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Abstract: Predictive simulations of the shock-to-detonation transition (SDT) in heterogeneous energetic materials 
(EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo-
mechanics of EM during the SDT, both macro-scale response and sub-grid mesoscale energy localization must be 
captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. 
We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization 
of shock-initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, 
a physics-aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization 
of shock-initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of 
hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock 
strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT 
simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while 
drastically reducing the computation cost and providing improved representations of the sub-grid physics. The 
proposed multiscale modeling approach will provide a new tool for material scientists in designing high-performance 
and safer energetic materials. 
 

Keywords: physics-aware machine learning, mesoscale energy localization, shock-to-detonation, multiscale 
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1 Introduction 

Heterogeneous energetic materials (EM), which are composites of organic crystals, plasticizers, metals, 
and other inclusions, are the key component in various military and civilian applications. Understanding the shock-
to-detonation transition (SDT) in EM is important to control energy release and for the safe handling of propellant 
and explosive materials. SDT in EM is initiated due to energy localization at the mesoscale, i.e., at the scale of 
grains and defects in their microstructures. When a shock propagates through EM microstructures, energy 
localization occurs due to the presence of voids, cracks, and interfaces, leading to the creation of regions with high 
temperature called hotspots. With a sufficient number of generated hotspots, the chemical energy release will be 
rapid enough to couple with and strengthen the imposed shock wave, initiating a detonation [1–3]. Due to the strong 
connection between the meso-scale energy localization and the SDT of EM, the meso-scale thermo-mechanics 
simulation are needed to predict the macroscale response of EM accurately. 

Currently, it is nearly impossible to capture the localized mesoscale hotspot formation in macroscopic 
samples due to computational issues. Resolving mesoscale hotspot physics requires a stringent spatial and 
temporal resolution, resulting in a computational model with an enormous number of grid points. Such heavy 
computation models are costly, laborious, and non-scalable. A solution to this problem is applying multiscale 
approaches [4,5]. In a multiscale setting, mesoscale physics such as hotspot initiation and growth are conveyed to 
the macroscale as a sub-grid source or closure term as opposed to being solved in a fully resolved model with 
detailed features. Therefore, the computational cost for modeling the SDT of EM can be reduced and the EM design 
process can be facilitated.  

This work presents a multiscale framework that can model the SDT of EM efficiently with a multi-scale 
representation of the hotspot evolution. The key contribution of the proposed multiscale framework is the use of a 
deep-learning model, namely physics-aware recurrent convolution (PARC) neural networks, proposed by Nguyen 
et al. [6], to supply the subgrid (meso-scale) reaction progress rate of shocked EM to the macro-scale computation. 
Once trained, PARC can rapidly predict the temperature and pressure field evolutions of shock-initiated EM 
microstructures under a given applied pressure. As demonstrated previously by Nguyen et al. [6], the formation and 
growth of hotspots predicted by PARC had a comparable accuracy to that of direct numerical simulation (DNS). 
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Furthermore, PARC provides multiple orders of magnitude reduction in computational time relative to full-fledged 
DNS—from hours on a high-performance computing cluster (HPC) in the case of DNS to less than a second on a 
commodity laptop with PARC. Utilizing the rapid hotspot evolution prediction capability of PARC, this paper 
demonstrates that the reaction progress rates of shocked EM of a given microstructure can be used to inform 
macroscale SDT simulations. We first extend the PARC architecture to allow it to make predictions with different 
applied shock strengths. We then integrate PARC into a multiscale framework for SDT simulation. 

The rest of the paper is organized as follows. Section 2 reviews the state-of-the-art in multiscale SDT 
simulations of EM. The method section (Section 3) presents the improved PARC model and discusses how the 
hotspot physics analysis at the mesoscale can be used to inform the SDT simulation at the macroscale. Section 4 
describes the validation of the improved PARC model and its application in multiscale SDT simulations. Finally, 
conclusions and remarks are given in Section 5. 

2 Background  

Multiscale simulations of energetic materials have been drawing attention due to the microstructure-aware nature 
of such approaches in modeling the complex physics of SDT in EM. In a typical multiscale SDT framework, the 
reactive meso-mechanics of EM is modeled at two distinct scales, viz., macroscale and mesoscale. At the 
macroscale, detailed features, including voids, cracks, grains, and interfaces, are unresolved and the material is 
treated as homogeneous. The EM at this scale can be considered as single-phase [5,7,8] or multi-phase mixtures 
[9]. In the mesoscale analysis, the detailed thermo-mechanics of energy localization, including hotspot formation, 
growth and interaction due to the heterogeneity of EM microstructures, will be captured with fully resolved, high-
fidelity models. The communication between the two-scale physics must be performed through physically correct 
closure models. Such closure models are used in the macroscale governing equation to describe the behavior of 
the homogeneous energetic material during the SDT [5].  

