A Physically Universal Quantum
Cellular Automaton

Luke Schaeffer®)

Massachusetts Institute of Technology, Cambridge, Massachusetts, England
lrschaeffer@gmail.com

Abstract. We explore a quantum version of Janzing’s “physical uni-
versality”, a notion of computational universality for cellular automata
which requires computations to be done directly on the cells. We discuss
physical universality in general, the issues specific to the quantum set-
ting, and give an example of a quantum cellular automaton achieving a
quantum definition of physical universality.

1 Introduction

Many cellular automata are known to be computationally universal, in the sense
that they can simulate Turing machines, and hence any other classical model of
computation. Shortly after Bernstein and Vazirani introduced quantum Turing
machines, Watrous [8] gave a definition for quantum cellular automata (QCA),
and showed that QCA can simulate arbitrary quantum Turing machines.
Raussendorf [4], van Dam [7], and others give QCA that achieve stricter notions
of universality for quantum circuits.

Recently, Janzing [2] defined physical universality for cellular automata.
A cellular automaton is physically universal if for any finite set of cells X, and
any transformation f on the region X, there is some way to initialize the comple-
ment of X such that, whatever initial configuration x is in the region X, after some
number of ¢ timesteps, X contains f(z). In other words, it is possible to perform
any transformation on a region by initializing the surrounding cells and waiting
for some prespecified time. We will discuss physical universality in general, the
issues specific to the quantum setting, and finally give an example of a quantum
cellular automaton which is physically universal in the quantum sense.

2 Cellular Automata

We will consider only layered cellular automata in the classical setting.

Definition 1. A layered cellular automaton (LCA) is a 4-tuple
(L,V, X, p) consisting of

— a finite dimensional lattice L = 7.2,
~ a list of shifts V = [vy,...,v3] for k different layers, where v; € 7.4,
© IFIP International Federation for Information Processing 2015

J. Kari (Ed.): AUTOMATA 2015, LNCS 9099, pp. 46-58, 2015.
DOT: 10.1007/978-3-662-47221-7_4

A Physically Universal Quantum Cellular Automaton 47

— a finite set of states, X, and
— a rule p: X¥ — X* for updating a cell.

The points of in the lattice are called cells. Each cell in the lattice has k layers,
and each layer of a cell has some state in Y. Each time step, we apply the cell
update rule p to every cell in the lattice, then shift each layer by the correspond-
ing shift vector v;. That is, the ith component of the state of a cell € Z? is
moved to the cell z 4+ v; € Z<.

A region of cells is any finite subset of the lattice. A configuration of a region
X C L is mapping from cells in X to states in ¥, and we let C(X) denote the set
of all configurations of X. Naturally, we can combine configurations x € C(X)
and y € C(Y) of disjoint regions X and Y into a configuration z xy € C(X UY)
of XUY.

A cellular automaton is reversible if every configuration of the automaton
has a unique predecessor (according to the update rule of the automaton). One
advantage of layered cellular automata is that it is trivial to check reversibility —
a LCA is reversible if and only if the cell update rule p is bijective.

3 Quantum Cellular Automata

A reader unfamiliar with quantum computation will find quantum cellular auto-
mata analogous to probabilistic cellular automata (PCA). Probabilistic cellular
automata (PCA) generalize (deterministic) cellular automata by letting the con-
figuration of the lattice be a probability distribution over deterministic configu-
rations, and letting the update rule map each classical state to a distribution of
states.

If we think of quantum mechanics as a theory of probability with complex
numbers [9], then quantum cellular automata (QCA) are very much like prob-
abilistic cellular automata, except the probability distribution is replaced with
a quantum superposition of classical configurations. That is, a quantum config-
uration is a map ¢ : C(L) — C from classical configurations to complex number
amplitudes such that

) = Y)P =1
€L

The analogy between PCA and QCA does not end there. Given a distribu-
tion of deterministic configurations, each cell has a marginal distribution, but
the marginal distributions for all cells do not give us a complete picture of a
configuration because the states of cells may be correlated. Similarly, each cell
of QCA has a quantum state, but cells may be entangled.

Let us define quantum cellular automata more formally.

Definition 2. A layered quantum cellular automaton (LQCA) is a 5-tuple
(L,V,X,q,p) consisting of

— a finite dimensional lattice L = 7.,
~ a list of shifts V. = [vy,...,vx] for k different layers, where v; € Z¢,

48 L. Schaeffer

— a finite set of states, X,
— a special quiescent state ¢ € ¥, and
- a unitary transformation p on the Hilbert space

H={f:X"—-C}
of functions from X% to C.

