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A. INTRODUCTION

In the last report we examined the radar cross section (RCS) of the square trihedral

corner reflector in the interior region. Expressions for the reflected fields as well as

expressions for the equivalent currents at the edges of the trihedral were explicitly

given. In this report we examine the RCS of both the square and triangular corner

reflectors. The formulation of the reflected fields for the interior region of the

triangular trihedral is exactly the same as that of the square trihedral; however,

the area over which the Physical Optics (PO) surface integral is evaluated is now

different. The approach followed to determine this area of integration is explained

thoroughly in this report. The equivalent currents at the exterior edges of either

trihedral were derived based upon Michaeli's PTD equivalent edge currents. The

PTD-EEC expressions for the triangular trihedral are also similar to those already

used in the case of the square trihedral but now the orientation of the edges is

different. Furthermore, in this report we include more results, for both the square

and triangular trihedrals, which are compared with Finite-Difference Time-Domain

(FDTD) data as well as with measurements performed in the ElectroMagnetic

Anechoic Chamber (EMAC) at Arizona State University. The PO-MEC results

compare very well with both the FDTD data and the measured data.

Analysis of a square trihedral corner reflector was performed by Baldauf et

al. [22], using the CAD-based Shooting and Bouncing Ray (SBR) method. They

examined both its monostatic and bistatic RCS for three different sizes (small,

medium, and large). Their results were good for medium and large trihedrals but

less accurate for smaller objects. The SBR method has the disadvantage that both
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its accuracyand the CPU time required to run a particular casedependon the

numberof rays per wavelengthlaunchedfrom the incident direction toward the

target. Increasingthe densityof the rays leadsto moreaccurateresultsbut at the

expenseof extendingthe CPU time. The accuracyof the method is proportional

to the number of rays becausethe fields at the aperture of the output ray tube

are approximated to those that correspond to the ray passing through the center

of the aperture. As the number of rays per wavelength increases, the area of

the aperture eventually becomes very small and the approximation becomes more

appropriate. In other words, the smaller the aperture of the output ray tube is,

the more accurate the SBR results are; however, the CPU time increases because

of the use of a denser grid. Also, the CPU time increases with increasing radar

target size. This is not a very attractive feature for a high frequency approach

such as the SBR method.

In the present analysis, PO and Michaeli's equivalent edge currents (EEC)

method (usually referred as PTD-EEC) are applied on both the square and tri-

angular trihedral corner reflectors to evaluate the backscatter RCS in the interior

region. PO is used for the calculation of single, double, and triple reflections

from the trihedral plates, whereas PTD-EEC is used for the calculation of the

first-order diffractions from the exterior edges. The PO surface current density is

integrated over the illuminated area of the particular plate. For single reflections

the surface integration is evaluated over the entire plate because it is completely

illuminated. The integration is carried out in closed form since the integrand is a

simple exponential function with linearly varying phase over the entire surface of

the plate. For double and triple reflections, however, the surface of integration is

not the entire area of the second and third plates, respectively, but rather only the

illuminated parts of these plates. The shape of the illuminated area is usually an

arbitrary polygon whose shape changes according to the incident and observation

angles. The difficulty in this case is to determine the shape of the illuminated area

at any incident angle and to efficiently integrate the surface current density over
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that area. Another problemwith the evaluationof the doubleand triple reflected

fields is the fact that the surfacecurrent densityon the secondand third platesof

the trihedral shouldbecalculatedin the "near field" of the first and second reflec-

tions, respectively. In our analysis, however, the GO approximation is used for the

calculation of the initial reflected fields and the PO is subsequently applied only

for the last reflection. In other words, it is assumed that the planar nature of the

incident wave is maintained after the first and second reflections, which simplifies

the expressions for the scattered fields considerably.

For the evaluation of the diffracted fields, Michaeli's PTD-EEC expressions

are utilized to calculate the first-order diffractions from the exterior edges of the

trihedral. Diffractions from interior edges are usually much lower than diffractions

from exterior edges and, therefore, were excluded. PTD-EEC expressions are based

on the fringe component of the equivalent edge current for the wedge. These

were deduced from the exact solution of the canonical wedge problem. It is also

important to note that PTD-EEC expressions do not contain the PO component of

equivalent currents; therefore, the diffracted fields using PTD-EEC should improve

the reflected fields calculated using PO. In the case of the trihedral, however, the

reflected fields in the interior region are significantly higher than the diffracted

fields. Consequently, the effect of the diffractions is not always obvious.

