dx

dz
= tan θx, ẏ = dy

dz
= tan θy (32)

are tangents of deflection angles of the beam in the xandy directions. Applying Fermat’s
principle to the Lagrangian (31) we obtain the following differential equations for the beam
deflection (Born and Wolf 1999):

ẍ ′ = (1 + ẋ ′2 + ẏ ′2)
(

∂ ln n

∂x ′ − ẋ ′ ∂ ln n

∂z′

)
(33)

ÿ ′ = (1 + ẋ ′2 + ẏ ′2)
(

∂ ln n

∂y ′ − ẏ ′ ∂ ln n

∂z′

)
. (34)

Dividing (33) by (34) and using simple separation of variables one can show that the angle ψ

between the x ′z′-plane and the refraction plane is constant, i.e.,

ψ = tan−1

(
dy

dx

)
= tan−1

(
ny

nx

)
= const. (35)

Thus, without loss of generality, one can rotate the coordinate system to coincide with the
refraction plane, as shown in figure A1. As a result of this rotation, the x ′z′-plane becomes
the refraction plane xz and the x-axis becomes parallel to the refractive-index gradient (�b)
direction.

As a result of this rotation, equations (33) and (34) can be rewritten as a single equation
in terms of x and y:

ẍ = (1 + ẋ2)

(
∂ ln n

∂x
− ẋ

∂ ln n

∂z

)
. (36)

In the small-angle approximation, ẋ2 ≈ θ2 � 1, and equation (36) becomes

ẍ = ∂ ln n

∂x
− ẋ

∂ ln n

∂z
, (37)

which can be simplified further using small angle approximation and equation (32) to obtain

ẍ = ∂ ln n

∂x

(
1 − ẋ

∂ ln n/∂z

∂ ln n/∂x

)
= ∂ ln n

∂x
(1 − ẋ2) ≈ ∂ ln n

∂x
. (38)
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Finally, equation (38) can be integrated once over z to obtain

dẋ = ∂ ln n

∂x
dz. (39)

Since, the refraction process takes place within a fixed plane, equation (39) can be rewritten
in vector form as follows:

d�s = (∇�r ′ ln n(�r)) dz. (40)

Therefore, the ∂/∂z operator takes the following form:

∂

∂z
= ∇�r ′ ln n(�r) · d

d�s = ∇�r ln n(�r) · ∇�s . (41)

When applied to the specific intensity, this operator will produce the refraction term (fourth
term) of transport equation (3):

∂I (z, �ρ, �̂s)
∂z

= ∇�r ln n(�r) · ∇�̂sI (z, �ρ, �̂s) = �b · ∇�̂sI (z, �ρ, �̂s). (42)

Appendix B. Derivation of the MIR UXAXS parameter wMIR(�ρ) (equation (27))

We begin by writing equation (21) in the following form:

Im(�ρ, sx) =
∫ ∞

−∞
ds ′

x

∫ ∞

−∞
ds ′

y I (Z, �ρ, �s ′)R(sx − s ′
x), (43)

which can be expanded using equation (20) and integrated with respect to ds ′
y yielding

Im(z, �ρ, sx) = I0 exp(−τ ′(z))
∞∑

k=0

(τ (z)W0(z))
k

k!

1√
2π

[
1
2

(
1
βx

+ k
αp

)]

×
∫ ∞

−∞
d�s ′

x exp


− (s ′

x − �sx(z))
2

2
[

1
2

(
1
βx

+ k
αp

)]

 R(sx − s ′

x). (44)

Note that the integral is a convolution of a Gaussian function with R(sx). Now let us define

N

(
sx,�sx(z),

1

2

(
1

βx

+
k

αp

))
�= 1√

2π
[

1
2

(
1
βx

+ k
αp

)] exp


− (sx − �sx(z))

2

2
[

1
2

(
1
βx

+ k
αp

)]

 , (45)

which allows us to rewrite equation (44) in the following form:

Im(z, �ρ, sx) = I0 exp(−τ ′(z))
∞∑

k=0

(τ (z)W0(z))
k

k!
N

(
sx,�sx(z),

1

2

(
1

βx

+
k

αp

))
∗ R(sx),

(46)

where ∗ denotes a convolution operator. Now from equations (26) and (46) we have

wMIR(z, �ρ) = exp(−τ(z)W0(z))

∞∑
k=0

(τ (z)W0(z))
k

k!

·
∫ ∞

−∞
(sx − �sx(z))

2N

(
sx,�sx(z),

1

2

(
1

βx

+
k

αp

))
∗ R(�sx) d�sx − WT , (47)
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where WT = (1/βx) + wR . Performing the integration with respect to sx yields

wMIR(z, �ρ) = exp(−τ(z)W0(z))

[ ∞∑
k=0

(τ (z)W0(z))
k

k!

1

2

(
1

βx

+
k

αp

)
+ wR

]
− WT . (48)

Now since
∞∑

k=0

(τ (z)W0(z))
k

k!
= exp(τ (z)W0(z)) (49)

and
∞∑

k=0

(τ (z)W0(z))
k

k!
k = τ(z)W0(z) exp(τ (z)W0(z)0) (50)

we obtain

wMIR(Z, �ρ) = 1

2αp

∫ z

0
ρn(z)σs(z) dz, (51)

which is the key result presented in equation (27).
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