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Abstract

In general, mechanical energy monotonically decreases in a physically consistent system, constructed with conservative force 

and dissipative force. This feature is important in designing a particle method, which is a discrete system approximating 

continuum fluid with particles. When the discretized system can be fit into a framework of analytical mechanics, it will be 

a physically consistent system which prevents instability like particle scattering along with unphysical mechanical energy 

increase. This is the case also in incompressible particle methods. However, most incompressible particle methods do not 

satisfy the physical consistency, and they need empirical relaxations to suppress the system instability due to the unphysi-

cal energy behavior. In this study, a new incompressible particle method with the physical consistency, moving particle 

full-implicit (MPFI) method, is developed, where the discretized interaction forces are related to an analytical mechanical 

framework for the systems with dissipation. Moreover, a new pressure evaluation technique based on the virial theorem is 

proposed for the system. Using the MPFI method, static pressure, droplet extension, standing wave and dam break calcula-

tions were conducted. The capability to predict pressure and motion of incompressible free surface flow was presented, and 

energy dissipation property depending on the particle size and time step width was studied through the calculations.

Keywords Particle method · Incompressible fluid flow · Physical consistency · Numerical stability · Full-implicit 

algorithm · MPS · SPH · Analytical mechanics · Extended Lagrangian mechanics · Energy dissipation · Virial theorem

1 Introduction

Particle methods are widely used to calculate the complex 

motion of free surface flows in various engineering fields. 

Smoothed particle hydrodynamics (SPH) for weakly com-

pressible free surface flow was proposed by Monaghan [1] 

as an extension from astrophysics, while moving particle 

semi-implicit (MPS) was developed by Koshizuka and Oka 

[2, 3] to calculate strictly incompressible free surface flows 

in the nuclear engineering field.

In designing a numerical methodology for physical 

simulation, it is important to take fundamental physics 

into consideration. In general, continuum mechanics, e.g., 

fluid dynamics, satisfies the fundamental laws of physics 

such as the second law of thermodynamics, which claims a 

monotonic decrease in mechanical energy. However, it is not 

always satisfied in a discrete system approximating the con-

tinuum equations. When a discrete particle system does not 

satisfy the second law of thermodynamics, the mechanical 

energy may increase and cause instability like particle scat-

tering. Therefore, it is important to satisfy the fundamental 

laws of physics in formulating interaction forces in particle 

methods.

The physical consistency is taken care of using analyti-

cal mechanical frameworks in various scales of calcula-

tion. For example, molecular dynamics [4] and astrody-

namics [5], where the energy dissipation is negligible, are 

constructed following the classical analytical mechanics, 

and the mechanical energy is conserved in their systems. 

Besides, dissipative particle dynamics (DPD) [6, 7], which 

is for the mesoscale simulation where the thermal fluctua-

tion is taken into consideration, is formulated based on the 

general equation for the nonequilibrium reversible–irrevers-

ible coupling (GENERIC) framework [8, 9], and the system 

satisfies the first and the second laws of thermodynamics. As 

an extension of DPD to the larger-scale problems, Espanol 
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and Revenga [10] proposed a thermodynamically consist-

ent version of SPH, smoothed dissipative particle dynamics 

(SDPD), and they also applied the GENERIC framework 

[8]. These systems in various scales stand on the frameworks 

of analytical mechanics and satisfy the fundamental laws of 

physics.

The fundamental laws of physics are to be satisfied also 

in a discrete particle system for the continuum calculation. 

In the continuum scale, thermal fluctuation is usually negli-

gible, and only the conservative force and dissipative force 

are to be considered. In fact, the governing equation for fluid 

dynamics, Navier–Stokes equation, usually consists of con-

servative pressure term and dissipative viscosity term. For 

the system having dissipative force as well as a conservative 

force, a simple analytical mechanical framework, which is an 

extension of Lagrangian mechanics [11], is available.

However, it is not easy to apply the theoretical frame-

works for the physical consistency together with incom-

pressibility, which is an effective approximation in many 

industrial situations where the Mach number is small. In 

fact, the DPD [6, 7] and SDPD [10], which are the physi-

cally consistent mesoscale particle methods, do not satisfy 

the incompressible condition, even though the Mach number 

tends to be small in the smaller scale. The SPH method [1] is 

also not strictly incompressible, and it is usually expressed 

as weakly compressible. Conversely, most of the particle 

methods for strictly incompressible flows do not have the 

physical consistency, and currently, there are only a limited 

number of methods having such features. They are incom-

pressible SPH (ISPH) proposed by Ellero et al. [12] and 

Hamiltonian MPS (HMPS) proposed by Suzuki et al. [13], 

respectively. They constructed incompressible particle meth-

ods within the framework of the energy-conserving system 

with geometric constraints. They used symplectic time inte-

grator [14], SHAKE and RATTLE, respectively. However, 

their algorithm needed to solve nonlinear equations in every 

time step, which is not favorable for numerical efficiency.

Because of this difficulty in building up a particle method 

with both the strict incompressibility and the physical con-

sistency, most of the incompressible particle methods scarify 

the physical consistency. The MPS method [2], which is the 

first strictly incompressible particle method, chose to solve 

a discretized version of pressure Poisson equation (PPE) in 

the semi-implicit algorithm which was similar to the one 

adopted in the finite difference method [15]. Subsequently, 

several researchers proposed the various PPE-based incom-

pressible particle methods [16–19]. However, the PPE-based 

methods often suffered specific instability due to the igno-

rance of the physical consistency, and a lot of stabilization 

techniques are proposed such as the ones with respect to 

PPE formulation [20–24], particle regularization [25–27] 

and surface detection [28–31]. However, these PPE-based 

incompressible particle methods [2, 16–19] might suffer 

instability like particle scattering in some condition even 

with such stabilization techniques [20–31] because it is dif-

ficult to fit their formulations into the framework of analyti-

cal mechanics [11], and the systems may allow unphysical 

increase in mechanical energy.

In this study, a new incompressible particle method 

with the physical consistency, moving particle full-implicit 

(MPFI) method, is developed. The interaction forces can 

be fit into the extended Lagrangian mechanics [11], which 

is an analytical mechanical framework for the system with 

dissipation. Therefore, the discretized system in this method 

is physically consistent although the mechanical energy con-

servation as in the previous studies [12, 13] is not satisfied. 