The key quantity of interest (QoI) for the SDT simulations of EM is the reaction progress variable 𝜆 
[5,7,8,10]. The progress variable is often used as the indicator to determine the state of EM during the SDT process 
[4]. When 𝜆 = 0, the material is considered being unreacted; meanwhile, 𝜆 = 1 indicates a complete reaction. The 

rate of reaction progress variable �̇� governs the rate of energy release during the SDT and is used in the macroscale 
governing equation as a source term, either directly [8,11–13] or indirectly [14,15]. Common approaches to derive 
the reaction progress rate rely on the DNS of resolved material microstructures at the mesoscale [16–21]. However, 
such a computation is intensive and thus discourages the execution of concurrent multiscale modeling in which the 
mesoscale reaction progress rate is derived simultaneously or “on-line” with the macroscale simulation. To this end, 
sequential hierarchical multiscale approaches can be the potential solution and have been explored in recent years. 
In this approach, the mesoscale physics is simulated separately, or “off-line,” from the macroscale physics. 
Consequently, surrogate models are constructed from mesoscale analysis results and embedded in macroscale 
governing equations as closure models. With a well-trained surrogate model, the repeated heavy computation of 
the fully resolved mesoscale energy localization model can be avoided while the SDT prediction accuracy is still 
maintained. 

Following this direction, many works have been devoted to developing surrogate models for estimating the 
reaction progress rate of shocked EM microstructures and using them in a multiscale SDT simulation framework. 
For instance, Sen et al. (2018) [5] developed a meso-informed ignition and growth (MES-IG) model to establish the 
structure-property-performance (SPP) linkage using an ignition-and-growth framework [10,11]. MES-IG modeled 
the reaction progress rate as a function of applied pressure, density and microstructural parameters, including void 
diameter, void aspect ratio, and void orientation. In another work, Perry et al. (2018) [22] developed the physically-
informed scaled uniform reactive flow PiSURF model in an attempt to achieve the same goal but using the scaled 
uniform reactive flow (SURF) [8] route. Despite achieving certain successes, in most of previous works, the effects 
of complex microstructural morphologies were not fully explored due to the simplified assumption of microstructural 
geometry and loading conditions [4,20,21,23,24]. The utilization of idealized and canonical microstructures models 
carries the advantages of simplifying the calculation and helps reduce the dimensionality of the design search 
space. However, such an approach is usually oversimplified and does not resemble the real behavior of shocked 
EM microstructures [17]. First, real EM microstructures contain various features that have strong impacts on energy 
localization (e.g., large and elongated cracks or tortuous voids). Such morphological complexity cannot be well 
captured with idealized geometry representations. Second, simplified energy localization models cannot adequately 
capture the interaction among (contorted or branched) voids. Thus, the detailed information on the ignition or the 
combination of multiple hotspots that strongly contributes to the detonation initiation is not properly modeled [18]. 
In summary, with idealized EM microstructure representations, the mesoscale information transmitted to 
macroscale simulations is not expressive enough and may lead to a decrease in the accuracy of the macroscale 
SDT simulation.  

To address this concern, previous works examined and modeled the impact of non-ideal shapes and void-
void interactions on the mesoscale energy localization of shocked EM microstructures [16–18]. Despite of emerging 
capabilities in capturing the detailed thermo-mechanics of shocked heterogeneous EM, simulations with non-
idealized voids are computationally intensive [17,18]. A single, well-resolved mesoscale simulation can take hours 
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to days on HPC clusters [6]. Moreover, the complexity and stochasticity of EM microstructure morphology requires 
a large morphological parameter space to be examined to capture the statistically representative reaction progress 
rate. These computational demands lead to a formidable cost for analyzing and constructing surrogate models and 
thus, delay the overall design process. 

Recently, Nguyen et al. [6] proposed a deep-learning framework called PARC to assimilate the hotspot 
thermo-mechanics of shocked EM microstructures. In PARC, complex morphological characteristics of EM 
microstructures and their effects on hotspot formation were modeled and learned using recurrent convolutional 
neural networks (CNN). PARC modeled the governing differential equation of the time-evolving temperature and 
pressure fields within shocked EM microstructures using a recurrent CNN. The CNN-modeled governing equation 
was then solved via data-driven integration, modeled as another CNN. As such, PARC implemented a physics-
aware architecture by mimicking how the actual thermo-mechanics problems are solved, but in a data-driven 
approach. The validation studies by Nguyen et al. [6] showed that PARC predicted QoIs agree well with those 
obtained using DNS. Enabled by a physics-aware architecture, PARC predicted the hotspot ignition and growth of 
shocked EM microstructures with an accuracy comparable to the ground truth (i.e., DNS) while requiring multiple 
orders lower computational time.  

Motivated by this predictive capability and the significant improvement in computational efficiency, here we 
examine whether PARC can replace DNS for the mesoscale energy localization analysis upon which the reaction 
progress rate can be derived to inform the macroscale simulation model. In the present work, we attempt to integrate 
PARC into a multiscale SDT simulation framework to predict the critical energy of initiation of pressed HMX, a typical 
type of heterogeneous EM, subjected to different shock strengths. We demonstrate that, with this modeling 
capability enabled by PARC, we can achieve predictions for a typical heterogeneous EM that reproduces 
experimental data. 

3 Methods  

3.1 Multiscale modeling framework for shock-to-detonation simulation 

Figure 1 illustrates the proposed multiscale SDT simulation framework for EM. First, resolved mesoscale simulations 
are performed to assimilate the reactive shock response of EM microstructures acquired either from scanning 
electron microscopes (SEM) [18] or synthesized using deep generative models [25] (Fig. 1(a-c)). The simulations 
were performed using the previously developed and well-tested numerical simulation code, SCIMITAR3D [19,26–
28]. The simulations provide snapshots describing the evolution of temperature and pressure fields through the 
duration of the passage shock and the formation and growth of hotspots. The deep-learning model (Fig 1d), i.e., 
PARC, is trained on a set of SCIMITAR3D simulations. Once trained, PARC can accurately assimilate the hotspot 
ignition and growth within shocked EM microstructures and can account for the influence of microstructural 
morphology on the hotspot thermo-mechanics, such as collapses of voids and cracks. 