In addition, we require that p fizes the quiescent state. That is, if v € H is the
map that sends q to 1 and all other inputs to 0, then p(v) = 1.

Intuitively, the state of a cell is a vector = in H such that ||z||, = 1. The state
of a region, X, containing k cells is a vector z in the tensor product H®* such
that ||z|l, = 1, which makes sense because H®" is isomorphic to the Hilbert
space of functions from C(X) to C. We would like a quantum configuration for
the entire lattice to be a vector of

Q.

zeL

but this infinite tensor product is not well-defined. Instead, we say a finite con-
figuration is a classical configuration ¢ € C(L) such that all but finitely many
cells in the quiescent state, ¢. Let C*(L) be the set of all finite (classical) configu-
rations the lattice L. Then the quantum configurations of the LQCA are defined
to be

QL) = {1 C*(L) — C | a(th(a)) = 1}.

That is, functions from finite configurations to amplitudes such that the ¢5-norm
is 1.

The evolution of the LQCA is defined by p, a unitary transformation on
the quantum state of a cell, and V, the list of shifts. As before, we apply p to
each cell, then shift each layer by the corresponding vector. Each step is linear
in the sense that if z,y € Q(L) are quantum configurations which evolve to
2’y € Q(L) when we apply p to every cell, then ax + Sy evolves to az’ + By’
(when we apply p) for all a,3 € C such that l(az + By) = |of* + |8]° = 1.
Therefore it suffices to define the two steps for quantum configurations where
for classical configurations (actually quantum configurations where one classical
configuration has amplitude 1).

Recall that a finite configuration has only finitely many cells which are not
in state ¢g. Since p fixes state ¢, we can ignore all those cells (they remain in
state ¢), and consider a finite quantum system composed of the remaining cells.
The set of quantum states for the finite set of cells is in H®* for some k, and we
apply p to each cell in this finite dimensional space, i.e., apply pR p ® - -+ ® p.
We have already seen how to shift the layers of a classical configuration; it is the
same in the quantum setting as it was in the classical setting.

A Physically Universal Quantum Cellular Automaton 49

4 Physical Universality

Computational universality is well studied in cellular automata. There are cel-
lular automata which can simulate a wide variety of (formal) computational
devices: circuits, Turing machines, quantum circuits, other cellular automata,
etc. Almost all of these cellular automata require the “data” to be written in a
special form, usually distinct from the “program”.

— Conway’s Life encodes information as gliders, but the program must be laid
out as glider guns.

— Margolus’ billiard ball machine uses balls to represent data, and the config-
uration of the “table” determines the computation.

— Raussendorf’s universal quantum CA [4] puts quantum bits in even columns
(moving left), and the description of quantum gates in odd columns (moving
right). Computation occurs as the interleaving columns pass each other.

— Wim van Dam’s CA operates directly on qubits, but the program cells are
over a larger state space.

Janzing [2] defined physical universality as a stronger notion of universality
for cellular automata. Informally, a cellular automaton is physically universal if
one can implement any transformation on any finite set of cells by “program-
ming” the other cells. To state it more formally, we first need the following
definition.

Definition 3. Let M be a CA on a lattice L. Let X be a region of the lattice. We
say a configuration y € C(L\X) implements a transformation f: C(X) — C(X)
in ¢ time steps if for every configuration x € C(X), there exists a configuration
y' € C(L\X) such that x X y evolves to f(x) x y' in t timesteps.

Then physical universality (in the classical setting) is defined as follows.

Definition 4. Let M be a CA on a lattice L. Then M is physically universal
if for every finite set of cells X C L and for every function f: C(X) — C(X),
there exists a configuration y of L\X and a time t € Z such that y implements
the transformation f on X in t timesteps.

There were no examples of physically universal CAs in Janzing’s original
paper. We now know that (classical) physically universal CAs exist, with rela-
tively simple examples due to Schaeffer [6], Salo and T6rmé [5]. These examples
are all layered cellular automata, and the construction used to show physical
universality has the same general structure in each case:

1. First, show that any finite configuration eventually becomes inactive.

2. Allow the input configuration to become inactive, and collect whatever infor-
mation remains.

3. Use the reversibility and computational universality of the automaton to
forensically reconstruct the original configuration of the input region.

