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Fast Non-stationary Deconvolution in Ultrasound

Imaging
Adrien Besson, Student Member, IEEE, Lucien Roquette, Dimitris Perdios, Student Member, IEEE,

Matthieu Simeoni, Student Member, IEEE, Marcel Arditi, Paul Hurley, Yves Wiaux,

and Jean-Philippe Thiran, Senior Member, IEEE,

Abstract—Pulse-echo ultrasound (US) aims at imaging tissue
using an array of piezoelectric elements by transmitting short
US pulses and receiving backscattered echoes. Conventional US
imaging relies on delay-and-sum (DAS) beamforming which
retrieves a radio-frequency (RF) image, a blurred estimate of
the tissue reflectivity function (TRF). To address the problem
of the blur induced by the DAS, deconvolution techniques have
been extensively studied as a post-processing tool for improving
the resolution. Most approaches assume the blur to be spatially
invariant, i.e. stationary, across the imaging domain. However,
due to physical effects related to the propagation, the blur is non-
stationary across the imaging domain. In this work, we propose
a continuous-domain formulation of a model which accounts for
the diffraction effects related to the propagation. We define a
PSF operator as a sequential application of the forward and
adjoint operators associated with this model, under some specific
assumptions that we precise. Taking into account this sequential
structure, we exploit efficient formulations of the operators in the
discrete domain and provide a PSF operator which exhibits linear
complexity with respect to the grid size. We use the proposed
model in a maximum-a-posteriori estimation algorithm, with a
generalized Gaussian distribution prior for the TRF. Through
simulations and in-vivo experimental data, we demonstrate its
superiority against state-of-the-art deconvolution methods based
on a stationary PSF.

Index Terms—Deconvolution, Point-Spread-Function, Ultra-
sound Imaging

I. INTRODUCTION

U
LTRASOUND (US) imaging is a widely used medical

imaging modality due to its non-invasiveness, relative

low-cost and real time capability. By appropriately placing
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a US probe, usually an array of piezoelectric transducer

elements, a medical doctor is able to visualize cross-section

images of regions of interest in the body resulting from local

variations in density and sound velocity.

The US imaging process exploits the transducer elements

for both transmitting acoustic pulses in the region of interest

and recording the response of the medium to these pulses as

echo signals. The set of these signals is related to the spatial

distribution of variations in acoustic impedance, i.e. in medium

density and sound velocity, denoted as the tissue reflectivity

function (TRF), by a US propagation operator. Due to finite

aperture of the probe and bandlimited properties of each

transducer element, retrieving the TRF from the echo signals

is an ill-posed problem. In standard US imaging, the delay-

and-sum (DAS) operator is used as an approximate inverse

of the propagation operator. Such an approximation leads to

a radio-frequency (RF) image, a blurred estimate of the TRF.

The point-spread-function (PSF) is introduced to relate these

quantities.

Wave propagation and diffraction in the medium imply that

the PSF is spatially varying, as it can be seen in Figure 1.

While this is problematic for most deconvolution techniques,

accounting for this non-stationarity1 is the only way to retrieve

an accurate estimate of the TRF.

Most of state-of-the-art methods exploit spatially invariant

PSF. In several studies, the PSF is estimated in a preliminary

step either through in-vitro measurements or by simulation [1],

[2], [3], [4]. Other approaches estimate directly the PSF on the

RF image using homomorphic filtering of the cepstrum [5],

[6], [7], inverse filtering based on parametric [8], [9], [10] or

non-parametric models [11], [12], [13] and power spectrum

equalization [14]. Only few recent studies deal with spatially-

varying PSF [15], [16]. But, the proposed methods are either

too restrictive in the class of functions the PSF belongs

to [15] or too computationally expensive to be used in realistic

imaging scenarios [16].

In this work, we address the problem of non-stationary

deconvolution in US imaging. More precisely, we propose a

continuous spatially-varying PSF operator which accounts for

diffraction effects related to US propagation and extends the

one presented in our previous work [16]. The proposed model

is based on a physical modelling of both the US propagation

and the DAS, recently discussed in several studies [17], [18].

1It has to be noted that the terms “stationarity” and “stationary” are used
as synonyms for “spatial invariance” and “spatially invariant”, respectively.
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It only relies on few assumptions, e.g. Born approximation,

propagation of an ideal plane or spherical wavefront and

assume 2D propagation and 1D transducer geometry. Such

assumptions are rather standard in 2D US imaging. It is

therefore far more realistic than a model based on a stationary

PSF and less restrictive on the PSF than state-of-the-art non-

stationary approaches [15]. We also exploit computationally

efficient formulations of the discrete operators involved in the

above mentioned models, based on parametric formulations

described in our previous work [19], [20], and demonstrate

both theoretically and experimentally that they scale well in

realistic 2D imaging cases.

We use the proposed model in a maximum-a-

posteriori (MAP) estimation algorithm, with a generalized

Gaussian distribution (GGD) prior for the TRF [4], [21].

We test the method on an extensive number of experiments,

namely a numerical phantom of point reflectors, a numerical

calibration phantom and two in-vivo carotids, for both

diverging wave (DW) and plane wave (PW) imaging. We

demonstrate that it leads to an improvement of the lateral

and axial resolutions on both the point-reflector and the

calibration phantoms and provides a higher visual quality on

in-vivo carotid images.