Instead of directly solving the constant density constraint, a 

control equation which constrains velocity divergence was 

adopted to keep the density constant. The control equation 

could be solved in a linear matrix system, where velocity 

and pressure are calculated implicitly at the same time. In 

addition, a new pressure evaluation methodology for the 

physically consistent system is proposed based on the virial 

theorem [32]. Using the MPFI method, static pressure, drop-

let extension, standing wave and dam break calculations are 

conducted. In the static pressure calculation, the results are 

compared with those of the MPS method [2] and the SPH 

method [1]. Moreover, the energy dissipation property of the 

MPFI method depending on the particle size and time step 

width is studied. In the droplet extension and standing wave 

calculation, the fluid motion is compared with the theoretical 

solutions. Finally, the fluid motion and pressure in the dam 

break calculation are compared with the experiment [33].

2  Numerical method

2.1  Governing equation

The Navier–Stokes (NS) equation with a bulk viscosity term 

is described as

and

where ρ, u, Ψ, g, λ and κ are the density, velocity, pressure, 

gravity, bulk viscosity and bulk modulus, respectively. Here, 

the shear viscosity term is not included in the NS equation 

because only the calculation cases without shear viscosity 

are going to be shown in this study. When an infinite value is 

assigned to the coefficients, λ and κ, Eq. (2) will be changed 

to

(1)�
d�

dt

= −∇� + ��

(2)� = −�∇ ⋅ � + �
� − �0

�0

,
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using the ratio, γ = κ/λ, because the pressure, Ψ, is finite. 

Substituting the continuity equation

into Eq. (3), a time development equation

is obtained, where the first-order approximation at, ρ = ρ0, is 

applied. Therefore, Eq. (3) controls the density to be, ρ = ρ0, 

with the time constant 1/γ, and it is equivalent to the incom-

pressible conditions, the null-velocity divergence condition:

and the constant density condition:

when the initial condition: ρ|t=0=ρ0, is given. Therefore, the 

governing equations [Eqs. (1) and (2)] will be equivalent to 

the incompressible Navier–Stokes equation when the coef-

ficients, λ and κ, are infinite. The strategy in this study is 

taking the limit of, λ, κ → ∞ after discretizing Eqs. (1) and 

(2), and consequently, the control equation [Eq. (3)], which 

can be solved by a linear matrix system, is calculated instead 

of the constant density condition [Eq. (7)] which required 

nonlinear calculation [12, 13].

2.2  Discretization

In this section, the partial differential operators in the gov-

erning equations [Eqs. (1) and (2)] are firstly discretized. 

In particle methods, the partial differential operators are 

replaced with particle interaction models expressed by 

weighted averages using effective radius and weight func-

tion. Since this manner is common in the previous particle 

methods, the SPH method [1] and the MPS method [2], a 

similar interaction model is adopted in this study.

In the SPH method [1], a bell-shaped kernel function is 

used to define the continuum field, and the partial differen-

tial operators, such as the gradient (∇) and divergence (∇∙), 

are derived from the field. As a result, the partial differential 

operators are replaced by the interaction models including 

the differential of the kernel function. The formulation with 

the kernel differential can be used to make a physically con-

sistent system. However, the interaction model in the SPH 

method has a disadvantage on the instability with respect to 

particle clustering. Since it yields only small repulsive force 

when particles are so close to each other, the particles easily 

(3)−∇ ⋅ � + �
� − �

0

�
0

= 0

(4)
1

�

d�

dt

= −∇ ⋅ �

(5)
d�

dt

= −�
�(� − �

0
)

�
0

≈ −�(� − �
0
)

(6)∇ ⋅ � = 0

(7)� = �
0

agglomerate. This is why the SPH method had to adopt some 

smoothing treatment such as the artificial viscosity [1].

On the other hand, in the MPS method [2], the parti-

cle interaction models for partial differential operators are 

directly formulated with a weight function. The weight func-

tion in the MPS method [2] gives a larger value when two 

particles get closer. This helps to avoid the clustering. How-

ever, the interaction model of the MPS method does not fit 

to the framework of analytical mechanics [11]. It is because 

the interaction model in the MPS method does not include 

the differential of the weight function, which will emerge 

when potential energy is differentiated following the analyti-

cal mechanical framework [11].

Therefore, in this study, a similar but new particle interac-

tion model is adopted, taking the good points of the models 

in the SPH method [1] and the MPS method [2]. Here, the 

following normalized weight function wij is used:

where re is the effective radius and dij is the distance between 

particles i and j. The normalization parameter N0 is calcu-

lated at the particle i around which the neighbor particles 

are well arranged. Using the weight function, the particle 

interaction models for the gradient and divergence operators 

are formulated as

where ϕ, A and rij are an arbitrary scalar, an arbitrary vector 

and the relative position between particles i and j, respec-

tively. In Eq. (9), S∇ is a normalization parameter and wij′ is 

the differential of the weight function with respect to particle 

distance dij. These formulations include the differential of 

the weight function as in the SPH method [1]. This choice 

has an advantage in constructing a particle method within 

the analytical mechanical framework [11]. However, the 

shape of the weight function is more like that adopted in 

the MPS method [2]. The gradient of the weight function 

will be larger, when the particle distance dij is smaller. This 

feature plays an important role in avoiding particle clustering 

because larger repulsive force emerges between closer parti-

cle pairs. Since the formulations in Eq. (9) are the weighted 

averages very similar to the ones used in the SPH and MPS 

(8)

wij =
Wij

N0

Wij =

{

(re − dij)
2 (dij < re)

0 (dij > re)

N0 =
∑

j

Wij,

(9)

∇� ≈
1

S∇

∑

j≠i

(�
j
+ �

i
)�

ij
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ij

dij
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1

S∇
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ij
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ij
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methods [1, 2], it is expected that it can also evaluate the 

partial differentials when the normalization parameter S∇ 

is calibrated properly. In fact, the parameter S∇ can be cali-

brated using the virial theorem [32], which will be shown 

later [Eq. (32) in Sect. 2.6].