4. Use computational universality again to apply the given transformation on
the input.

50 L. Schaeffer

5. Find a way to put the desired output configuration in the output region, usu-
ally by appealing to reversibility and computational universality yet again.

We will follow exactly the same approach to show that a layered quantum cel-
lular automaton is physically universal, but first let us define quantum physical
universality.

5 Quantum Physical Universality

Before we introduce quantum physical universality in cellular automata, let us
discuss the inherent limitations of programmable quantum devices in the context
of quantum circuits. Nielsen and Chuang [3] call such circuits programmable
quantum gate arrays (PQGA).

Definition 5. Let G be a quantum circuit with a program register P, and a data
register D, each consisting of many qubits. Then G is a programmable quantum
gate array if there exist program states {P;}icy, and unitary transformations
{U;}icr of the data register such that for all i and d,

G(P; ®d) = P{(d) ® U;(d)
where P/(d), the garbage left in the program register, may depend on i and d.

In other words, there are || settings of the program register, which effect unitary
transformations {U;};c; on a data register. Nielsen and Chuang make a num-
ber of observations about PQGAs in [3], which we summarize in the following
theorem.

Theorem 1. Let G be a PQGA, with P;, P! and U; as above. Then

?

1. the garbage in the program register, P/(d) = P/, does not depend on d, and

2. if U; and U; are not the same (up to multiplication by e'?) then P; and P;
are orthogonal.

This has several interesting consequences for quantum physical universality.

1. Since distinct programs have orthogonal program states, the number of uni-
tary operations is bounded by |C*(P) |, the number of classical configurations
of the program register. It is natural to use classical program states (i.e., con-
figurations in C*(P)), because there is apparently nothing to gain by making
them quantum superpositions.

2. The program register after the computation cannot depend on the input
in the data register. This is purely a side-effect of unitary evolution. Compare
this to the notion of reversible physical universality in the classical setting [6],
where the final value of the program register needs to be defined to be
independent of the data.

A Physically Universal Quantum Cellular Automaton 51

3. If the program register is finite then the PQGA has finitely many distinct
programs. In our cellular automaton, the program register is technically infi-
nite, but since only finitely many bits can interact with the data in any given
time, there are still only finitely many distinct programs. Hence, we must
abandon the idea of implementing all unitary transformations, and confine
ourselves to approzimations of arbitary unitaries. Fortunately, this problem
is shared by quantum circuits, so there are procedures [1] for approximating
unitary transformations with a finite set of quantum gates.

This informs our definition of quantum physical universality.

Definition 6. Let M be a QCA on a lattice L, and let X C L be a region. We
say a configuration y € Q(L\X) implements a transformation U: Q(X) — Q(X)
in ¢ timesteps if for every configuration x € Q(X), there exists a configuration
Yy € Q(L\X) such that x @ y evolves to U(x) @ y' in t timesteps.

Similarly, we say a configuration y of Y e-approximately implements a trans-
formation U in t timesteps if y implements some transformation U’ such that
\U—=U"|,, <e, where

[[-ll¢. = trace(v A*A)

is the trace norm.

Definition 7. Let M be a QCA on a lattice L. Then M is physically universal
if for every finite set of cells X C L, every unitary transformation U: Q(X) —
Q(X) and every e > 0, there exists a configurationy € Q(L\X) and a timet € Z
such that y e-approzimately implements the transformation U on X in time t.

We will see an alternative definition later, once we have an example of a physi-
cally universal quantum cellular automaton.

6 A Physically Universal LQCA

Our physically universal LQCA is on the lattice L = Z, and has six layers
of qubits (i.e., classical state 0 or 1) with speeds —3,—2,—1,1,2,3. Like the
reversibly physically universal CA of Salo and To6rmé, we program a universal
set of gates into the update rule (see below) for automaton. Specifically, we use
the controlled-NOT CNOT, the /8 gate T and the Hadamard gate H, described
briefly below.

CNOT: A two-bit classical gate common in reversible computation. If the control
bit is 1 then the other bit is negated, otherwise neither bit changes.

T: The pi/8 gate is a single qubit gate which changes the phase if the input is
1, but does nothing.

H: The Hadamard gate is a single qubit represented by the matrix

()

In other words, H(0) is the superposition where 0 and 1 have weight %,
and H (1) has the sign of 1 reversed.

52 L. Schaeffer

These three gates are known to be universal, and there exist algorithms for
approximating arbitrary unitary transformations [1] with this gate set .