After training, PARC is used as a sub-grid model to supply the reaction progress rate within EM 
microstructures to the homogenized macro-scale reactive dynamics solvers. Particularly, from PARC-predicted 
temperature and pressure field evolution (Fig. 1d), the rate of hotspot total area evolution over time, which 
represents the reaction progress rate, can be extracted to inform the macroscale simulation (Fig. 1e). At the 
macroscale (Fig 1f), the domain is tessellated into discrete control volumes that are considered homogeneous. 
Homogenized control volumes are supplied with an effective reaction rate surrogate model, which is taken to be a 
function of pressure and the time variable. Here, the sample-average reaction progress rate in response to different 
shock strengths computed by PARC are used to train the scale bridging surrogate model. With the reaction progress 
rate provided by PARC, the macroscale SDT simulation is performed, and the run-to-detonation distance can be 
measured.  

The following sub-sections discuss in more detail all the components of the proposed framework. Section 
3.2 introduces the enhanced PARC for the energy localization modeling in EM microstructures subjected to different 
shock strengths. Section 3.3 describes the derivation of the reaction progress rate from PARC-predicted 
temperature and pressure field evolutions. Finally, the macroscale SDT simulation with the reaction progress rate 
derived from PARC predictions is introduced in Section 3.4. 
 

3.2 PARC for mesoscale hotspot ignition and growth modeling 

3.2.1 PARC architecture for hotspot ignition and growth modeling with various shock strengths 

PARC was designed to solve the governing differential equation of temperature and pressure field evolutions as a 
function of microstructural morphology [6]. However, the previous work was limited to a single shock loading 
condition. Because it is required to analyze the SDT of EM subjected to various shock strengths, here we extend 
the original PARC architecture to allow it to make predictions with arbitrary input shock strengths.  
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It is well known that the reaction rate of EM is a function of the microstructural morphology and the applied 
shock pressure [5]. In a uniform Eulerian grid, at a given position 𝒓(𝑥, 𝑦) and time 𝑡, the differential governing 
equation describing the rate of change of state variables 𝑋(𝒓; 𝑡) (temperature and pressure), can be formulated as: 

 

 

𝜕𝑿

𝜕𝑡
= 𝑓(𝑿, 𝜇, 𝑃𝑠) 

𝑿(𝒓; 𝑡 = 0) = [𝑇0(𝒓), 𝑃0(𝒓)] 
(1) 

In Eq. (1), 𝜇 is the shape descriptor, introduced to account for the effect of the microstructural morphology in the 
thermo-mechanics of shocked EM. Here, 𝑃𝑠  is an additional parameter that was not included in the original 
formulation of PARC [3] and is introduced into the architecture to account for different shock loading conditions.  
 

Note that the explicit differential equation governing temperature 𝑇(𝒓; 𝑡) and pressure 𝑃(𝒓; 𝑡) is unavailable. 
Instead, the evolution of temperature and pressure fields within EM microstructures in response to shock are 
components of a larger system of equations that describes the compressible multimaterial reaction dynamics 
hyperbolic conservation laws associated with material deformation and microstructure evolution [19,26,27]. Due to 
the complexity of the reactive dynamics flow system, it is infeasible to incorporate the full system into PARC neural 
network architecture. Therefore, the differential equation modeling the energy localization in shocked EM and its 
solution with respect to two state variables (𝑇, 𝑃) were both learned from data. 
 

Eq. (1) is a partial differential equation with given initial conditions, which can be solved by integration with 
a time interval Δ𝑡. The state 𝑋 at a given time 𝑡 can be computed as: 

 
 

𝑿(𝒓; 𝑡 + ∆𝑡) = 𝑿(𝒓; 𝑡) + ∫ 𝑓(𝑿(𝒓; 𝑡), 𝜇, 𝑃𝑠)
𝑡+∆𝑡

𝑡

𝑑𝑡, (2) 

 
Nguyen et al. [6] introduced a deep learning approach for solving the above equation. First, the function 𝑓 

in Eq. (1) is modeled as a CNN (named “differentiator”), based on the universal approximation theorem that CNNs 
with appropriate width (i.e., number of neurons/channels) and depth (i.e., number of layers) can represent an 
unknown function [29]: 

 𝑓(𝑿, 𝜇, 𝑃𝑠  | 𝜃) ≔ 𝑓(𝑿, 𝜇, 𝑃𝑠), (3) 

Figure 1: Overview of the proposed multiscale SDT simulation framework. From an image-derived macrosample (a), mesoscale 
sub-samples (b) of HMX microstructures are collected. Consequently, the reactive dynamic simulations on several mesoscale 
sub-samples (c) are performed and the resulting temperature and pressure field evolutions are used to train PARC. After training, 
PARC is used to replace DNS to compute the temperature field evolution of shocked HMX microstructures under different shock 
strengths (d). From PARC-predicted temperature field evolutions, reaction progress rate can be derived (e) and used to inform 
the macroscale SDT simulation (f) to measure the distance-to-detonation of EM under an applied shock. 
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where 𝜃 denotes the neural network parameters (weights and biases) of the differentiator CNN. 
Second, in PARC, the differential equation is solved using a data-driven method, with the integral in Eq. (2) 

being approximated with another CNN (named “integrator”).  