The remainder of the paper is organized as follows. Sec-

tion II introduces the non-stationary PSF operator and Sec-

tion III describes the corresponding fast formulations. Exper-

imental settings are described in Section IV and results are

reported and discussed in Section V. Concluding remarks are

given in Section VI.
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Fig. 1. An example of a TRF (a) and the corresponding demodulated RF
image (b) obtained with the DAS operator. We clearly see the spatially varying
blur induced by classical beamforming.

II. MATHEMATICAL MODELLING OF ULTRASOUND

IMAGING AND CONTINUOUS LEVEL OPERATORS

In this section, we describe a mathematical formalism of US

imaging and propose formulations of the associated operators

at the continuous level. Such a formalism is used to introduce

a PSF operator that we sequentially split into propagation and

DAS operators, which can benefit from fast formulations [19]

detailed in Section III.

A. Mathematical Modelling of Ultrasound Imaging

In a standard US imaging configuration, described in Fig-

ure 2, an array of transducer elements is used to propagate

an acoustic wave in a medium Ω ⊂ R2 which contains

inhomogeneities as local fluctuations in acoustic impedance,
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Fig. 2. Standard 2D US imaging configuration (adapted from [19]).

defining the TRF γ ∈ L2 (Ω) [22], [23], [19]. As a reminder,

L2 (Ω) is the Hilbert space of the square integrable functions

which take values in Ω. In addition, for f , g ∈ L2 (Ω) we

denote their inner product as 〈 f , g〉L2(Ω). Depending on the

desired transmit wavefront, e.g. plane wave (PW), diverging

wave (DW), focused-wave or synthetic-aperture approaches,

each transducer element starts to transmit after a given delay

defined by an inter-element delay profile.

In a receive phase, a set of transducer elements, located at

(pi)
Nel

i=1
, pi ∈ R

2, detect echo signals mi (t), t ∈ [0,T], defining

the following measurements

m(t) :=
[
m1 (t) , . . . ,mNel

(t)
]
∈ L2 ([0,T])

Nel , (1)

where L2 ([0,T])
Nel := L2 ([0,T]) × · · · × L2 ([0,T]).

The measurements m(t) are related to the TRF γ by the

propagation of the US wave during the time interval [0,T].

It can be demonstrated using the Born approximation that a

linear operator H : γ 7→ m, called the propagation operator,

relates the TRF to the measurements [17], [19], [20].

Standard US image reconstruction process reconstructs the

RF image γ̂, an estimate of the TRF γ, which should be ideally

close to γ. This process involves a second operator D : m 7→ γ̂

known as the DAS operator and described in Section II-C.

Using the operators introduced above, we define the US

imaging procedure as a mapping between the TRF and the

RF image

K : L2 (Ω) → L2 (Ω)

γ 7→ γ̂ = DH {γ} . (2)

The operator K is denoted as the PSF operator since it

characterizes the blur introduced by the imaging process when

approximating γ by γ̂. A further description of the PSF is

given in Section II-D.

B. Ultrasound Propagation Operator

The proposed physical modelling of wave propagation is

based on the pulse-echo spatio-temporal impulse response
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model introduced by Stepanishen [24]. Furthermore, the effect

of the transducer element surface is approximated by a direc-

tivity function using a far-field assumption [25]. Under this

approximation, we can express the element-raw data received

on the i-th channel as

mi (t) =

∫

r ∈Ω

o (pi, r) vpe (t − τ (r, pi)) γ (r) dr, (3)

where o (pi, r) accounts for the spatial directivity and decay of

the reflected wave and vpe (t) is the pulse-echo waveform [26]

which depends on the transducer impulse response and the

excitation signal. The round trip time-of-flight τ (r, pi) is

defined as

τ (r, pi) = tTx (r) + tRx (r, pi) , (4)

where tRx (r, pi) = ‖r − pi ‖2 /c denotes the propagation delay

in receive and tTx (r) is the propagation delay in transmit,

supposed to be independent from the location of the emit-

ters assuming a planar wavefront in PW imaging [27] or a

spherical wavefront in DW imaging and synthetic aperture

approaches [28].

Equation (3) can be compactly expressed in terms of a linear

integral operator acting on the TRF γ ∈ L2(Ω) and outputting

the measurements

m(t) = H {γ} (t) , (5)

where H : L2 (Ω) → L2 ([0,T])
Nel whose i-th component is

given by

(H {γ})i (t) =

∫

r ∈Ω

o (pi, r) vpe (t − τ (r, pi)) γ (r) dr . (6)

C. Delay-and-sum Operator

Starting from the measurements m (t), standard US image

reconstruction exploits the well-known delay-and-sum (DAS)

algorithm for computing the following RF image:

γ̂ (r) =

Nel∑

i=1

a (pi, r)mi (τ (r, pi)) (7)

where a (pi, r) accounts for the aperture-apodization weights,

commonly applied to reduce the sidelobe levels. The intuition

behind DAS is rather simple. In order to estimate the TRF at

location r , we sum echo signals originating from this point

and reaching the transducer elements at each given time-of-

flight. Reformulating DAS in terms of a linear integral operator

acting on m(t) ∈ L2([0,T])
Nel is also straightforward,

γ̂ (r) =

T∫

0

Nel∑

i=1

a (pi, r) δ(t − τ (r, pi))mi (t) dt

= D {m} (r) , (8)

where D : L2([0,T])
Nel → L2 (Ω).