In addition to the particle interaction models for discretizing 

the partial differential operators, a parameter called particle 

number density is used to evaluate the fluid density. It is a 

summation of the weight function:

It is assumed that the value is proportional to the fluid 

density, and it is desired to be constant when the fluid is 

regarded as incompressible. In this study, the base value for 

the particle number density is 1.0 because the weight func-

tion is normalized in Eq. (8).

With the particle interaction models [Eq.  (9)] and the 

particle number density [Eq. (10)], the governing equations 

[Eqs. (1) and (2)] are discretized to

and

respectively, where �̃ is the particle velocity at the previous 

time step, and the backward Euler method is adopted for the 

time integration. In this study, the effective radius, re = 2.5 

l0, was adopted for Eqs. (11) and (12), where l0 is the initial 

particle spacing.

With dividing Eq. (12) by λ, and taking the limit of, λ, 

κ → ∞,

is obtained, where the ratio, γ = κ/λ, is applied. This is a dis-

cretized version of Eq. (3), controls the particle number den-

sity to be constant, ni = 1, and is equivalent to the discretized 

version of the null-velocity divergence condition [Eq. (6)]:

and the discretized version of the constant density condition 

[Eq. (7)]:

(10)
ni =

∑

j

wij.

(11)𝜌
�

i
− �̃

i

Δt
= −

1

S∇

∑

j

(𝛹j + 𝛹i)�ij

w�
ij

dij

+ 𝜌�

(12)�i = −�
1

S∇

∑

j

(�
j
− �

i
) ⋅ �

ij

w�
ij

dij

+ �(ni − 1),

(13)−
1

S∇

∑

j

(�
j
− �

i
) ⋅ �

ij

w�
ij

dij

= −�(ni − 1)

(14)−
1

S∇

∑

j

(�
j
− �

i
) ⋅ �

ij

w�
ij

dij

= 0

(15)n
i
= 1

when the initial condition ni|t=0=1 is given. However, in the 

region close to the free surface, the initial condition ni = 1 

is not satisfied, and even the proportionality between the 

particle number density ni and density ρ cannot be assumed. 

In such a region, the null-velocity divergence condition 

[Eq. (14)] is to be applied instead. Therefore, the control 

equation [Eq. (13)] is replaced by

and this equation is going to be calculated in the full-implicit 

algorithm shown in the next section.

The free surface boundary in the MPFI method is natu-

rally given by the vacant space from which no force works 

to the particles. Therefore, no explicit pressure boundary 

is needed. Besides, to express walls surrounding the fluid 

particles, a symmetric boundary condition was adopted in 

this study.

2.3  Full‑implicit algorithm

The discretized motion equation [Eq. (11)] and the incom-

pressible control equation [Eq. (16)] are solved in a full-

implicit algorithm shown in Fig. 1. First, the velocity u and 

the pressure Ψ of the particles are calculated at the same 

time solving Eqs. (11) and (16). In contrast to the previous 

studies [12, 13] where the constant density condition was 

directly posed and the nonlinear calculation was required, 

the alternative use of Eq. (16) can avoid the nonlinear calcu-

lation because Eqs. (11) and (16) form a linear system with 

a symmetric coefficient matrix. In this study, the conjugate 

residual (CR) method [34] was applied for the matrix solver. 

After the full-implicit calculation, the position x of the par-

ticles is updated explicitly as

(16)−
1

S∇

∑

j

(�
j
− �

i
) ⋅ �

ij

w�
ij

dij

=

{

−𝛾(ni − 1) ni ≥ 1

0 ni < 1
,

Fig. 1  Full-implicit algorithm in moving particle full-implicit (MPFI) 

method
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Although the shear viscosity term was not included in the 

governing equation in this study, the full-implicit algorithm 

can be an advantage for the incompressible high-viscous 

fluid calculation when the viscosity term is incorporated into 

the matrix equation. In a high-viscous calculation, the diffu-

sion number usually restricts the time step width to be small. 

In contrast, the implicit velocity calculation may allow the 

usage of larger time step width because it is basically free 

from the restriction.

2.4  Incompressible control

The incompressible conditions [Eqs.  (6) and (7)] are 

equivalent under the initial condition ρ|t=0=ρ0, and their 

spatially discretized versions [Eqs.  (14) and (15)] are 

also equivalent to each other under the initial condition 

ni|t=0=1. When ni is differentiated with respect to time,

is obtained. This is interpreted as a discrete version of the 

continuity equation [Eq. (4)] because the right-hand side 

of Eq. (18) is the same as the divergence model in Eq. (9) 

except for the coefficient, S∇. By substituting Eq. (18) into 

Eq. (14),

can be derived. Therefore, Eqs. (14) and (15) are equivalent 

to each other under the initial condition, ni|t=0=1, if the time 

discretization error could be ignored. However, they are dif-

ferent in a practical calculation. When the discretized null-

velocity divergence constraint [Eq. (14)] is adopted, the error 

accumulates and the density may gradually change. On the 

other hand, when the constant density condition [Eq. (15)] 

is adopted, the density is kept strictly constant. The reason 

for this difference is the time discretization error. Since the 

time differential, ∂n/∂t, remains in Eq. (18), time discretiza-

tion error will be introduced in a practical calculation where 

the finite time step width has to be used.

The equation adopted to control the particle number 

density in this study [Eq. (16)] is a hybrid type, and it can 

stop the error accumulation to some extent without solving 

nonlinear equations. To understand how the particle num-

ber density is controlled, it is helpful to derive the control 

equation with respect to the particle number density ni. By 

substituting Eq. (18) into Eq. (16),

(17)�
i
= �̃

i
+ �

i
Δt.

(18)
�ni

�t
=
∑

j

�wij

�t
= −

∑

j

(�
j
− �

i
) ⋅ �

ij

w�
ij

dij

(19)
1

S
∇

�n
i

�t
= 0

is obtained. Even though Eq. (20) is not directly calculated 

in the program, it underlies this calculation. Since the con-

trol equation [Eq. (20)] is not satisfied perfectly because of 

the time discretization error included in Eq. (18), the particle 

number density may deviate from the base value. When the 

fluid is compressed (ni > 1), the deviation is reduced by the 

upper line on the right-hand side of Eq. (20), and the gradual 

density change will be suppressed. On the other hand, when 

the fluid is expanded (ni < 1), the deviation may accumulate 

and the fluid density may gradually change.