We define p by defining it for classical inputs and extending linearly to quan-
tum superpositions thereof. Given a classical cell (z_3,z_9,2_1,21, T2, x3), We
define p(x_3,z_2,x_1,x1,x2,x3) by the following list of rules. Use the first rule
that applies.

—If z_3 = x_5 = xz_1; = 1 then cyclically permute 1 — =2 — 3 — 7.
Likewise, if £1 = 9 = x3 = 1 then cyclically permute z_; — z_3 — x_5 —
Xr_q.

—If xo + 23 = 1 = x_5 + x_3 then either swap x; and x_q, or perform a
controlled-NOT on z; and x_; as follows.

e Ifxo=x_5=1o0r x3=x_3 =1 then swap xy and z_;.

o If xo = x_3 =1 then apply CNOT to x; and x_; with x; as the control
bit.

e If x_o = x3 = 1 then apply CNOT to x; and z_; with xz_; as the control
bit.

—Ifaxg =23 = x_3 = 1 and x_5 = 0 then apply H to x_;. Similarly, if
T3 =x_9 =x_3 =1 and xo = 0 then apply H to x;.

—Ifzg = 23 = x_92 = 1 and x_3 = 0 then apply T to x_;. Similarly, if
9 =x_9 =x_3 =1 and xz3 = 0 then apply T to x;.

— Otherwise, leave the cell unchanged.

Observe that the CA is almost entirely classical. If a cell is in a classical state
initially then, in most cases, p maps it to another classical state. The only excep-
tions are a handful of cases where change the phase (for T') or introduce a super-
position (for H).

Our goal is to show that this LQCA is physically universal. Assume we are
given a finite region X, and a unitary transformation U on the cells in X. By
the Solovay-Kitaev theorem [1], for any e > 0 there exists a circuit C' (of H,
T and CNOT gates) which implements a unitary within e of U. The problem is
then to implement the circuit C.

We follow the pattern used in Schaeffer [6], and Salo and Térmé [5], so we
start by showing that information contained in a bounded region will escape in a
recoverable format. To this end, we define the notion of a depleted configuration.

Definition 8. A quantum configuration x € Q(Z) is depleted if, for every clas-
sical configuration with nonzero amplitude in x, there is at most one particle per
cell and no particle of speed v; occurs to the right of a particle of speed v; > v;,
for all i and j.

We show that any finite configuration quickly becomes depleted.

Theorem 2. Let X C Z be the region X = {1,...,n} and let Y be the comple-
ment. Suppose Oy € Q(Y') is the configuration with all cells in the 0 state. Then
there is a time t = 3n + O(1) such that for any v € Q(X), the configuration
z ® Oy evolves to a depleted configuration within time t.

A Physically Universal Quantum Cellular Automaton 53

Proof. The update rule does nothing to a cell if either x_3 = 2z_95 =2_1 =0
or r3 = w9 = x1 = 0. In particular, if there are no right-moving particles in
cells (—o0, j] at some time, then there are no right-moving particles in the range
(—00,j + 1] on the following step, because all the right-moving particles have
moved right by at least one cell. Similarly for left-moving particles in [, c0).

There are initially no right-moving particles (or particles of any kind) (—o0, 0],
and no left-moving particles in [n+ 1, 00). By the observation above, there will be
no right-moving particles in (—oo, ["'QH 1 in (”T“W steps, nor left-moving particles
in [L%J ,00). It follows that every cell contains only left-moving or right-moving
particles (or neither), and therefore particles move at constant speed without
interacting.

In [%“] time steps, a particle could move as far as %n+1 cells from its initial
position. The right-moving particles, for instance, could be spread over a range
of 2n+ O(1) cells between 2 and 3n+2. So it will take at most 2n + O(1) steps
for the left-most speed 2 particles to overtake the right-most speed 1 particles,
or for the left-most speed 3 particles to overtake the right-most speed 2 particles.
Hence, the right-moving particles will be ordered by speed in at most gn +0(1)
time steps. Similarly for the left-moving particles, so the configuration becomes
depleted in ¢ = 2n + O(1) time steps. O

Suppose we start with a finite configuration. Over time, it becomes depleted
according to the theorem above. At that point, whatever computation the config-
uration may have performed is over, since no interactions can occur in a depleted
configuration. Furthermore, the remains of the computation are readily available
in six groups of particles. Remember that each of these particles is present or
absent in each classical configuration, representing a bit, but since we are in a
quantum configuration, each particle is a qubit, and the qubits may be entan-
gled. We will collect these quantum particles, gather them together, perform a
quantum computation, and then place the result back into X.