D. From the Point-Spread-Function Operator to the Point-

Spread-Function

We are now equipped with the two operators D and H

that can be injected in (2) to compute the PSF operator. By

following similar arguments to the ones developed in [16], K

can be decomposed as follows,

K : L2 (Ω) → L2 (Ω)

γ 7→

∫

s∈Ω

γ (s) k (·, s) d s, (9)

where k : Ω × Ω → Ω, the bivariate kernel of K, defines

the PSF. Moreover, by simple calculations involving D and

H (derived in [16]), the kernel can be expressed as follows

k (r, s) =

Nel∑

i=1

a (pi, r) o (pi, s) vpe (τ (r, pi) − τ (s, pi)) . (10)

Let us proceed with several comments on the above defined

kernel:

• If we assume that γ (r) = δ (r − r0), with r0 ∈ Ω, then

γ̂ (r) = k (r, r0) , (11)

leading to a natural interpretation of k as the PSF, i.e.

the response of the US system to a TRF composed of a

single point reflector located at r0;

• In a spatially invariant case, the bivariate kernel k (r, s)

is simplified to a univariate one leading to k (r, s) =

k (r − s). Under this approximation, Equation (9) be-

comes the standard bi-dimensional analytical convolution;

• Considering that Ω is discretized with Ng grid points, the

evaluation of (9) requires O
(
N2
gNel

)
operations, which is

not compatible with 2D US imaging configurations where

Ng is of the order of 104 to 106.

Equipped with the above defined PSF operator, the decon-

volution problem can be stated as:

Recover γ from γ̂ = K {γ} . (12)

E. Adjoint of the Point-Spread Function Operator

In most deconvolution methods, the adjoint operator K† is

required to solve Problem (12). For instance, deconvolution

approaches that require to solve a convex optimization need to

compute the gradient of a data fidelity term, usually expressed

using the squared ℓ2-norm. Such a gradient is defined as

K† (Kγ − m). At the continuous operator level, the adjoint

PSF operator can also be decomposed in terms of the adjoint

DAS and adjoint propagation operator,

K† = H†D†, K† : L2 (Ω) → L2 (Ω) , (13)

with,

H† : L2 ([0,T])
Nel → L2 (Ω) , D

† : L2 (Ω) → L2 ([0,T])
Nel .

In addition, the adjoint operators D† and H† are directly

obtained from their definitions,

〈γ,H†m〉L2(Ω) = 〈Hγ,m〉L2([0,T ])
Nel , (14)

〈γ,Dm〉L2(Ω) = 〈D
†γ,m〉L2([0,T ])

Nel , (15)
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by simply flipping the order of integration over Ω and

[0,T] [19]. These changes are legitimate thanks to the square

integrability of the involved functions.

Consequently, the adjoint operator of the propagation model

is given by

H† {m} (r) =

Nel∑

i=1

T∫

0

o (pi, r)mi (t) vpe (t − τ (r, pi)) dt, (16)

and the adjoint DAS operator by

(
D† {γ}

)

i
(t) =

∫

r ∈Ω

a(pi, r)δ(t−τ(r, pi))γ(r)dr, i = 1, ..., Nel .

(17)

Interestingly, the adjoint PSF operator can be expressed

immediately using the PSF kernel defined in (10), by flipping

the two arguments, i.e. using a symmetrised kernel k̃(r, s) =

k(s, r).

III. FAST FORMULATIONS OF THE DISCRETIZED

OPERATORS AND RESULTING COMPLEXITY

In this section, we express the deconvolution prob-

lem over a regular grid. More precisely, the TRF

Γ ∈ R
Nx×Nz is defined on a regular grid Ωγ =

{(xu, zv) ∈ Ω, u = 1, . . . , Nx, v = 1, . . . , Nz} and the RF image

Γ̂ ∈ RN̂x×N̂z is defined on a second regular grid Ωγ̂ ={
(xk, zl) ∈ Ω, k = 1, . . . , N̂x, l = 1, . . . , N̂z

}
. In Section II, we

have established a decomposition of the PSF operator, K :

L2(Ω) → L2(Ω) and its adjoint, in terms of the propagation

operator H and DAS operator D. This is a key property when

deriving a computationally efficient formulation of the PSF

operator relating the TRF to the RF image, each expressed

over a specific grid,

K : RNx×Nz → RN̂x×N̂z , Γ̂ = KΓ. (18)

In particular, we have the discrete equivalent of the decompo-

sition,

K = DH −→ K = DH, (19)

where,

D : RNt×Nel → RN̂x×N̂z , H : RNx×Nz → RNt×Nel . (20)

The above defined operators allow us to define the discrete

counterpart of the continuous deconvolution problem as:

Recover Γ from Γ̂ = KΓ. (21)

The remaining of this section defines fast formulations of

the discrete operators D and H from their continuous counter-

part. For the sake of simplicity, the grids supporting both the

RF and TRF images are assumed to be the same. The pseudo

raw-data generated when computing M = HΓ ∈ RNt×Nel are

expressed with a uniform time spacing

Mki = mi(tk), i = 1, . . . , Nel, k = 1, . . . , Nt, (22)

associated to a given sampling frequency fs .