The limitation for the parameter γ can also be known from 

Eq. (20). Denoting the change of particle number density in 

a single time step as Δn, the upper line of Eq. (20) can be 

written as

Since the particle number density is explicitly calculated 

from the particle position, the magnitude of Δn should be 

smaller than the deviation, ni − 1, to avoid numerical oscil-

lation. Therefore,

is to be satisfied at least.

2.5  Physical consistency

For the system with conservative force and dissipative force, 

the extended Lagrangian mechanics for the system with dis-

sipation [11] is useful. The Lagrangian equation is written as

where L and D are Lagrangian and Rayleigh dissipative 

function, respectively. In the framework of the Lagrangian 

mechanics, the Lagrangian is defined by

where T and U are the kinetic energy and potential energy of 

the system. Moreover, the dissipative function has to be pos-

itive to ensure the monotonic decrease in mechanical energy. 

If the discretized equations in the MPFI method can be fit 

into the framework of the extended Lagrangian mechan-

ics [Eq. (23)], the physical consistency, i.e., the monotonic 

decrease in mechanical energy, is assured. Since Eq. (16) is 

a constraint and it is not easy to relate them to the framework 

[Eq. (23)], the relation to the equations before taking the 

limit of λ, κ → ∞ [Eqs. (11) and (12)] is firstly considered 

(20)
1

S∇

𝜕n
i

𝜕t
=

{

−𝛾(n
i
− 1) (n

i
≥ 1)

0 (n
i
< 1)

(21)
1

S∇

Δn
i

Δt
= −�(n

i
− 1).

(22)S
∇
𝛾Δt < 1

(23)
d

dt

(

�L

��
i

)

−

(

�L

��
i

)

+

(

�D

��
i

)

= �,

(24)L = T − U,
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instead. When the Lagrangian L and the dissipative function 

D are given as

and

the Lagrangian equation [Eq. (23)] coincides with the gov-

erning equations [Eqs. (11) and (12)], except that the time 

differential on the left-hand side of Eq. (11) is discretized. 

Thus, the equations before taking the limit of, λ, κ → ∞ 

[Eqs. (11) and (12)], can be fit into the framework of the 

analytical mechanics [11], and they form a physically con-

sistent system with dissipative force. Since the coefficients 

λ and κ were the arbitrary parameters in deriving the gov-

erning equations [Eqs. (11) and (12)] from the Lagrangian 

[Eq. (25)] and the dissipative function [Eq. (26)], Eq. (12) 

can be replaced with Eq. (16) by taking the limit of λ, κ → ∞ 

or by further specifying the parameters as γ = κ/λ = 0. There-

fore, it is expected that the discrete system expressed by 

Eqs. (11) and (16) is also a physically consistent system 

including dissipation.

2.6  Pressure evaluation based on the virial theorem 
[32]

The pressure Ψi calculated via Eqs. (11) and (16) suffers 

large fluctuation. However, in a physically consistent system, 

a smooth pressure field can be obtained in a physically jus-

tifiable way based on the virial theorem [32] which is used 

in the molecular dynamics. For the smooth pressure field, 

the virial pressure P is evaluated in a post-process using the 

interaction force and particle position, which are obtained 

in the main calculation.

The virial theorem [32] gives a relation between pres-

sure, kinetic energy and interaction forces in a statistical 

manner as

where sdim, P, V, K, Fi and ri are the spatial dimension, virial 

pressure, volume of the space, kinetic energy of particles 

due to fluctuation, force acting on particle i and position of 

particle i, respectively. The blanket 〈〉 indicates the average 

with respect to time. The first term on the right-hand side 

of Eq. (27) is the fluctuation energy of the particles, which 

can be neglected in this study because neighbor particles 

mostly move along with each other. The second term on the 

(25)

L =

(
∑

i

1

2
m|�

i
|2
)

−

(
∑

i

�� ⋅ �
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+
∑
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2S∇
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− 1)2

)

(26)D =
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S∇

∑

j
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ij

w�
ij

dij

)2

,

(27)sdimPV = 2⟨K⟩ +
�

i

⟨�
i
⋅ �

i
⟩,

right-hand side of Eq. (27) relates to the interaction forces 

among particles. Because the particle interactions in the pre-

sent method are all defined by pair-wise forces conserving 

linear momentum, the second term can be rewritten as

where Fij and rij are the interaction force and relative posi-

tion between particle i and particle j, respectively.

The virial theorem evaluates the pressure in the whole 

system at equilibrium state by averaging the physical 

quantity with respect to time and space as in Eq. (27). 

However, pressure at a certain time and at a certain point 

is to be evaluated in continuum-scale fluid calculations. To 

evaluate such local values, local averaging is to be taken 

with assuming the local equilibrium. To take the local 

average, a test region and a test period are to be given to 

define a range for averaging. When the range is larger, the 

obtained value suffers from less fluctuation but has less 

local information. Therefore, the range for averaging is to 

be given properly depending on the desired resolution with 

respect to time and space.

To evaluate the local pressures, the summation in Eq. (28) 

must be taken over the test region. To obtain equations for 

the smaller region, the separation of the region is to be 

considered. A splitting with respect to Eq. (28) is shown in 

Fig. 2, where one region is divided into two smaller regions. 

The interaction forces traversing the boundary are halved 

and added to the summation in each region such that the 

summation in the original region should equal the sum of 

those in the two separated regions. This reversibility must be 

satisfied in dividing the regions. In this manner, the division 

can be repeated until the single-particle regions are obtained. 