B. ANALYSIS

The backscatter cross section of the square and triangular trihedral corner reflec-

tors, depicted in Figs. 17(a) and 17(b), is evaluated by considering single, double,

and triple reflections as well as first-order diffractions. Expressions for the re-

flected fields were given explicitly in the previous report; therefore, they are not

repeated here. It is important, however, that the approach used to determine the

shape of the illuminated area on the plate of last reflection be explained in detail.

This is the area on which the PO integration is evaluated. For single reflections

the illuminated area is the entire surface of the particular plate. For double and
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Figure 17: Geometry of the square and triangular trihedrals.

triple reflections the illuminated area looks like an arbitrary polygon whose shape

depends on the incident angles.

1. The Shape of the Illuminated Area for Double and Triple Reflections

Evaluation of the doubly and triply reflected fields requires integration over the

illuminated part of the plate on which the last reflection occurs. The illuminated

area on that plate has the shape of a polygon whose corner coordinates vary ac-

cording to the direction of incidence. Our objective in this section is to explain

how the corner coordinates of the illuminated area can be determined, as well as

to illustrate an efficient way to evaluate the PO surface integral over this area.

Double and triple reflections occurring in the interior of a trihedral corner re-

flector create shadow regions on the second and third plate, respectively. Fig. 18(a)

illustrates the shaded area created on plate #3 for the case of the double reflection

term R23. As is shown, the incident plane wave, which illuminates completely all

three trihedral plates, is first reflected from plate #2 and then propagates toward

plate #3. However, the reflected fields from plate #2 do not completely illumi-

nate plate #3. To determine the shape of the illuminated and/or shadow region
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on plate #3, it is first necessaryto obtain the direction of the rays after the first

reflection occurs. Their direction, according to image theory, is the mirror image

of the incident direction over plate #2. Knowing the direction of the reflected rays

from plate #2, one can trace the path of the rays that pass through the exterior

edges of plate #2, as shown in Fig. 18(a), to the point where they reach the sur-

face of plate #3. We do not trace the path of the rays that do not strike plate

#3. The line connecting the points where these ray-paths intersect with plate #3,

referring to Fig. 18(a), defines the boundary that separates the illuminated from

the shadow region. The illuminated area should always include the origin of the

coordinate system. Note that the shape of the illuminated area varies with the

incident angle. To illustrate this, two cases with different directions of incidence

are examined. Fig. 18(a) depicts the shadow region on plate #3 for incident angles

0i greater than 45* and q_i also greater than 45*. As 0i becomes smaller than 45 °,

the shape of the illuminated area looks like a triangle, as shown in Fig. 18(b).

For triple reflections, estimating the shaded part on the third plate after two

consecutive reflections on the other two trihedral plates is much more complicated

than in the case of double reflections. The approach, however, remains the same as

before -- the double reflected rays passing through the periphery of the illuminated

area on the second plate, see Fig. 18(c), are traced to the third plate. These rays

intersect the surface of the third plate at certain points, which actually mark the

boundary of the illuminated area (or shaded area). The shaded area on the third

plate for the case of the triple reflection term R123 is ilustrated in Fig. 18(c).

As demonstrated above, the illuminated area on a particular plate due to

either double or triple reflection is a polygon whose shape depends on the direction

of wave incidence. To calculate the reflected fields, the PO surface integral should

be evaluated on this polygon. An efficient way to evaluate this integral is to

subdivide the corresponding polygon into rectangles and right triangles. The PO

surface integral can then be easily evaluated over the areas of both these two shapes

in closed form.
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Figure 18: Shading due to multiple reflections by the interior of the trihedral.
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2. Evaluation of Diffracted Fields Using PTD-EEC

PTD-EEC expressions, derived by Michaeli [23, 24], are utilized to find the far-

field diffracted fields from the exterior edges of both the square and the triangular

trihedral corner reflectors. PTD-EEC expressions are based on the fringe cur-

rents that exist at the edges. Unlike GTD-EEC, PTD-EEC does not include the

PO surface current density. Therefore, adding the diffracted fields (based on the