Let us discuss how to manipulate these quantum particles. The way we
manipulate these particles is by placing purely classical particles, which we call
manipulators to distinguish them from the particles that come out of X, in the
complement of X. The manipulators will interact with the quantum particles
in such a way that quantum operations (H, 7" and CNOT) are performed on
the particles, yet the manipulators remain purely classical particles, and do not
change speed or direction.

By inspection of the cell update rule, we need at least three particles in a cell
for an interaction to occur. Two manipulators are required to perform a swap
or apply CNOT, and three are required for T and H. In the cases where only
two manipulators are required, the operation does nothing unless there is a third
particle present (usually in the speed 1 or speed —1 layer). We rely on the fact
that two particles or manipulators have at most one point of intersection. This
ensures that any pair of manipulators can only affect one particle, at a time and
place predetermined by the initial locations of the manipulators.

54 L. Schaeffer

We need to show how to do three things with manipulators:

1. Take the six groups of particles in a depleted configuration and redirect them
such that they all move in the same direction at speed 1, in a format suitable
for computation.

2. Approximate an arbitrary quantum computation. We do this by implement-
ing an arbitrary quantum circuit (with gates H, T, and CNOT) ezactly.

3. Convert a single group of speed 1 particles back into six groups of different
speed, aimed towards the output region X.

The first step is a poor introduction to the manipulation of particles, so we
begin with the second step — computation — and prove Theorem 3. We will then
return to the problem of redirecting particles and prove Theorem 4. Finally we
argue that the third step is the reverse of the first step, and therefore follows
from the Theorem 4.

Theorem 3. Suppose X is a region of size 2n, containing particles x1,...,x,
of speed 1 in the even cells. Let C' be a circuit on n inputs, composed of CNOT,
H, and T gates. Then there exists a time t (polynomial in n and the size of C),
such that we can itmplement the transformation defined by C on x1,...,T, in
time t, leaving the result in the even cells of a region Y of size 2n.

Proof. Let us call the area containing the particles the workspace. The workspace
is initially X, but moves right as the particles move right, and may grow as we
move particles around.

We need to show how to implement four operations: we must be able to
apply T, H and CNOT to quantum particles, and be able to move or swap
particles around. It suffices to be able to move a particle left relative to its
peers, since this allows us to completely reorder the particles if we need to.
Given these four operations, it is clear we can implement an arbitrary circuit C'.

T and H: The easiest operation is T. We arrange three manipulators (of speed
2, —2, —3) to intercept the desired particle z; at some time. The update rule
causes an 1" gate to be applied to the speed 1 layer, containing x;. Similarly,
three manipulators (of speed 3, —2, —3) will apply a Hadamard gate H to a
speed 1 particle. Since none of the manipulators have the same speed as the
particles, they spend at most O(n) time steps in the workspace. After that,
the workspace is clear for the next operation.

Move left: If we meet a particle with two manipulators of speed 3 and —3, it
swaps the speed 1 and speed —1 particles. The speed —1 layer is kept empty,
so this effectively reverses the direction of the particle. After the particle has
travelled in the opposite direction for some time, we may reverse it again,
as long as there is no speed 1 particle already in this cell. This allows us to
move particles to the left. There are, however, a few limitations:

— A particle with speed —1 moves 2 cells per timestep relative to the
particles of speed 1. Hence, the distance between the initial and final
position is a multiple of two. This is why the particles are assumed to
be in even cells.

A Physically Universal Quantum Cellular Automaton 55

— We must be careful not to let the manipulators from the two swaps meet.
If they do, they would perform another swap, potentially sending one of
the x;’s off in the wrong direction. The manipulators will meet if and
only if the time between the two reversals is a multiple of three, which
we can easily avoid. If we need to move a particle by a multiple of three
cells, we simply split the move into two parts.

As before, we wait until the manipulators have cleared the workspace before
performing another operation.

CNOT: For CNOT, the idea is to reverse the direction of one input, and then
at the moment it meets the other input, have two manipulators (speed —2
and 3) induce a CNOT operation (where the speed —1 particle controls the
speed 1 particle). We have already seen how to move particles, and how to
apply gates, so the only new problem is how to avoid interference between
the manipulators of the two swaps and the manipulators which implement
the CNOT.