The equation for the single-particle region with respect to 

particle i at a certain time step is expressed as

where ΔV is the volume of the single-particle region, which 

is assumed to be constant as

where l0 is the particle distance at the initial state. By replac-

ing the interaction force Fij in Eq. (29) with the pressure 

gradient force in the governing equation [Eq. (11)],

is obtained. With Eq. (31), the virial pressure Pi in the sin-

gle-particle region can be calculated.
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Additionally, Eq. (31) can also be used to calibrate the 

normalization parameter  S∇. Since the virial pressure Pi 

should be consistent with the pressures Ψi and Ψj, the val-

ues for Pi, Ψi and Ψj should be the same when the pressure 

field is uniform. Therefore, Eq. (31) has to hold when the 

same value is inserted into Pi, Ψi and Ψj. This condition 

determines the normalization parameter S∇ as

In this study, the initial lattice particle distribution was used 

for this calibration.

The virial pressure Pi obtained via Eq. (31) is not smooth 

because the single-particle region is not large enough to 

apply the virial theorem. One reasonable choice for the 

larger test region is the region inside the effective radius. In 

this study, the region in the radius was adopted. The physical 

quantity in the larger region can be calculated by summing 

up the ones in the single-particle regions as

where N{i|dij<re} is the number of particles inside the radius. 

Subsequently, the virial pressure in the region around parti-

cle i is calculated as

(32)S
∇
=

2

s
dim

ΔV

∑

j

dijw
�

ij
.

(33)
sdimP̄iN{i|dij<re}

ΔV =
∑

{i|dij<re}

sdimPiΔV ,

This implies that the virial pressure for the test region can 

be evaluated by averaging the viral pressure for the single-

particle region. This physically justified averaging process 

[Eqs. (31) and (34)] enables to obtain smooth pressure field, 

even when the pressure, Ψi, directly calculated via the dis-

cretized governing equations [Eqs. (11) and (16)] suffers 

from large fluctuations.

Since the virial theorem [Eq. (27)] is to be applied not 

only with the spatial averaging but also with the time aver-

aging, it is also possible to take time averaging in a certain 

period as

where p is the period for the averaging. In this study, no time 

averaging is adopted unless otherwise noted.

For the justification of the pressure evaluated by numeri-

cal calculations, the accuracy of the discretization scheme 

is often discussed by showing that the truncation term goes 

zero by reducing the particle size and time step size. This 

feature is usually called “consistency,” but here, we call 

it “scheme consistency” to distinguish from the “physical 

consistency” shown in Sect. 2.5. The interaction models 

[Eq. (9)] do not always reproduce the gradient correctly 

even in a linear field mainly due to the non-uniform distri-

bution of neighbor particles. Therefore, the models may have 

zeroth-order accuracy at most, and it is difficult to show the 

“scheme consistency” which stands purely on a mathemati-

cal discussion. However, the pressure in the “physically con-

sistent” system can be justifiably evaluated through the virial 

theorem, without showing the “scheme consistency.” This is 

one of the merits to achieve “physically consistency.”

3  Calculation examples

3.1  Hydrostatic pressure calculation

The basic property of the MPFI method was studied using a 

hydrostatic pressure calculation. The initial particle arrange-

ment is shown in Fig. 3. The parameters used in the base 

case are shown in Table 1. For the comparison, the same 

geometry was calculated using the MPS method [2] and the 

SPH method [1], where MPS-SW-MAIN-Ver.2.0 (2010) 

and DualSPHysics_v4.4 (2019) were used, respectively. 

In the MPS calculation, the empirical parameters, such as 

the relaxation factor for PPE calculation and the threshold 

for surface detection, were tuned so as to avoid particle 

(34)P̄i =

∑
{i�dij<re}

Pi

N{i�dij<re}

.

(35)
�

P̄i

�

(t) =

∑

t−p<𝜏<t
P̄i(𝜏)

p∕Δt
,

Fig. 2  Separation of the region for the local virial pressure evaluation
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scattering. The effective radius and the time step width were 

set the same as the MPFI calculation. In the SPH calculation, 

the sound speed is set 10.0 m/s which is thought to be large 

enough for the static pressure calculation where the flow 

speed is basically zero. The artificial viscosity is set large 

enough to suppress the oscillation caused by initial unbal-

ance. The cutoff radius, which is the double length of the 

smoothing length in the SPH method, was set the same as 

the effective radius in the MPFI calculation, and the smaller 

time step width, Δt = 0.0001 s, was applied so as to obtain a 

stable result in the explicit SPH calculation.

The pressure distributions at t = 10.0 s obtained by the 

MPFI, MPS and SPH methods are shown in Figs. 4, 5 and 

6, respectively. For the MPFI results, the pressure evaluated 

using Eq. (34) was shown, whereas for the MPS and SPH 

results, the pressure outputs from the program were directly 

shown. The smooth pressure distribution is obtained with all 

the three methods. The particles stayed at the initial posi-

tion in the MPFI calculation because the static balance was 

made by the initial lattice distribution, whereas the particle 

movement from the initial lattice distribution was observed 

in the MPS and SPH calculations. The pressure history at 

the center (A in Fig. 3) is plotted in Fig. 7. The pressure 

obtained with the MPFI method was almost constant at the 

theoretical value. On the other hand, the pressure fluctua-

tions were observed in the MPS and SPH calculations. In the 

MPS calculation, the fluctuation started along with the par-

ticle movement and was maintained at a certain level. The 

pressure on average was a little bit smaller than the theoreti-

cal value. Since one of the reasons for the underestimation 

is the usage of the zeroth-order scheme [2], the higher-order 

schemes [35] may help to improve the prediction. In the 

SPH calculation, the pressure periodically oscillated due to 

the initial unbalance and the oscillation gradually decayed. 

The decay was due to the artificial viscosity which was set 

large to suppress the oscillation. The pressure in the SPH 

calculation was overestimated. The reason for the overesti-

mation was mainly because of the density calculation, which 

is discussed later.
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Fig. 3  Initial particle arrangement for the static pressure calculation

Table 1  Parameters for the static pressure calculation

Parameters Base case

Gravity g 9.8 m/s2

Particle size l0 0.02 m

Effective radius re 0.05 m

Time step width Δt 0.004 s

Ratio γ = κ/λ in Eq. (13) 10.0/s
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Fig. 4  Pressure distribution in the static pressure calculation with the 

MPFI method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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Fig. 5  Pressure distribution in the static pressure calculation with the 

MPS method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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The density deviations in the MPFI, MPS and SPH cal-

culations are shown in Figs. 8, 9 and 10, where the red color 

shows the particles with larger density than the base value 

and the blue color shows the particles with smaller density. 