 𝑆(𝑓|𝜑) = ∫ 𝑓(𝑿, 𝜇, 𝑃𝑠)
𝑡𝑖

𝑡𝑖−1

𝑑𝑡, (4) 

where 𝜑 is neural network parameters of the integrator CNN. The introduction of the data-driven integration is 
motivated by the hotspot thermo-mechanics of shocked EM microstructures which is highly transient and nonlinear; 
therefore, approaches using naïve numerical integrations with fixed time step values may accumulate errors and 
decrease the accuracy of the prediction. Although adaptive numerical integration solvers can help overcome this 
issue, their computation costs are high when the nonlinearity of the system increases. Instead, the efficiency of 
data-driven integration is exploited in this work. 

Using such deep learning formulations, the state prediction problem in Eq. (2) is expressed as:  
 

 𝑿(𝒓; 𝑡𝑖) = 𝑿(𝒓; 𝑡𝑖−1) + 𝑺(𝑓(𝑿, 𝜇, 𝑃𝑠  | 𝜃) | 𝜑), (5) 

 
where 𝑡𝑖   is a discrete time step. Figure 2 is a graphical illustration of the above mathematical procedure. At a given 
time step 𝑡𝑖, the U-Net [30] is used to encode the microstructure image, 𝑰(𝑥, 𝑦) and the corresponding position map 
𝑼(𝒓): (𝑥, 𝑦) ↦ 𝑥 into the shape descriptor 𝜇 of dimension (𝑀 × 𝑁) × 128, where 𝑀 × 𝑁 is the spatial dimension of 
the microstructure image. Meanwhile, the applied pressure, 𝑃𝑠, is transformed into a feature vector, 𝑃𝑓, using an 

artificial neural network consisting of a stack of fully connected (FC) layers [31]. The pressure transformation 
network includes one FC layer with 32 neurons, one FC layer with 64 neurons and six FC layers with 128 neurons. 
This network design results in a feature vector 𝑃𝑓  with 128 features. The differentiator CNN takes the shape 

descriptor 𝜇, the pressure feature vector 𝑃𝑓, and the temperature and pressure fields of the previous time step 

𝑿(𝒓; 𝑡𝑖−1), as the input to derive time derivative fields of the temperature and pressure, �̇�(𝒓; 𝑡𝑖). Consequently, the 

computed time derivatives are sent to the integrator CNN for the calculation of time integration ∫ �̇�
𝑡𝑖

𝑡𝑖−1
𝑑𝑡. The 

Figure 1 Overall architecture of the enhanced PARC for hotspot thermo-mechanics modeling with different given applied shock 
pressures. To account for the influence of the applied shock, the applied pressure value is first transformed into a 128-feature 

vector using a fully connected neural network. At each time step, the differentiator CNN takes the shape descriptor 𝜇, the 
pressure feature vector 𝑃𝑓, and the temperature and pressure fields of the previous time step 𝑿(𝒓; 𝑡𝑖−1), as inputs to derive 

time derivative fields of the temperature and pressure, �̇�(𝒓; 𝑡𝑖). The temperature and pressure time derivative fields are used 
as input for the integrator CNN to compute the actual change in temperature and pressure. The outputs of the integrator CNN 
are then added to the temperature and pressure fields of the previous time step to derive the temperature and pressure fields 
of the next time step. 
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calculated values are added to the state values of the previous time step �̇�(𝒓; 𝑡𝑖−1) to derive the state values of the 

current time step �̇�(𝒓; 𝑡𝑖). The process is continued recursively until the final time step is reached. Within the 
computational process, the network parameters of the differentiator CNN (purple box) and the integrator CNN 
(orange box) are shared between time steps, making the architecture recurrent. Compared to the original PARC 
architecture, the current enhanced model is capable of accounting for the effects of different shock strengths as the 
differentiator CNN takes the applied pressure value as one of its inputs to compute the time derivatives.  

3.2.2 Training Objectives  

The goal of PARC is to learn the governing differential equations, i.e., accurately predict the time derivatives of 
temperature and pressure fields and solve the differential equations via data-driven integration, i.e., accurately 
predict the temperature and pressure fields in the next time steps. Therefore, the training of PARC can be cast as 
an optimization problem in which the loss function as described below is minimized with respect to the neural 
network parameters 𝜃 and 𝜑: 

 𝐿(𝜃, 𝜑 | �̂�) = ∫‖�̂�(𝒓; 𝜏) − 𝑋𝑖−1 − 𝑆(𝑓(𝑋, 𝜇 | 𝜃) | 𝜑)‖
2

∞

0

𝑑𝜏 + ∫ ‖�̂̇�(𝒓; 𝑡) − 𝑓(𝑋, 𝜇|𝜃)‖
2

∞

0

𝑑𝜏, (6) 

where the hat (^) denotes the ground truth data, derived from DNS simulation results. The continuous temporal 
domain is tessellated with reasonably small time intervals Δ𝑡; therefore, Eq. (7) can be rewritten in the discrete form:  
 

𝐿(𝜃, 𝜑 | �̂�) = ∑‖�̂�(𝒓; 𝑡) − 𝑋𝑖−1 − 𝑆(𝑓(𝑋, 𝜇 | 𝜃) | 𝜑)‖
2

𝑡𝑖

+ ∑ ‖�̂̇�(𝒓; 𝑡) − 𝑓(𝑋, 𝜇|𝜃)‖
2

𝑡𝑖

 (7) 