A. Fast Propagation Operator and its Adjoint

Based on our previous work [19], the i-th component of

the integral operator defined in (6) can be reformulated as the

following convolution,

(H {γ})i (t) = vpe ∗t Gi{γ}(t), (23)

where ∗t denotes the analytical convolution over the time

dimension and Gi : L2(Ω) → L2([0,T]) is defined by

Gi{γ}(t) =

∫

r ∈Ω

o (pi, r) γ(r)δ(t − τ(r, pi))dr . (24)

Equation (24) can be re-written as the following line inte-

gral [19],

Gi{γ}(t) =

∫

r ∈Si (t)

o (pi, r) γ (r)

| ∇rgi(t, r) |
dσ (r) , (25)

where the set of points defining the curve Si (t) is given by

Si(t) = {r ∈ Ω : gi(t, r) = 0, gi(t, r) := t − τ(r, pi)} . (26)

By appropriate reparameterization of Si (t) described in our

previous work [19], [20], Equation (25) can be expressed as

Gi{γ}(t) =

∫

α∈R

o (pi, r (α, pi, t)) γ (r (α, pi, t))

| ∇rgi(t, r (α, pi, t)) |
|Jr |dα, (27)

where r (α, pi, t) = (α, z (α, pi, t)) and |Jr | : R
2 → R denotes

the Jacobian associated with the change of variable.

The discretization of the integral over α leads to

(H {γ})i (t) ≈ vpe ∗t



Nx∑

j=1

wj (pi, t) γ
(
r
(
αj, pi, t

) )

, (28)

where wj (pi, t) accounts for the spatial directivity, the decay

of the reflected wave, the Jacobian, the gradient of g and the

weights related to the numerical approximation of the integral.

Consequently, the application of the discretized forward

operator H over the TRF image can be formulated as

HΓ = Vpe



Nx∑

j=1

Wj ◦ IjΓ•j


∈ RNt×Nel , (29)

where ◦ denotes the Hadamard product, Vpe ∈ R
Nt×Nt is

the Toeplitz matrix associated with the discrete convolution

with vpe =
[
vpe (t1) , . . . , vpe

(
tNt

) ]⊤
, Ij : RNz → R

Nt×Nel

performs the interpolation of the points of the parametric

curves at locations
{
z
(
αj, pi, tk

)}Nt,Nel

k,i=1
and Wj ∈ R

Nt×Nel

is defined element-wise as
(
Wj

)
ki
= wj (pi, tk).

The adjoint operator H† defined in Equation (16) can be

seen as the following convolution,

H† {m} (r) =

Nel∑

i=1

o (pi, r)
(
upe ∗t mi

)
(τ (r, pi)) , (30)

where upe (t) = vpe (−t) is the matched filter of the pulse-echo

waveform.
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The adjoint propagation operator H† expressed over the grid

is thus given by,

H†M =

Nel∑

i=1

Oi ◦ Ii

(
V ⊤peM•i

)
∈ RNx×Nz , (31)

where Oi ∈ R
Nx×Nz is defined element-wise as (Oi)kl =

o (pi, (xk, zl)). The operator Ii : RNt → R
Nx×Nz performs

the interpolation of the time sequence at delay instants

{τ((xu, zv) , pi)}
Nx,Nz

u,v=1
, for i = 1, . . . , Nel .

B. Fast Delay-and-sum Operator and its Adjoint

The DAS operator, defined in (7), can be seen as an

approximation of the adjoint operator H† under the following

assumptions:

• The pulse-echo wavelet is a Dirac delta, i.e. vpe (t) = δ (t);

• The apodization weights replace the spatial directivity and

the decay 1/rof the reflected wave.

Thus, the application of the discretized DAS operator on

the grid is directly defined by the interpolation operation

introduced in (31) as

DM =

Nel∑

i=1

Ai ◦ IiM•i ∈ R
Nx×Nz , (32)

where Ai ∈ R
Nx×Nz is defined element-wise as (Ai)kl =

a (pi, (xk, zl)).

Similarly, the application of the discretized adjoint DAS

operator D† expressed over the grid can be deduced from (29)

as

D†Γ =

Nx∑

j=1

Wj ◦ IjΓ•j ∈ R
Nt×Nel , (33)

where the apodization weights a (pi, r) are used in the com-

putation of Wj .

C. Computation Complexity of the Point-Spread-Function Op-

erator

The application of the discretized PSF operator over the

grid K : RNx×Nz → RNx×Nz requires a priori O((NxNz)
2Nel)

operations using (10). Such a complexity prevents its use in

realistic imaging cases, where NxNz ranges between 104 and

106 and Nel is few hundreds.

To solve the above limitation, we propose to decompose the

computation of KΓ as follows:

KΓ = D (HΓ) , (34)

where HΓ is first performed, generating a pseudo raw-data

M , followed by the application of the DAS DM .