In Figs. 8 and 9, the deviation of the particle number density 

calculated by the MPFI and MPS methods is shown, respec-

tively. In the MPFI calculation, the particle number density 

was kept constant because the particles moved very little. In 

the MPS calculation, the deviation was around 2% although 

the whole system was kept almost incompressible. In con-

trast, Fig. 10 shows two types of density. One is continuum 

density, which is calculated by integrating the continuity 

equation in the SPH method, and is shown on the left side 

of Fig. 10. The other is summation density, which is the sum 

of kernel function similar to the particle number density 

in the MPFI and MPS methods, and it is a dependent vari-

able of the particle position. Since the SPH method did not 

calculate the summation density, it is calculated afterward 

and shown on the right side of Fig. 10. These two density 

evaluations are ideally equivalent, but they were different 

from each other. The compression at the center (A in Fig. 3) 

evaluated by the summation density was less than 1%, but 

the value evaluated by the continuum density was larger than 

3%. This contradiction in density estimation is thought to be 

the reason for the overestimation of the pressure shown in 

Fig. 7. When only the continuum density used in the SPH 

calculation increases and the summation density, which is 

interpreted as the reciprocal of the particle volume, is kept 

constant, the mass of the particle, which is represented by 

the product of the density and the volume, will increase. 

Since the number of particles in the system is constant, the 

total mass in the system will increase when the mass of each 
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Fig. 6  Pressure distribution in the static pressure calculation with the 

SPH method (l0 = 0.02 m, Δt = 0.0001 s, t = 10.0 s)

Fig. 7  Pressure at the center (A in Fig. 3) in the static pressure calcu-

lations
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Fig. 8  Particle number density deviation in the static pressure calcu-

lation using the MPFI method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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Fig. 9  Particle number density deviation in the static pressure calcu-

lation using the MPS method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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particle increases. Therefore, the difference between the two 

densities in Fig. 10 implies that the total mass in the system 

increased in the SPH calculation. This is against the mass 

conservation law, and it is a possible reason for the pres-

sure overestimation in Fig. 7. The other SPH methods using 

the continuum density might suffer a similar problem with 

respect to the contradictory density evaluations.

The history of kinetic energy is shown in Fig. 11. The 

kinetic energy was almost zero throughout the MPFI cal-

culation because there was almost no particle movement. 

In the MPS calculation, the kinetic energy increased and 

was maintained at a certain level. It implies that the parti-

cles were kept moving in the MPS calculation. This unin-

tended particle movement is not favorable, not only because 

it causes pressure fluctuation but also because it might 

cause system instability like particle scattering. However, 

the usage of smaller time step size, Δt = 0.001 s, could not 

suppress this fluctuation, or rather resulted in larger fluctua-

tion as shown in Fig. 11. This fluctuation was against the 

second law of thermodynamics, because it gave rise to the 

mechanical energy increase. One possible reason for this 

instability in the MPS calculation is the formulation of the 

discretized pressure Poisson’s equation (PPE), whose source 

term diverges in the limit of Δt → 0. The other PPE-based 

incompressible particle methods [16–19], which adopted 

the source term having this property, may also have such 

undesired dependency on the time step width, Δt. In the SPH 

calculation, after the kinetic energy arose at the beginning 

of the calculation, it gradually decayed with the periodic 

oscillation as the energy in the system was dissipated by the 

artificial viscosity.

The calculation time of the hydrostatic pressure calcula-

tion using the MPFI, MPS and SPH methods is 175 s, 67 s 

and 76 s, respectively. The calculation time was measured 

by conducting a single thread calculation with Intel Core 

i7-8656U 1.9 GHz. The MPFI method took a longer time 

than the MPS and SPH methods because it solves the larger 

matrix system. The size of matrix equation was three times 

larger than that in the MPS method because not only the 

pressure but also x and y elements of the velocity vector 

were the unknowns to be calculated. Following the theory of 

computational complexity of matrix solver, the calculation 

time could be more than three times longer than that of the 

MPS method, but it was shorter. This is because the particles 

were almost stopped in this case, and not so many solver 

iterations were needed. It is thought that more calculation 

time is needed in the case where particles move, and in fact, 

it took 12 min 20 s for the case with initial fluctuation, which 

is going to be shown later.

Although the calculation time is much longer with the 

MPFI method, it could calculate the static balance of the 

incompressible hydrostatic pressure problem much better 

than the MPS and SPH methods. The MPS method suffered 

the unintended fluctuation, and the SPH method faced the 

contradictory density evaluation. They were against funda-

mental physics, and such an unphysical feature may cause 

system instability or incorrect evaluation. In contrast, the 

MPFI method did not show such unphysical behavior and the 

static balance was calculated very well. This tendency was 

the same when various particle sizes l0 = 0.04, 0.02, 0.01 m 

and time step widths Δt = 0.008, 0.004, 0.002, 0.001 s were 

applied. In the MPFI calculation, the particles will not move 

once the balance is reached, and even when it deviates from 

the balance, the system will return to the balance. Therefore, 

it is advantageous in calculating static balance problems.

However, the initial lattice distribution seldom appears in 

a problem where the particles dynamically move around, and 
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Fig. 10  Continuum density and summation density deviation in 

the static pressure calculation using the SPH method (l0 = 0.02  m, 

Δt = 0.0001 s, t = 10.0 s)

Fig. 11  Kinetic energy in the static pressure calculations using the 

MPFI, MPS and SPH
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it is not certain whether the system can approach the static 

balance when the lattice distribution is destroyed. Therefore, 

the static pressure problem is also calculated with a given ran-

dom initial velocity to see the response against fluctuation. The 

x and y elements of the initial velocity are set following the 

Gaussian distribution, N(0,0.06), where the variance, 0.06, was 

chosen so as not to affect the macroscopic behavior. The cal-

culation is conducted with varying the particle size l0 = 0.04, 

0.02, 0.01 m and the time step width Δt = 0.008, 0.004, 0.002, 

0.001 s, respectively. The history of the pressure at the center 

(point A) in the base case is shown in Fig. 12. The pressure 

fluctuated due to the particle motion, and the fluctuation got 

smaller as the system energy was dissipated. The kinetic 

energy of the system is shown in Figs. 13 and 14. They imply 

that the MPFI method has an energy dissipating feature, and 

the dissipation is larger when the particle size is smaller and 

the time step width is larger. In the limit of Δt → 0, the density 

control equation [Eq. (16)] is equivalent to the constant density 

constraint [Eq. (15)]. However, in practical calculations, the 

time step width has to be finite and the particle number density 

deviates due to the time discretization error. When the time 

step width is larger, the density deviation will be also larger 

due to the larger time discretization error, and it causes the 

larger energy dissipation. This is why the energy dissipation 

was larger when the larger time step width was adopted as 

shown in Fig. 14.