3.2.3 Data and training 

The enhanced PARC model was trained with 40 simulation instances on microstructures of HMX, a typical type of 
EM. All the microstructures are acquired from SEM with the dimension of 25 ×25 μm, resolved in 240×240-pixel 
images. SCIMITAR3D [19,26–28], a multi-material reactive dynamic code, was used to compute the temperature 
and pressure field evolutions of HMX microstructures under three different shock strengths: 𝑃𝑠 = 5, 9.5, and 15 
(GPa). The DNS-computed temperature and pressure field evolutions, including snapshots of temperature and 
pressure fields of 19 discrete time steps with equal time intervals Δ𝑡 = 1.09, 0.79, 0.72(ns), for 𝑃𝑠 = 5, 9.5, and 15 
(GPa), respectively. The temperature and pressure fields were also given in a 240×240 pixels image format. There 
was a difference in the time interval value of different shock strengths due to the difference in the total simulation 
time for different shock strengths and the requirement from PARC to maintain the total number of discrete time 
steps. Among 40 simulation instances used for training, 30 of them have 𝑃𝑠 = 9.5 (GPa), five of them have 𝑃𝑠 = 5 
(GPa), and five of them have 𝑃𝑠 = 15 (GPa).  
 

Our training procedure is divided into two stages. In the first stage, we trained the model for 𝑃𝑠 = 9.5 (GPa) 
using all 30 data samples for 500 epochs. Consequently, we added the data for 𝑃𝑠 = 5 & 15 (GPa), excluded the 
shape descriptor network parameters from the training, and continued the training for another 500 epochs. Here we 
hypothesize that with the physics-aware architecture, PARC can be generalized from training result of one shock 
strength to make predictions on other shock strengths with reasonable amount of training data. 
 

For the testing set, three simulation instances that had not appeared in the training set were included for 
each shock strength. All the data used for the training was normalized to have values ranging from -1 to 1. The 
neural networks in the model were initialized with the normalized He initialization method [32] and the ADAM 
optimizer [33] with a learning rate of 5 × 10−5 was used to train the model. 

3.3 Computing reaction progress rates with PARC 

The predictions made by PARC from Section 3.2 can be utilized to quantify the intensity and contribution of the 
energy localization due to the void collapse. The critical hotspots resulting from the void collapse are identified 
based on temperature field evolutions predicted by PARC. Particularly, a constant temperature threshold of 875 K 
is used to delineate the border between critical hotspots and the bulk of non-reacting/unreacted material. 
Furthermore, for simplification, we assume that the final species mass fraction 𝑌𝑛 = 1 inside hotspots (fully gas 
products) and 𝑌𝑛 = 0 outside hotspots (i.e., in the unreacted material). For the Tarver-3 step chemical reaction 
model [4,20], we set 𝑛 = 4. 

The state of the reacting mixture is determined by the reaction progress variable  0 ≤ 𝜆 ≤ 1, defined as the 
mass fraction of the reaction product 𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡 to the initial total control volume mass 𝑀𝑐𝑣, i.e., 

 
 

𝜆 =
𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑀𝑐𝑣

, (8) 

where, the total mass of material 𝑀𝑐𝑣 in the control volume is computed as: 
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 𝑀𝑐𝑣 = 𝜌𝐻𝑀𝑋 𝐴𝑐𝑣 . (9) 

 
 
In Eq. (9), 𝜌𝐻𝑀𝑋 = 1905  𝑘𝑔/𝑚3 and  𝐴𝑐𝑣 is the total volume (area in 2D case) of the control volume. The total mass 
of reacted gas products accumulated in the control volume Ω is computed as: 

 
 

𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = ∫ 𝜌 𝑌𝑛  𝑑𝐴
Ω

 . (10) 

 
Since 𝑌𝑛 = 1 inside the hotspots (T>875 K) and 0 elsewhere, Eq. (10) becomes:  

 
 

𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  ∫  𝜌 𝑑𝐴ℎ𝑠
Ωhs

 . (11) 

 

In addition, the density of gaseous material inside hotspots is considered having a uniform value, 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 2300
𝑘𝑔

𝑚3, 

thus 𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝐴ℎ𝑠. Therefore, the reaction progress rate can be computed as: 

 
 

𝜆 =
𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝜌𝐻𝑀𝑋

𝐴ℎ𝑠

𝐴𝑐𝑣

 (12) 

 
or in its rate form:  

 
 �̇� = 𝛽�̇�ℎ𝑠 , (13) 

where 𝛽 =
𝜌𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝜌𝐻𝑀𝑋

1

𝐴𝑐𝑣
.  To model completion of the reaction as 𝜆 → 1, the form factor 𝑆(𝜆) = 1 − 𝜆 is introduced on 

the right hand side of Eq. (13) to account for the effect of decaying reaction rate as the material gradually reaches 
final state: 
 
 �̇� = 𝛽�̇�ℎ𝑠(1 − 𝜆). (14) 

Therefore, the reaction progress rate �̇� is obtained as a function of the hotspot area rate of change 𝐴ℎ𝑠
̇  which is 

derived from the 𝐴ℎ𝑠  𝑣𝑠 𝑡 curve shown in Fig. 1e. �̇� is used in the macroscale simulation to close the governing 
equation system. The derivation of the 𝐴ℎ𝑠(𝑡) function is described as follows. 