PTD-EEC formulations) to the reflected fields (based on the PO surface current

density) results in closer agreement with the experimental data. The correspond-

ing expressions for the fringe currents, I ! and M/, can be found in Michaeli's

papers on equivalent currents [23, 24]. Here, the analysis is restricted to how the

electric and magnetic fringe currents are used to derive expressions for the far-field

diffracted fields. The procedure is similar to the one used for the reflected fields

in the previous section. First, the vector potentials are estimated using

fC fe-JkR fc If eJkL'dl (6)A - P I ---_dl _- # e-Jkr4_r 4r r

e [ Mfe-JkRdl,,, e e -jkr fcMfeJkLod I (7)F - 4r Jc R - 4r r

where Lo was defined in the previous report. The integral is evaluated along the

length of the trihedral edge from which the diffracted fields are to be calculated. As

in the case of reflected fields from a trihedral plate, this integral can be evaluated

in closed form because the integrand is a simple exponential function with linearly

varying phase along the edge. After evaluating the electric and magnetic vector

potentials, the far-field spherical components of the scattered field can be written

[25]

E, 0 (8)

Eo -jw(Ao + T1F¢ ) (9)

-jw(A¢ - TIFo) (10)
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C. RESULTS

Results from the combined PO-MEC model are compared with experimental data,

as well as with data obtained using the FDTD method. The experiments were

performed using both a square and a triangular corner reflector whose geometries

are shown in Figs. 17(a) and 17(5).

The main advantage of the PO-MEC approach, over other techniques, is that

it calculates each scattering component separately and then combines them for the

calculation of the total RCS. Each component (single, double, trible reflections and

first-order diffractions), therefore, can be plotted separately in order to examine

its contribution to the total RCS. Then, the shape of the particular target can

be slightly modified to reduce the RCS of the component that contributes the

most to the total backscattered fields. Fig. 19 illustrates the major individual

backscattering components of a 15)_ square trihedral for Oi = Oo = 50* and ¢i = ¢o

varying from 0° to 90 °. These RCS plots represent single reflections (R1, R2, and

R3), double reflections (Ra2, R13, R21, R23, R31, and R32), triple reflections (R123,

R132, R213, R231, R312, and R321), and first-order diffractions from the exterior

edges of the square trihedral plates. Diffractions from the three interior edges

of the trihedral were not considered, which explains why the RCS pattern for

the first-order diffractions is not completely symmetric about 45 ° . Fig. 19 also

illustrates the total RCS pattern of the square trihedral. Examining these five

figures, it can be seen that the major contribution to the RCS is provided by the

triply reflected fields. The reason is that all three trihedral plates are mutually

perpendicular; therefore, the direction of propagation of the triply reflected fields

is parallel to that of the incident plane wave. Changing the angle between the

plates will certainly reduce the overall RCS.

To adequately validate the approach followed in this paper, different sizes

of both trihedral corner reflectors were considered. All graphs in this section

correspond to Eo polarization.
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Figure 20: Monostatic RCS of a 3_ square trihedral at ¢i = ¢o = 60 °.

1. Small Trihedral Corner Reflectors

A 35 square trihedral and a 55 triangular trihedral are considered relatively small

radar targets for high frequency analysis. The classification of small, medium and

large trihedrals is based on the total area covered by the trihedral plates. Fig. 20

shows the monostatic RCS of a 35 square trihedral at ¢i = ¢o = 60 ° as Oi = Oo

varies from 0 ° to 90 °. The agreement between the predicted and the experimental

results is good even if the object is relatively small for high frequency analysis.

Fig. 21 shows the monostatic RCS of a 5)_ triangular trihedral at ¢i = ¢o = 35 °

as 0i = 0, varies from 0 ° to 90 °. A very good agreement between the theoretical

and the experimental results is observed.
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Figure 21: Monostatic RCS of a 5A triangular trihedral at ¢i = ¢o = 35 °.