3.2  Droplet extension calculation

The droplet extension is one of the benchmarks for an incom-

pressible free surface problem, which is adopted by Monaghan 

[1] and Ellero et al. [12]. The initial radius of the droplet is 

1.0 m, and the initial velocity was given by

where x and y are the coordinates whose origin is set at 

the center of the droplet. The calculation parameters used 

in the droplet extension calculations are shown in Table 2. 

The snapshots obtained by the calculation with the particle 

spacing, l0 = 0.02 m, are shown in Fig. 15. The deformation 

of the droplet is calculated with keeping the particle num-

ber density almost constant. Theoretically, the length of the 

short axis, a, and long axis, b, follows

(36)� =

(

100x

−100y

)

,

Fig. 12  Pressure at the center (A in Fig. 3) in the static pressure cal-

culation with fluctuation (l0 = 0.02 m, Δt = 0.004 s)

Fig. 13  Kinetic energy dissipation in the static pressure calculation 

using various particle sizes (l0 = 0.04, 0.02, 0.01 m)

Fig. 14  Kinetic energy dissipation in the static pressure calculation 

using various time step widths (Δt = 0.008, 0.004, 0.002, 0.001 s)

Table 2  Parameters for the droplet extension calculations

Parameters Cases

Gravity g 0.0 m/s2

Particle size l0 0.04 m 0.02 m 0.01 m

Effective radius re 0.10 m 0.05 m 0.025 m

Time step width Δt 0.00008 s 0.00004 s 0.00002 s

Ratio γ = κ/λ in Eq. (13) 1000.0/s
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where ω is the initial value of ab. Equation (37) is solved 

numerically, and the solution was compared with the MPFI 

results in Fig. 16. The results of the MPFI method agreed 

well with the solution, and the sensitivity with respect to 

particle size was small. The history of the total mechanical 

(37)

dA

dt
=

A
2(a4 − �

2)

a4 + �
2

da

dt
= −aA,

energy is shown in Fig. 17. The small energy decrease was 

observed in this calculation.

3.3  Standing wave calculation

The standing wave calculation is one of the benchmarks to 

check the property with respect to wave propagation, which 

was adopted by Suzuki et al. [13].

The initial particle distribution is shown in Fig. 18. The 

wavelength λwave was set the same as the pool width, and the 

velocity of all the particles was set zero at the initial state. 

The initial surface displacement was given by

where A = 0.1 h and h = 1.0 m were adopted in this study.

The parameters used in the calculation are shown in 

Table 3. The snapshots obtained from the MPFI calcula-

tion with l0 = 0.02 m are shown in Fig. 19. The elevation 

of the surface at the center of the pool is plotted in Fig. 20, 

where the origin in the vertical direction is set at the initial 

average elevation of the fluid surface. In Fig. 20, the calcu-

lation results are compared with the first- and second-order 

approximations given by

(38)�0(x) = A cos(�x),

t=0.000
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t=0.008

t=0.012
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+4%

density

deviation

+2%

0%

-2%

-4%

Fig. 15  Particle number density distribution in the droplet extension 

calculation (l0 = 0.02 m)

Fig. 16  Length of short and long axes, a, b, in the droplet extension 

calculation using the particle size of l0 = 0.04, 0.02, 0.01 m

Fig. 17  Total mechanical energy in the droplet extension calculations 

using the particle size of l0 = 0.04, 0.02, 0.01 m
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Fig. 18  Initial particle arrangement for the standing wave calculation



81Computational Particle Mechanics (2021) 8:69–86 

1 3

and

respectively, where

Compared to the theoretical approximations, the wave 

decay was larger in the MPFI calculation. This is because 

the MPFI method has an energy dissipating feature. Suzuki 

et al. [13] reported that the wave decay occurred even when 

the mechanical energy was conserved because of the local 

randomness of the velocity distribution. In the MPFI cal-

culation, the local randomness was dissipated and the wave 

decay was accelerated compared with the calculation con-

ducted by Suzuki et al. [13]. The mechanical energy in the 

MPFI calculations is shown in Fig. 21. The total mechanical 

energy monotonically decreased.

(39)�
1st
(t) = −A cos(�

2
t)
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1
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4
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) cos(�4t)

]

}

,

(41)

km = m�∕�
wave

�m =
[

kmg tanh(kmh)
]

1

2 .

3.4  Dam break calculation

One of the major advantages of particle methods is that they 

can easily treat the complex motions of free surface flows 

including coalescence and breakup. To confirm the ability 

of the MPFI method in this aspect, the dam break calcula-

tion was conducted, and the results were compared with the 

experiment [33]. The dam break calculation with the same 

geometry was also conducted in the previous studies, e.g., 

Asai et al. [24]. The initial particle arrangement is shown in 

Fig. 22. The initial velocities of the particles are set zero. 

The calculation parameters are shown in Table 4.

The fluid motion obtained by the MPFI calculation is 

shown in Fig. 23. The fluid motion in the experiment, which 

Table 3  Parameters for the standing wave calculations

Parameters Cases

Gravity g 9.8 m/s2

Particle size l0 0.04 m 0.02 m 0.01 m

Effective radius re 0.10 m 0.05 m 0.025 m

Time step width Δt 0.004 s 0.002 s 0.001 s

Ratio γ = κ/λ in Eq. (13) 1.0/s

t=0.0 t=0.6 t=1.2

t=1.8 t=2.4 t=3.0
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Fig. 19  Pressure distribution in the standing wave calculation (l0 = 0.02 m)

Fig. 20  Elevation of the surface at the center in the standing wave 

calculations using the particle size of l0 = 0.04, 0.02, 0.01 m
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was provided in the literature [33], was well simulated by the 

calculation mostly with keeping the density error within 4%. 