At a time 𝑡𝑘, the PARC-predicted temperature field of a control volume 𝑻(𝑡𝑘) is tessellated onto a 𝑀 × 𝑁 
uniform grid. The total hotspot area 𝐴ℎ𝑠 is computed based on the temperature field as: 
 

𝐴ℎ𝑠(𝑡𝑘) = ∑ ∑ 𝐴𝑖𝑗
ℎ𝑠

𝑁

𝑗=1

𝑀

𝑖=1
(𝑡𝑘), (15) 

with: 
 

  
(a) (b) 

 
Figure 2 (a) Sample averaged  Ȧhs computed by PARC for three values of  Ps and τ∗ ranges from 0 to 2. Dased lines indicate 

results obtained by piecewise interpolation from PARC predicted values (dots). (b) The hypersurfaces Ȧhs(Ps, τ∗) constructed 
using linear interpolation using PARC predicted values. 
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𝐴𝑖𝑗

ℎ𝑠(𝑡𝑘) = {
𝐴𝑖𝑗(𝑡𝑘)      𝑖𝑓 𝑇𝑖𝑗(𝑡𝑘) ≥ 875𝐾

0                𝑖𝑓 𝑇𝑖𝑗(𝑡𝑘) < 875𝐾
. (16) 

 

In Eqs. (15)-(16),  𝑇𝑖𝑗 is the temperature value at the (𝑖, 𝑗)-th grid location, 𝐴𝑖𝑗
ℎ𝑠 is the area of the grid cell (𝑖, 𝑗)-th 

occupying the hotspot region, and 𝐴𝑖𝑗 is the area of a single grid location (𝑖, 𝑗)-th, which is a uniform value given by: 

 
 

𝐴𝑖𝑗 =
𝑙2

𝑀𝑁
  , (17) 

where 𝑙 is the spatial dimension of the control volume, in this case, 25 𝜇𝑚. For a given 𝑃𝑠 value, multiple samples 
are used to perform the simulation and calculate 𝐴ℎ𝑠. Consequently, a sample-averaged 𝐴ℎ𝑠 is used to compute the 
reaction progress rate 𝜆 .  We sampled 100 mesoscale sub-samples with dimension of 25 × 25 (𝜇𝑚)  for the 
computation of 𝐴ℎ𝑠. Note that all sub-samples are Class V HMX, which has been reported to be more homogeneous 
compared to other classes of HMX [34] and consequently have low variability in reaction progress rate [16]. 

PARC predicted reaction progress rate is used to inform the macro-scale solver using a surrogate model, 

similar to our previous work [5]. The scale-bridging surrogate model was trained with sampled-averaged 𝐴ℎ𝑠
̇  for 

each applied shock strength computed by PARC. For a control volume, �̇�ℎ𝑠  is a function of local shock pressure 𝑃𝑠 

and time. The �̇�ℎ𝑠 surrogate is constructed in the following form: 
 

 �̇�ℎ𝑠  = 𝑓(𝑃𝑠 , 𝜏∗). (18) 

 
In Eq. (18), 𝜏∗  is the local control volume time, normalized by the shock time scale and defined as: 𝜏∗ = (𝑡 −
𝑡𝑠ℎ𝑖𝑓𝑡)/(𝑙/𝑈𝑠), where 𝑡𝑠ℎ𝑖𝑓𝑡 is time that shock reaches the control volume and 𝑈𝑠 is the shock velocity in solid HMX. 

In this work, because of the high computational cost, the surrogate is constructed from just three values of 𝑃𝑠, which 
are 5.5, 9.5 and 15 GPa (Fig. 3(a)). As indicated by Rai et al. [26], for low 𝑃𝑠, no hotspots could develop as they are 

quenched by diffusion. Therefore, in the macroscale simulation, �̇�ℎ𝑠 corresponding to 𝑃𝑠 smaller than pressure lower 
limit, 5 GPa, is set to zero. The upper limit of  𝑃𝑠 is taken to be 60 GPa, which is the estimated value of the Von 

Neumann spike pressure by Massoni et al. [14]. The values of �̇�ℎ𝑠 subjected to 𝑃𝑠 varying from 5.5 GPa to 15 GPa 

are obtained by piecewise linear interpolation. The �̇�ℎ𝑠(𝑃𝑠 , 𝜏∗) hypersurface is as depicted in Fig. 3(b). 

3.4 Macroscale SDT simulation 

At the macroscale, as mentioned above, the EM is treated as homogenous and the behavior of the material at 
macroscale during the SDT process is described using the system of equations:  
 
 𝑫(𝒂|𝜆) = 0. (19) 

 
In the above Eq. (19), 𝑫 represents the set of hyperbolic conservation laws and constitutive relations of the 
homogenized material; details on the equations and solution procedures were provided in several previous works 
[4,5]. The vector 𝒂 denotes the set of variables of the thermo-mechanical flow, including velocity components, the 
density, and the internal energy of the homogenized mixture. Finally, the reaction process variable 𝜆, is used to 
define the progress of reaction, calculated by the mass fraction of reaction products in a given macroscale control 
volume. As the imposed shock travels through the examined domain, the SDT transition is distinguished by the 
conversion of cold unreacted solid to the reacted product mixture, following the Rayleigh line [35]. This transition is 
dictated by the value of 𝜆 and the evolution equation for  𝜆 can be derived from analysis results at the mesoscale 
[4,5,16,18]. In the current work, the evolution equation of 𝜆 is derived from the predictions made by PARC. 