The computation of HX requires to perform the following

operations:

1) Nx interpolations IjΓ•j where each interpolation has

a computational complexity of O (LNtNel) with L the

support of the interpolation kernel (L << Nz);

2) Nx point-wise multiplications with Wj , each of which

having a cost of O (NelNt );

3) Nx convolutions with vpe each of which with a com-

plexity of O (Nt log Nt ).

The overall computation complexity of HΓ is therefore:

Cost (HΓ) = O (LNxNelNt + NxNelNt + NxNt log Nt ) (35)

= O (NxNelNt ) , (36)

since log Nt ≪ Nx in US imaging.

The computation of DM necessitates rather similar opera-

tions as the one described above, apart from the convolution:

1) Nel interpolations IiM•i where each interpolation has

a computational complexity of O (L ′NxNz) with L ′ the

support of the interpolation kernel (L ′ ≪ Nt );

2) Nel point-wise multiplications with Ai , each of which

having a cost of O (NxNz).

The computational complexity of DM is:

Cost (DM) = O (L ′NelNxNz + NelNxNz) (37)

= O (NelNxNz) . (38)

The overall complexity of the operation KΓ can be easily

deduced from (36) and (38) as:

Cost (KΓ) = O (NelNx (Nt + Nz)) (39)

≈ O (NelNxNz) , (40)

since Nt ≈ Nz in standard US imaging configurations. Thus

we have the following:

Cost (KX) ≪ O((NxNz)
2Nel). (41)

An equivalent reasoning for the computation of the adjoint

operation K†Γ̂ leads to the same computational complexity as

the forward operation. Indeed, the only difference between

the two computations resides in the convolution which is

negligible in the computational cost.

Thus, the proposed sequential split assumption results in

a significant decrease of the computational complexity from

quadratic to linear with respect to NxNz . This decrease allows

the method to be applied easily in 2D and even 3D configu-

rations.

IV. EXPERIMENTS

This section describes the imaging configurations, for both

DW and PW, used to evaluate the proposed non-stationary PSF

estimation against state-of-the-art methods. It also describes

the ℓp-based convex optimization method used to solve (21).

A. Diverging Wave Imaging Configuration

A simulated experiment is performed with a standard

phased-array probe (P4-2v) whose characteristics are given in

Table I. A single diverging wave (2.5 MHz, 1-cycle sinusoidal

wave) is transmitted with a corresponding virtual point source

located at zn equal to −2.9 mm and laterally centered. No

apodization is used on transmit.

The data are acquired on a numerical point-reflector phan-

tom with eight reflectors with unit amplitude and located at

positions described on Figure 3(a). The simulation software

used in this experiment is Field II [26].
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TABLE I
PROBE CHARACTERISTICS

Diverging wave Plane wave Plane wave
P4-2v L11-4v L12-5 50mm

Element number 64 128 128
Center frequency 2.7 MHz 5.133 MHz 7.8 MHz
Sampling frequency 10.8 MHz 20.832 MHz 31.2 MHz
Element width 255 µm 270 µm Unknown
Element height 130 µm 500 µm Unknown
Pitch 280 µm 300 µm 195 µm
Elevation focus 60 mm 20 mm Unknown
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(b)

Fig. 3. Numerical point-reflector phantoms used for (a) diverging wave and
(b) plane wave imaging configurations.

B. Plane Wave Imaging Configurations

Two standard linear-array probes, namely the L11-4v and

the L12-5 50mm, whose characteristics are given in Table I

are used.

The L11-4v is used in two simulated configurations (using

Field II) for which a single plane wave (5 MHz, 2.5-cycles,

square wave) with normal incidence is transmitted without

apodization:

• A point-reflector phantom with reflectors described in

Figure 3(b);

• The PICMUS numerical phantom2, whose example B-

mode image is displayed on Figure 4.

The L12-5 50mm is used to acquire in vivo measurements

of two carotids on a Verasonics US scanner (Redmond,

WA, USA). A single plane wave (5 MHz, 1-cycle, tri-state

waveforms) with normal incidence is transmitted without

apodization.
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Fig. 4. Log-compressed B-mode image of the PICMUS numerical phantom.

2https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html

C. Proposed ℓp-based Deconvolution Method

We use a ℓp-norm minimization, one of the most recent

methods introduced in US image deconvolution [4], [29], [21],

[30], [12], [16]. Since the discretized PSF operator has been

described as a tensor in Section III-A, we have to introduce the

reshaping operator P : RNx×Nz → RNxNz , such that γ = PΓ ∈

R
NxNz . We are therefore interested in solving the following

optimization problem,

min
γ̃∈RNx Nz

λ ‖γ̃‖
p
p +

1

2

γ̂ − K̃ γ̃

2

2
, (42)

where K̃ = PKP† ∈ RNxNz×NxNz accounts for the discretized

PSF operator and γ̂ = PΓ̂ ∈ RNxNz , where Γ̂ is the RF image

acquired by the US imaging system. In the objective function

minimized in (42), the first term is the prior, the second term is

the data-fidelity, λ ∈ R+ is a regularization parameter and p is

a real so that p ∈ [1, 2] [31]. As a reminder, ‖a‖
p
p =

∑Ns

i=1
|ai |

p .