2. Medium Trihedral Corner Reflectors

A 5,_ square trihedral and a 7,_ triangular trihedral are considered medium sized

radar targets. Fig. 22 shows the monostatic RCS of the 5A square trihedral on a

conical path where Oi = O, = 66* and ¢i = ¢o varies from 0 ° to 90*. Our predictions

are compared with both FDTD and measured data. The agreement is very good.

In addition to conical paths, our formulation is capable of calculating the

RCS of either the square or triangular trihedral by moving the source and/or

observation point along a great circle. The great circle has its center at the origin

of the coordinate system and makes an angle 0 = 09 with the z-axis at ¢ = 45 °.

This is the same as if the trihedral is tilted forward so its z-directed edge makes an

angle 90 - 0g degrees with the z-axis as Cj changes from 00 to 90*. Fig. 23 shows

the monostatic RCS of a 7)_ triangular trihedral as ¢, varies on a great circle at

0g = 80*. The agreement between theoretical and experimental data is very good.

Also, observe that the RCS patterns of Figs. 22 and 23 are symmetric about
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¢ = 45 °. This is always the case since the trihedral exhibits symmetry when the

observation point moves on an azimuthal plane. Fig. 24 illustrates the monostatic

RCS of a 75 triangular trihedral at ¢i = _o = 45 ° as Oi = Oo varies from 0 ° to 90 °.

Our predictions match very well with both the FDTD and the experiment.

3. Large Trihedral Corner Reflectors

A 7_ square trihedral and a 10_ triangular trihedral are considered relatively large

radar targets. Fig. 25 shows the monostatic RCS of a 7_ square trihedral on a

conical path as Oi = 8° = 70 ° and ¢i = ¢o varies from 0 ° to 90 °. The agreement

of the PO-MEC with the experiment is very good. Fig. 26 shows the monostatic

RCS of a 7)_ square trihedral at ¢i = ¢° = 50 ° as 01 = 0, varies from 0° to 90 °. Our

predictions agree very well with the FDTD data. Fig. 27 shows the monostatic

RCS of a 10)_ triangular trlhedral as _b, varies on a great circle at 89 = 80 °. The

agreement of the PO-MEC with the experiment is very good except near _b, = 7°;
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Figure 28: Monostatic RCS of a 10A square trihedral at ¢i = ¢o = 45 °.

however, it was observed that near this specific observation angle the RCS pattern

is very sensitive to slight changes in 0g. Also, it can be seen from Fig. 27 that the

experimental data is not quite symmetric about ¢, = 45*. Finally, Fig. 28 shows

the monostatic RCS of a 10)_ triangular trihedral at ¢i = _o = 45* as 0i = 0,

varies from 0* to 90*. Our predictions are in nearly excellent agreement with the

experimental data.

The FORTRAN code written for the evaluation of the RCS of either the

square or the triangular trihedral corner reflector provides very good results for

any angle of incidence and/or observation. The agreement with experimental data

is within 2 dB of accuracy. Fig. 29 and Fig. 30 show three-dimensional RCS

patterns of a 5)_ square trihedral and a 7_ triangular trihedral, respectively. The

execution time required by a SUN SPARC station IPX computer to calculate the

data to create either one of these three-dimensional plots is 77.4 seconds, which

is much less than the execution time required by other theoretical techniques to
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perform the sametask.

D. CONCLUSIONS

The hybridization of PO and MEC is a very good approach for the evaluation of

the monostatic RCS of complex structures such as the square and triangular corner

reflectors. It provides results that compare very well with experimental, as well

as with FDTD data. The method is also very efficient in terms of computational

requirements such as memory space and CPU time. For example, the FORTRAN

code, which was used to obtain the results presented in this report, can compile

and run on a variety of computer systems including a PC. It also runs very quickly.

Specifically, it takes only 0.0095 seconds on a SUN SPARC station IPX computer

to evaluate the RCS of either trihedral corner reflector at a single point. This CPU

time is constant, regardless of the trihedral size.

E. FUTURE WORK

In this semiannual report we examined the monostatic RCS of both square and

triangular trihedral corner reflectors in the interior region. In the future, we are

planning to obtain the RCS of both these trihedrals in the exterior region as well.

This will complicate the approach used to determine the illuminated area on the

plate of last reflection.
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