If a speed —2 manipulator meets a speed 3 manipulator, it will implement a
CNOT on the speed 1 and speed —1 layers of that cell. However, the CNOT
does nothing unless there is a speed —1 particle, and the only speed —1
particle is the one we intend to use in the CNOT operation. Hence, we can
ignore speed —2 manipulators.

The speed 3 manipulators, as we have already discussed, will intersect if
the operations they implement are separated in time by a multiple of three.
Fortunately, we only have three operations here: two particle reversals and a
CNOT, so we can schedule these operations such that they do not interfere.
In particular, this means that the initial position (relative to the other par-
ticles) of the control particle (of the CNOT), the final position of the control
particle, and the position of the target particle must be distinct modulo 3.
We may be required to move some of the particles around to accommodate
this condition, but we have already seen how to do that.

We separate all operations by O(n) time steps to ensure that manipulators
from one operation leave the workspace entirely before the next operation, to
avoid collisions within the workspace. Manipulators will inevitably meet outside
the workspace, but there is no interaction unless there are at least three. It
is difficult, if not impossible, to avoid having two manipulators intersect, but
whenever three manipulators intersect, we can always postpone the last of the
three operations (corresponding to the manipulators) to avoid the collision. 0O

Next we consider the problem of capturing the remains of X, once it has
reached a depleted configuration.

Theorem 4. Let X C 7Z be the region X = {1,...,n} and let Y be the comple-
ment. There is some configuration y € Q(Y) and some time t such that if we let
T ®y evolve fort time steps, only the speed 1 layer, in even cells, depends on x.
In other words, the information from X is contained in the speed 1 layer of even
cells.

56 L. Schaeffer

Proof. First, Theorem 2 tells us the particles in X will separate out into six
groups by speed, with the fastest left-moving particles on the far left and the
fastest right-moving particles on the far right, in time O(n). We will show how
to change the speed of each group to 1.

Consider the group of speed 3 particles. The way we change the speed (but
not direction) of a particle is by intercepting it with three manipulators (one
of each speed) moving in the opposite direction. Applied to a speed 3 particle,
these manipulators will reduce its to speed 1. We manipulate particles from back
to front, so that the speed 1 particles fall behind the speed 3 particles, instead of
being overtaken. We also leave plenty of time between manipulations to ensure
that two manipulators ever intercept a particle, and three manipulators never
intersect, except at the planned times and locations of manipulations.

For speed 2 particles, we manipulate each particle to have speed 3, reducing
the problem to one we have already seen. This time we order the manipulations
from front to back so that the new speed 3 particles do not overtake the old
speed 2 particles. Similarly, we can convert speed —3 or speed —2 particles to
speed —1.

The final step is to reverse the speed —1 particles. We saw how to do this
in Theorem 3: two manipulators (speed 3 and —3) collide to swap the speed
—1 layer with the speed 1 layer. As before, we can avoid unintended collisions
between manipulators if we perform the manipulations in the right order, and
with sufficient time between them.

Now if some particles of speed 1 lie in odd cells, then use further manip-
ulations to increase their speed back to 2, breaking parity, and allowing us to
maneuver the particle to an even cell (more accurately, an even cell in even time
steps, an odd cell in odd time steps). Then we increase its speed to 3, and back
to 1 again, but in an even cell. a

To finish the proof of physical univesrality, we need to show how to out-
put the computed configuration. This means taking a collection of particles of
speed 1, and dividing them into six groups. Then we accelerate each group to
a different speed, and aim them at the region X. We assume that the particles
output by the computational phase (i.e., the collection of particles of speed 1)
were computed to account for the interactions that occur when the particles
come together in region X, so they produce the desired output, namely U (or a
close approximation) applied to the initial contents of X.

Observe that our LQCA is reversible, so we can run it backwards. Further-
more, it is close to being the same automaton in reverse — the case which allows
us to change speed 1 to speed 2 to speed 3 cycles in the opposite direction,
gates are inverted (of course, H and CNOT are their own inverses), and parti-
cles move backwards, but the automaton is close enough that Theorem 2 and
Theorem 4 go through. Hence, we can construct a configuration (in the reverse
QCA) which takes the contents of the region X, reduces their speed, and col-
lects them together. The manipulators do not depend on the contents of X, so
we can compute their positions at the end (again, in the reverse QCA) of this
construction. Now let us run these manipulators forward in the (forward) LQCA.