The values of p are set to 1, 4/3 or 3/2, depending on

the experiment, similar to the values used in [4] since their

corresponding proximity operator are analytically defined (Ap-

pendix A). The optimization algorithm used to solve the de-

convolution problem is the fast iterative shrinkage thresholding

algorithm (FISTA) described in Appendix A [32]. FISTA

is stopped when the relative error between two consecutive

estimates is lower than 10−3.

Three different PSF estimation techniques are compared:

• The proposed non-stationary PSF;

• A stationary PSF previously simulated on Field II using

a phantom made of a single scatterer located at 25 mm

for PW imaging and 45 mm for DW imaging;

• A stationary PSF estimated from the data using the

method described in [23].

The deconvolution is performed on RF images, obtained

by applying the DAS operator on the element-raw data. The

image grid spacing is set to one fourth of the wavelength in

the lateral direction and one eighth of the wavelength in the

axial direction. The apodization used in receive is the element-

directivity according to Selfridge et al. [25].

The methods are implemented using MATLAB3. For the

non-stationary PSF, the reshaped operators PH and DP† are

stored as sparse matrices. For the stationary PSF, the forward

and adjoint operator are computed in the Fourier domain.

V. RESULTS AND DISCUSSION

A. Point-reflector Experiment

For these experiments, the ℓp-deconvolution is tested with a

value of p equal to 1 since we are dealing with sparse images.

The comparison is based on the axial and lateral resolution,

calculated as the full-width-at-half maximum (FWHM) [33]

computed on the log-compressed B-mode image. The regular-

ization parameter is empirically set to its highest value so that

all the point reflectors are visible, if possible.

In the DW experiment whose configuration is described

in Figure 3(a), Figure 5 shows that the proposed method

significantly outperforms the techniques based on a stationary

3https://github.com/AdriBesson/epfl-ibm-code
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PSF, for both the lateral and the axial resolution. Figure 7

shows the B-mode images of the point-reflectors for standard

DAS beamforming (top row), deconvolution with the proposed

method (middle row) and deconvolution with the estimated

PSF (bottom row). It corroborates the above analysis and

shows the superiority of the proposed method. Such results

were expected due to the non-stationarity of the PSF, notice-

able on the first row of Figure 7.
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Fig. 5. Lateral and axial resolution of the ℓ1-deconvolution of the 8 point
reflectors of the DW imaging phantom (Fig. 3(a)) with the proposed non-
stationary PSF (green), the estimated stationary PSF (light blue) and the
simulated stationary PSF (dark blue).

When using the method with a simulated stationary PSF,

it can be noted that the values for both the axial and the

lateral resolution are not satisfactory, except for point-reflector

4. This is due to the fact that the PSF used in the deconvolution

experiment has been simulated with a point-reflector centered

at 45 mm, close to point-reflector 4. The high peaks that one

may observe on Figure 5 are due to the fact that several points

are not reconstructed. Regarding the method with an estimated

PSF, the results are better. This can be explained by the fact

that the estimated PSF returns a sort of “averaged PSF” over

the entire image, resulting in a rather uniform value of the

resolution. We can nevertheless observe a non-uniformity of

the resolution with respect to depth (point-reflectors 7 and 8),

which emphases the inability of the method to capture non-

stationary blur.

In the PW experiment, it can be noticed on Figure 6 that

the proposed approach is either close to or better than the

best of the methods based on a stationary PSF, which means

that it represents a best compromise between lateral and axial

resolution. However, the results are less striking than for

the DW experiment which is justified by the reduced non-

stationarity of the blur compared to the DW experiment.
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Fig. 6. Lateral and axial resolution of the 8 point reflectors of the PW imaging
phantom (Fig. 3(b)) for the ℓ1-deconvolution with the proposed non-stationary
PSF (green), the estimated stationary PSF (light blue) and the simulated
stationary PSF (dark blue).

Regarding the simulated PSF, while the lateral resolution

is relatively constant along the image, the values of the axial

resolution is varying significantly. This is due to our choice of

regularization parameter. Indeed, it is set so that all the point-

reflectors are visible. When the regularization parameter is too

high, the first point-reflectors that vanish are point-reflectors 3

and 7 since they are the ones with the highest mismatch with

the centered PSF pattern used in the deconvolution.

With a close look on Figs. 5 and 6 , one may highlight

some non-uniformity in the values of the resolution obtained

with the proposed method. This can be explained by several

approximations made in the model:

• no three-dimensional propagation: The proposed model

neglects the effects related to the three-dimensional prop-

agation in the Field II simulation, especially the element

height and the elevation focus;

• planar/spherical wavefront assumption: We assume that a

planar or spherical wavefront, for PW and DW respec-

tively, of constant amplitude propagates in the medium;

• grid mismatch induced by the discretization of the con-

tinuous propagation operator and the continuous medium.

B. PICMUS Phantom Experiment

In this experiment, we compare the methods based on

the dB-contrast-to-noise ratio (CNR) and lateral and axial

resolution, computed on the PICMUS phantom displayed in

Figure 4. The CNR [33] is a measure of the contrast, calculated

on the normalized envelope image, i.e. on the envelope image

divided by its maximum value, as follows,

CNR = 20 log10

|µt − µb |√
σ2
t +σ

2
b

2

, (43)

where (µt, µb) and (σ2
t , σ

2
b
) are the means and the variances

of the target inclusion (anechoic region of Figure 4) and the

background, respectively.