The overall procedure for the meso-informed SDT simulation could be summarized as follows: 
1) The trained PARC is used to predict the temperature and pressure field evolutions of different HMX 

microstructures, subjected to different 𝑃𝑠.  
2) Consequently, the evolution of 𝐴ℎ𝑠  subjected to different shock strengths are derived. For the sake of 

simplicity, the averaged value of 𝐴ℎ𝑠  across multiple HMX microstructures is used in this work. 

3) From the derived 𝐴ℎ𝑠  evolution, the surrogate model for �̇�ℎ𝑠   subjected to different shock strengths is 
constructed in the form given by Eq. (18) 

4) The governing equation, including conservation of mass, momentum and energy, the equation of state 
(Jones-Wilkins-Lee is used in this work) are resolved numerically for which details could be found from [5].  

5) The local time and local pressure at each control volume are used to probe the value of �̇�ℎ𝑠 (Eq. (18)) which 

is then converted to �̇� using Eq. (14). �̇� is used to update the value of 𝜆 using Runge-Kutta-Fehlberg method 
[36] and Strang operator splitting method [37].  
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3.5 Measuring the performance of EM from macroscale computations 

In this work, the performance of EM can be measured by calculating the critical energy [38–41] demarcated 
graphically by a James envelope [38]. The critical energy is a function of the input shock pressure 𝑃𝑠 and shock 
pulse duration 𝜏𝑠 [41]. In the 𝑃𝑠 − 𝜏𝑠 space, the James envelope delineating the go-no-go subspaces is obtained; 
for points above the James curve SDT occurs while below the James curve the impact is subcritical, i.e., SDT fails 
to occur. In this work, following earlier experiments [41], the criticality of EMs was determined to lie along a curve 
defined by 𝑃𝑠

2 ∙ 𝜏𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 curve [34]. 

Figure 4: The temperature field evolutions predicted by PARC under different applied shock pressure and their corresponding 
microstructure. (a) 𝑷𝒔 = 5 GPa. (b) 𝑷𝒔  = 7.5 GPa. (c) 𝑷𝒔 = 9.5 GPa. (d) 𝑷𝒔 = 12.5 GPa. (e) 𝑷𝒔 = 15 GPa. As can be seen, 
PARC-predicted temperature field evolutions agree well with their corresponding ground truth computed by DNS even with the 
shock pressure value not seen during training. 
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4 Results and discussion 

4.1 Mesoscale hotspot physics prediction accuracy under different shock strengths 

Figure 4 illustrates the temperature field evolution predictions by PARC and the corresponding DNS ground truth 
for five different shock strengths: 𝑃𝑠 = 5, 7.5, 9.5, 12.5 and 15 (GPa). Qualitatively, the temperature field evolution 
predicted by PARC agrees well with those from DNS predictions even at two unseen shock pressures, viz. 𝑃𝑠 = 7.5 
and 12.5  (GPa). In addition, hotspot locations are well recognized across multiple different shock strengths. 
Moreover, the propagation of shock waves entering EM microstructures is also well modeled.  

In addition to the above qualitative evaluation, we also quantitatively validated the enhanced PARC model 
using sensitivity metrics as proposed by Nguyen et al. [6], including average hotspot temperature and total hotspot 
area as well as their rate of change over time. Fig. 5 and Fig. 6 show the validation results of PARC with EM 
sensitivity metrics. As illustrated, sensitivity metrics derived from PARC predicted temperature field evolutions agree 

Figure 5: Validation of PARC-predicted average hotspot temperature (top) and its rate of change over time (bottom). The 
applied pressure (from left to right) are: 𝑷𝒔= 5, 9.5, and 15 GPa. For all three tested applied shock pressure, there is an 
agreement between PARC prediction and the corresponding ground truth. 

Figure 6: Validation of PARC-predicted total hotspot area (top) and its rate of change over time (bottom). The applied shock 
strengths (from left to right) are: 𝑃𝑠 = 5, 9.5, and 15 GPa. Again, for all three tested applied shock pressure, there is an 
agreement between PARC prediction and the corresponding ground truth.  
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with the ones derived from DNS. Moreover, the prediction root-mean-square-error (RMSE) w.r.t DNS ground truth 
value across all 9 test instances are relatively low with the average value of 763 (K), 25.7 (𝜇𝑚2), 159.08 (K/ns) and 
7.9 (𝜇𝑚2/𝑛𝑠) for average hotspot temperatures, total hotspot area, and their rate of changes over time, respectively. 

From the above validation results, PARC is accurate enough to replace DNS in the multiscale simulation 
framework. In addition, as being demonstrated by Nguyen et al. [6], the computation cost of PARC is by multiple 
order lower than the one of DNS. These added benefits of PARC would help facilitate the distance-to-detonation 
estimation at macroscale and will accelerate the process of designing new EM, which will be showed in the following 
section. 