A Physically Universal Quantum Cellular Automaton 57

The manipulators take a group of speed 1 particles and force them into an output
region, which is exactly what we want!

In summary, we claim that the LQCA defined earlier is physically universal.
Given a region X and a unitary transformation U on X, we construct a circuit
(of T, H and CNOT gates) to implement some U’ such that |U —U'|,,. < e.
Then we implement U’ in the LQCA in three steps:

Htr

— We extract the data initially in X by letting it reach a depleted configuration,
and rounding up the particles that escape.

— We decode the initial configuration from the particles, apply the circuit for
U’, and encode the desired configuration as a collection of particles.

— We aim the particles at region X, and wait for them to interact in X and
produce the transformed output.

With sufficient time between these three phases, we can avoid collisions between
the manipulators. This concludes the proof of our main result.

Theorem 5. The LQCA described at the beginning of the section is physically
universal.

In fact, the LQCA achieves a stronger definition of physical universality where
the program configuration is not allowed to depend on e. In other words, a single
configuration implements arbitrarily good approximations of U if we let it run
longer.

Definition 9. Let M be a QCA on a lattice L. Then M is strongly physically
universal if for every finite set of cells X C L, and every unitary transformation
U: Q(X) — O(X) there exists y € Q(L\X) such that for any € > 0 there exists
a time t € Z such that y e-approrimately implements the transformation U on
X in time t.

Corollary 1. The LQCA described at the beginning of the section is strongly
physically universal.

Proof. Suppose the input region is X, and the unitary is Up. Let (€;)$2, be
a sequence of positive real numbers tending to zero. By physical universality,
there is a configuration yg in Q(L\X() and time ¢y such that y eg-approximately
implements the transformation Uy on Xj in time tg.

Now iteratively build programs on larger and larger regions. In general, let
Xi+1 be aregion containing X; plus 3t; cells on either side, and all non-quiescent
cells in y;. This region is large enough that no particle outside it can possibly
affect X in tg steps. Apply physical universality to X;; with error ¢;41 > 0
and unitary U,;;, where U;+; applies U; to the region X;, and the identity
transformation to the cells in X; 11\ X;. Physical universality gives us a program
Yi+1 € Q(L\XH_l) and time ti+1.

Finally, combine the y; configurations into a single large configuration y €
Q(L\Xy). Given an € > 0, find some ¢; < € and let y run for ¢; time steps. This
is just enough time for the program y; to execute, but not enough time for the
later programs to interfere, so we get an ¢; < e approximation of U applied
to Xo. O

58 L. Schaeffer

7 Future Work

— We leave the time and space complexity of this cellular automaton open for
analysis. Can we quantify the performance of the construction in the proof
of strong physical universality?

— The automaton is not as simple or aesthetically pleasing as its classical
counterparts. Can we construct a less obviously artificial LQCA in more
dimensions?

— Is there a notion of physical universality for unbounded computations on a
quantum Turing machine?

References

1. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quantum Info. Com-
put. 6(1), 81-95 (2006)

2. Janzing, D.: Is there a physically universal cellular automaton or Hamiltonian?
(2010). http://arxiv.org/abs/1009.1720

3. Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett.
79, 321 (1997)

4. Raussendorf, R.: Quantum cellular automaton for universal quantum computation.
Phys. Rev. A 72, 022301 (2005)

5. Salo, V., Térmé, I.: A one-dimensional physically universal cellular automaton. Per-
sonal Communication (2014)

6. Schaeffer, L.: A physically universal cellular automaton. In: Roughgarden, T. (ed.)
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
pp. 237-246. ACM, Rehovot (2015)

7. van Dam, W.: A universal quantum cellular automaton. In: Proceedings of
PhysComp96, pp. 323-331. InterJournal (1996)

8. Watrous, J.: On one-dimensional quantum cellular automata. In: 36th Annual
Symposium on Foundations of Computer Science, pp. 528-537. Society Press (1995)

9. Youssef, S.: Quantum Mechanics as Bayesian Complex Probability Theory. Modern
Physics Letters A 9, 2571-2586 (1994)

http://arxiv.org/abs/1009.1720

	A Physically Universal Quantum Cellular Automaton
	1 Introduction
	2 Cellular Automata
	3 Quantum Cellular Automata
	4 Physical Universality
	5 Quantum Physical Universality
	6 A Physically Universal LQCA
	7 Future Work
	References