The results are reported in Table II for the ℓp-deconvolution,

with p = 1.3 and 1.5, and with the proposed non-stationary

PSF as well as the two stationary ones. We choose to show the

results for one specific value of the regularization parameter

which recovers acceptable images based on visual assessment,

but the results remain stable in a wide range of values4.

On Table II, one can see that the proposed PSF outperforms

the other methods, for nearly all the cases. For the axial

resolution at 45 mm, it appears that the method with the

simulated PSF is slightly better than the proposed method. It

may be due to some assumptions made in the proposed model

of the PSF, described in Section V-A. It can be noticed that the

improvement of the proposed method in terms of resolution is

slight, which is in accordance with the results of Section V-A.

Regarding the results of the deconvolution procedure, we

observe that p = 1.3 leads to better resolution but lower

contrast than p = 1.5. This can be explained by a close

look to the definition of the CNR. Indeed, it may be deduced

from (43) that the CNR favors piecewise-continuous regions

where σb and σt tend to 0. On the contrary, high-resolution

images exhibit more "spiky" behaviour in speckle region

4https://github.com/LTS5/us-non-stationary-deconv
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Fig. 7. Log-compressed (40 dB dynamic range) B-mode images of point-reflector 1 to point-reflector 8 (from left to right) of the DW configuration (Fig. 3(a))
obtained with standard DAS beamforming (top row), deconvolution with the proposed method (middle row) and deconvolution with the estimated PSF (bottom
row).

than low-resolution images which usually result in lower

mean and higher variance, therefore in a lower CNR. In ℓp-

deconvolution, the value of p impacts the shape of the GGD

prior, resulting in variation of the resolution of the recovered

TRF. The lower p, the tighter the shape of the prior, the better

the resolution and the lower the CNR.

TABLE II
COMPARISON OF THE METHODS ON THE NUMERICAL PICMUS

PHANTOM

Value of p CNR [dB] Method
Lat. Res. [mm] Ax. Res. [mm]
14 mm 45 mm 14 mm 45 mm

p = 1.5 6.60
Prop. PSF 0.22 0.37 0.22 0.27
Est. PSF 0.26 0.48 0.25 0.31
Sim. PSF 0.30 0.41 0.26 0.26

p = 1.3 6.00
Prop. PSF 0.16 0.29 0.15 0.25
Est. PSF 0.18 0.41 0.18 0.23
Sim. PSF 0.25 0.35 0.19 0.19

C. In-vivo Carotid Experiments

Due to the lack of ground truth and appropriate quality met-

ric for in-vivo images, the comparison between the methods

is limited to a visual assessment in this Section.

Low resolution demodulated RF images of the two carotids,

obtained by DAS beamforming without deconvolution, are

displayed on Figs. 8(a) and 8(e). The B-mode images of the ℓp-

deconvolution technique for the first carotid, and for p = 1.5,

are displayed on Figs. 8(b), 8(c) and 8(d). The B-mode images

of the ℓp-deconvolution technique for the second carotid, and

for p = 1.3, are displayed on Fig. 8(f), 8(g) and 8(h).

It can be noticed that the deconvolution methods all lead

to significantly higher resolution than the demodulated RF

images. The deconvolution effect is more pronounced for the

proposed method and the estimated PSF than for the simulated

PSF. This can be seen on the artery wall. In addition, the

proposed method allows a better reconstruction of the textured

area, such as the speckle region under the lower artery wall,

than both methods based on a stationary PSF.

D. Preliminary Computational Times on a Parallel Platform

The results discussed in the previous sections are based

on MATLAB implementations which are obviously not com-

patible with real-time requirements. To give a flavour of the

potential for parallelizability of the proposed approach, we

evaluate a preliminary implementation of the operators on a

graphical processing unit (GPU). Since the implementation is

neither fully validated nor optimized, it has not been used

to produce the results presented in this work and will be

described in a fully dedicated publication.

The sequential application of D and H takes around 50 ms

for the in-vivo carotid image case, a NIVIDIA Titan X GPU

platform, which is similar to the timings presented in previous

publications [19], [20]. For the DW imaging case, the lower

number of transducer elements and lower sampling frequency

are compensated by the higher number of grid points, due to

the wider field of view, resulting in similar computation times.

Regarding the adjoint operator D† and H†, the computation

times are also very similar to the ones observed for the

forward operators which makes sense since they exhibit similar

computational complexity.

The computation times of both operators scale linearly

with the number of transducer elements, the number of time

samples and the number of grid points which is compatible

with the complexity derived in Section III-C.

Again, it has to be noticed that the proposed implementa-

tions are not optimal and substantial gain may be achieved

by working on simple acceleration strategies. However, it is

rather reasonable to argue that the proposed method, while

more complex than stationary strategies, scales quite well with

large amount of data and may be compatible with real time

2D- as well as 3D-imaging.

VI. CONCLUSION

This work presents a model of a spatially-varying point

spread function (PSF) in the context of 2D ultrasound imaging.