4.2 SDT simulation using PARC 

The setup for the macroscale computation is as illustrated in Fig. 7. A rectangular shock pulse of pressure 𝑃𝑠 is 
applied for a duration 𝜏𝑠 from the left of the domain. In addition, a uniform grid space Δ𝑥 = 2 𝜇𝑚 that has been tested 
for grid convergence is used. For each shock input 𝑃𝑠 value varying from 5 to 20 GPa, the critical shock pulse 
duration 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is computed and plotted against 𝑃𝑠 as illustrated in Fig. 8. The simulation result was compared with 
experimental data for Class V HMX obtained from the James’s curve as reported by Welle et al. [34]. As shown in 
Fig. 8, there is a well agreement between the simulation and the experiment, showing that the PARC-based 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  
computation is accurate. Such an agreement proves that PARC can be used in a multiscale SDT simulation 
framework and can contribute to the reduction the multiscale simulation time with enhanced the sub-grid physics 
representation.  

5 Conclusion 

This work presented a deep learning approach for multiscale SDT simulation of heterogeneous EM. The presented 
deep-learning model, PARC, could provide rapid and accurate predictions of the hotspot evolution within shocked 
EM microstructures. Based on PARC-predicted temperature evolution fields, the reaction progress rate could be 
derived and used to inform the macroscale SDT simulation. The distance-to-detonation estimated by our multiscale 

Figure 7: Macro SDT simulation set up. A homogenized material is subjected to a shock pulse of pressure 𝑷𝒔 for a duration 𝝉𝒔 
from the west side of the boundaries. The sample width L is 1 mm and the sample height is 0.1 L. The macro simulation is 
resolved by a uniform grid with grid size  𝚫𝒙 = 𝟐 𝝁𝒎. 

Figure 8: James criticality envelop for Class V HMX material from experiment (black) [34] and PARC prediction (red). The solid 
lines are 𝑃𝑠

2𝜏𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 curves fitted to data points. 
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framework was validated with experimental James’ curve, indicating a well agreement between the experiment and 
the simulation. With these enhanced predictive capabilities enabled by PARC, SDT simulations of EM can be 
facilitated, and the efforts required to design new EM can be reduced. 

Future work will be directed toward enhancing the accuracy of the PARC predicted temperature field 
evolution. Despite providing QoI predictions that agree well with ground truth DNS, the point-wise accuracy of PARC 
predicted temperature field evolutions remains to be examined and improved. To this end, we are currently working 
on developing more rigorous continuous convolutional kernels to improve the point-wise accuracy of PARC- 
predicted field evolutions. In addition, our future work will extend the modeling capability of PARC to learn the 
hotspot physics of other EM species as well as other types of loading conditions, e.g., applied shock with pulse 
duration. 
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Appendix 

Sensitivity metric computation  

The sensitivity QoIs of EM—the average hotspot temperature, 𝑇ℎ𝑠̅̅ ̅̅̅, total hotspot area, and their rate of change over 
time, a time 𝑡𝑘—were computed as: 

 

𝑇ℎ𝑠̅̅ ̅̅̅(𝑡𝑘) =
∑ ∑ (𝑇𝑖𝑗

ℎ𝑠(𝑡𝑘)𝐴𝑖𝑗
ℎ𝑠(𝑡𝑘))𝑁

𝑗=1
𝑀
𝑖=1

𝐴ℎ𝑠(𝑡𝑘)
 , (A1) 

 
𝑇𝑖𝑗

ℎ𝑠(𝑡𝑘) = {
𝑇𝑖𝑗(𝑡𝑘)𝑖𝑓 𝑇𝑖𝑗(𝑡𝑘) ≥ 875 𝐾

0 𝑖𝑓 𝑇𝑖𝑗(𝑡𝑘) < 875 𝐾
, (A2) 

 
𝐴ℎ𝑠(𝑡𝑘) = ∑ ∑ 𝐴𝑖𝑗

ℎ𝑠
𝑁

𝑗=1

𝑀

𝑖=1
(𝑡𝑘), 

(A3) 

 
𝑇ℎ𝑠̅̅ ̅̅̅̇ (𝑡𝑘) =

 𝑇ℎ𝑠̅̅ ̅̅̅(𝑡𝑘) − 𝑇ℎ𝑠̅̅ ̅̅̅(𝑡𝑘−1 )

𝑡𝑘 − 𝑡𝑘−1

, (A4) 

 
𝐴ℎ𝑠̇ (𝑡𝑘) =

𝐴ℎ𝑠(𝑡𝑘) − 𝐴ℎ𝑠(𝑡𝑘−1)

𝑡𝑘 − 𝑡𝑘−1

. (A5) 

In Eqs. (A1-A5), 𝑇𝑖𝑗
ℎ𝑠 and 𝑇𝑖𝑗 are the hotspot temperature and the temperature values at the (𝑖, 𝑗)-th grid location. 

𝐴𝑖𝑗
ℎ𝑠 is the area of a grid cell in the hotspot region. Since a uniform grid is applied, 𝐴𝑖𝑗

ℎ𝑠 is a constant value. 

Evaluation metrics for sensitivity prediction  

In this work, the root-mean-squared error was used to evaluate the sensitivity prediction of PARC: 

 

𝑅𝑆𝑀𝐸 =  √
∑ ∑ [𝑋�̂�(𝑡𝑘) − 𝑋𝑙(𝑡𝑘)]

2𝑃
𝑘=0

𝑄
𝑙=0

𝑄𝑃
. (A6) 

Here, 𝑋�̂�(𝑡𝑘) and 𝑋𝑙(𝑡𝑘) are the ground truth and sensitivity QoI predicted by PARC of 𝑙-th testing sample at time 𝑡𝑘. 
Further, 𝑃 is the number of total time step and 𝑄 is the number of testing samples 

 