The pressure distribution is shown in Fig. 24. The smooth 

pressure field can be obtained via Eq. (34) even in the flow 

with dynamic motion. The comparison with respect to dam 

front position x is shown in Fig. 25. In the figure, the non-

dimensional position, x/h, and time, t(g/h)1/2, are used, where 

h is the representative length shown in Fig. 22. The results 

mostly agreed with the experiment [33].

The pressure history at the wall (A in Fig. 22) is plot-

ted in Fig. 26 and compared with the experimental results 

[33]. For the pressure evaluation on the wall, the test period 

was set in applying the virial theorem, and Eq. (35) is used 

instead of Eq. (34). In specific, the 0.04-s time averaging 

was applied to remove the fluctuation due to the particle 

movement. Compared to the experimental result [33], the 

first pressure peak, which appears when the fluid hit the 

wall, was underestimated in the calculations, but the second 

peak, which appears when the fluid fell down again, was well 

reproduced. The possible reason for the first underestima-

tion is the sparse particle distribution because of the particle 

reflection at the wall. Just after the fluid hit the wall, some 

particles detached from the main lump in the calculation, but 

the fluid in the experiment stayed in a lump at that moment. 

Even with such deviation, the pressure evaluation based on 

the virial theorem performed mostly well also in the flow 

including dynamic motion.

The history of the mechanical energy is shown in Fig. 27. 

The large energy decay was observed when the fluid col-

lides with each other. To reproduce the fluid motion, the 

energy decay is also to be calculated properly. Therefore, it 

is thought that the adequate energy decay was calculated by 

the MPFI method. However, the energy decay in the MPFI 

method is not intentionally introduced and is only calculated 

as a result of solving the incompressible control equation. 

Hence, the agreement in fluid motion here is just accidental 

from our current knowledge, and the proper evaluation of 

the energy dissipation is left as an issue for the future work.

4  Conclusion

A new incompressible particle method with physical consist-

ency, the moving particle full-implicit (MPFI) method, was 

developed. The interaction forces were composed of the con-

servative force and dissipative force, which could be fit into 

the framework of the analytical mechanics [11]. It implies 

that the fundamental laws of physics, such as the second law 

of thermodynamics, were basically satisfied in the proposed 

system. Instead of directly posing the constant density con-

dition, the control equation which constraints the velocity 

divergence was adopted to keep the fluid incompressible. 

The control equation enables to avoid nonlinear equation as 

in the previous studies [12, 13] with introducing a certain 

energy dissipation. The equation was solved in a full-implicit 

algorithm, where the velocity and pressure were calculated 

implicitly at the same time. The implicit calculation only 

needed to solve the linear symmetric matrix equation once 

in each time step. Furthermore, a new pressure evaluation 

procedure based on the viral theorem [32] was proposed for 

the physically consistent system.

Using the MPFI method, static pressure, standing 

wave, droplet extension and dam break calculations were 

conducted.

Fig. 21  Total mechanical energy in the standing wave calculations 

using the particle size of l0 = 0.04, 0.02, 0.01 m
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Fig. 22  Initial particle arrangement for the dam break calculation

Table 4  Parameters for the dam break calculations

Parameters Cases

Gravity g 9.8 m/s2

Particle size l0 0.04 m 0.02 m 0.01 m

Effective radius re 0.10 m 0.05 m 0.025 m

Time step width Δt 0.004 s 0.002 s 0.001 s

Ratio γ = κ/λ in Eq. (13) 10.0/s
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In the static pressure calculation, the results were com-

pared with those of the MPS and SPH methods. All the 

three methods could obtain smooth pressure fields. How-

ever, in the MPS calculation, unintended fluctuation against 

the second law of thermodynamics was observed, whereas 

in the SPH calculation, the density evaluation against the 

mass conservation law was observed and it resulted in the 

overestimation of the pressure. In contrast, the MPFI could 

calculate the hydrostatic pressure balance very well although 

the calculation time was much larger than the other two 

methods. In addition, the energy dissipating property of the 

MPFI method depending on the particle size and the time 

step width was studied.

In the droplet extension calculation, the change in the 

length of the short and long axes agreed well with the 

theoretical solution, and the results depended little on the 

particle size. It implies that the MPFI method could well 

capture the incompressible free surface flow in this problem.

In the standing wave calculation, the wave was compared 

with the theoretical solution. In the MPFI calculation, the 

large wave decay was observed compared to the theoretical 

approximation because of the energy dissipative property of 

the MPFI method.

In the dam break calculation, the results were compared 

with the experiment [33]. The prediction of the dam front 

position mostly agreed with the experimental results. The 

pressure at the wall was also compared with the experi-

ment. It is confirmed that the pressure evaluation based on 

the virial theorem [32] was valid even under the flow with 

dynamic motion.
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Fig. 23  Particle number density deviation in the dam break calculation (l0 = 0.02 m)
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Fig. 24  Pressure distribution in the dam break calculation (l0 = 0.02 m)

Fig. 25  Dam front position in the dam break calculations using the 

particle size of l0 = 0.04, 0.02, 0.01 m

Fig. 26  Pressure history at the wall (A in Fig. 22) in the dam break 

calculations using the particle size of l0 = 0.04, 0.02, 0.01 m
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Overall, the MPFI method, satisfying the fundamental 

laws of physics, had an advantage in calculating hydrostatic 

balance, and the reasonable results could be obtained in 

other problems. Compared to the MPS and SPH methods, 

the MPFI method is thought to have an advantage in a prob-

lem where strict incompressibility and static balance are 

required, and the physical consistency may help conducting 

simulation without tuning artificial relaxation parameters 

to cope with unphysical behaviors. Moreover, it may have 

superiority in the high-viscous fluid calculation because the 

implicit velocity calculation is free from the restriction with 

respect to the diffusion number.
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