A mathematical formulation of the PSF operator is derived as

a mapping from the tissue reflectivity function (TRF) to its

blurred estimate denoted as the radio-frequency image (RF).

The proposed formulation is based on a sequential split of
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Fig. 8. (a)-Low resolution (LR) image of carotid 1; HR image obtained for p = 1.5 with (b)-the proposed method, (c)-the estimated PSF and (d)-the simulated
PSF; (e)-LR image of carotid 2; High resolution (HR) image obtained for p = 1.3 with (f)-the proposed method, (g)-the estimated PSF and (h)-the simulated
PSF.

the PSF into a propagation operator which relates the TRF

to the measured echo signals, and a DAS operator which

forms the RF image from the echo signals. The two operators

are interpreted in terms of the pulse-echo spatio-temporal

impulse response model in the continuous domain and benefit

from computationally efficient discrete counterparts based on

parametric formulations of time-of-flight equations and inter-

polation on appropriate grids. Such formulations allow the PSF

operator to scale linearly with the number of image grid points

and make non-stationary deconvolution compatible with real-

time applications when implemented on parallel architectures.

The proposed model of the PSF is injected into a maximum-

a-posteriori deconvolution algorithm and it is demonstrated

through simulated and in vivo examples that the deconvolution

approach with the proposed kernel outperforms the most recent

state-of-the-art deconvolution methods based on a stationary

kernel in terms of image quality. We eventually discuss some

possible improvements of the proposed model, i.e. by leverag-

ing the planar or spherical wavefront assumption and taking

into account effects related to the 3D propagation.

APPENDIX A

FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM

AND PROXIMITY OPERATORS

A. Fast Iterative Shrinkage Thresholding Algorithm

This section briefly presents the fast iterative shrinkage

thresholding algorithm (FISTA) used to solve Problem (42).

For an in-depth description of the method, please refer to [32].

FISTA is an accelerated version of the well-known iterative

soft thresholding algorithm (ISTA), that can be used to solve

the following problem:

min
x∈RN

‖y − Ax‖22 + φ (x) , (44)

where y ∈ RM , xRN , A ∈ RM×N,φ : RN → R is a non-

smooth convex regularizer.

In order to solve Problem (44), FISTA is composed of

an acceleration step and a proximal gradient steps described

in Algorithm 1. The proximal gradient step involves the

following proximity operator [34]:

proxφ (x; λ) = arg min
z∈RN

λφ (z) +
1

2
‖ z − x‖22 . (45)

Algorithm 1 FISTA used to solve Problem (44)

Require: A, φ, y, L ≥ λmax

(
AT A

)

initialization: i = 1, t0 = 1, x−1 = x0 = 0

repeat

ti ←
1+

√
1+4t2

i−1

2
, αi ←

1−ti−1

ti
ci ← αixi−2 + (1 − αi) xi−1

xi ← proxφ

(
ci +

1
L
AT (y − Aci) ;

1
L

)

i ← i + 1

until stopping criterion

return xi

In Algorithm 1, λmax

(
AT A

)
denotes the highest eigenvalue

of AT A.

B. Proximity operators associated with the ℓp-norm

We consider the proximity operator defined in (45), where

φ (x) = ‖x‖
p
p and p ≥ 1. Thanks to the separability of the two

functions involved in the proximity operator, the problem can
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be solved element-wise. According to Table 10.2 of [34], the

following equivalence holds:

zi = arg min
zi ∈R
λ |zi |

p
+

1

2
(zi − xi)

2 , ∀ (xi, zi) ∈ R × R, λ > 0

(46)

⇔ zi = sign (xi) q, q ≥ 0, q + pλqp−1
= |xi |. (47)

Thus, in order to derive the proximity operator associated

with the ℓp-norm, one has to solve (47), which, in the general

case, involves finding roots of a polynomial with arbitrarily

high degree and can be achieved using Newton’s method.

For specific values of p, the polynomial may have a degree

lower or equal to 3. In such cases, (47) has an analytical

solution. This is the case for the values of p considered in

the study:

a) Case p = 1: The solution of (47) is immediately

deduced as:

zi = sign (xi)max (|xi | − λ, 0) , (48)

which is the well-known soft-thresholding operator.

b) Case p = 3/2: The solution of (47) involves to find

the positive root of the following polynomial of order 2:

0 = q +
3

2
λq1/2 − |xi | (49)

⇔ 0 = q2 −

(
2|xi | −

9

4
λ2

)
q + x2

i , |xi | ≥ q (50)

⇔ q = |xi | +
9

8
λ

(

λ −

√
16

9
|xi | + λ2

)

. (51)

c) Case p = 4/3: The solution of (47) involves to find

the positive root of the following polynomial of order 3:

0 = q +
4

3
λq1/3 − |xi | (52)

⇔ 0 = q3 − 3|xi |q
2
+

(
3|xi |

2
+

64

27
λ3

)
q − |xi |

3. (53)

Using Cardano’s method and after several calculations not

detailed here, one may obtain the following value of q:

q = |xi | +
1

9

(
16 · 21/3 · λ2

(z + 27|xi |)
1/3
− 2λ (z + 27|xi |)

1/3

)
(54)

z =
√

256λ3
+ 729|xi |2. (55)
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