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A PHYSICS-BASED APPROACH TO UNSUPERVISED. . .

A PHYSICS-BASED APPROACH TO

UNSUPERVISED DISCOVERY OF COHERENT

STRUCTURES IN SPATIOTEMPORAL SYSTEMS

Adam Rupe1,2, James P. Crutchfield1, Karthik Kashinath2, Mr Prabhat2

Abstract—Given that observational and numerical cli-

mate data are being produced at ever more prodigious

rates, increasingly sophisticated and automated analy-

sis techniques have become essential. Deep learning is

quickly becoming a standard approach for such analyses

and, while great progress is being made, major challenges

remain. Unlike commercial applications in which deep

learning has led to surprising successes, scientific data

is highly complex and typically unlabeled. Moreover,

interpretability and detecting new mechanisms are key

to scientific discovery. To enhance discovery we present a

complementary physics-based, data-driven approach that

exploits the causal nature of spatiotemporal data sets

generated by local dynamics (e.g. hydrodynamic flows).

We illustrate how novel patterns and coherent structures

can be discovered in cellular automata and outline the

path from them to climate data.

I. MOTIVATION

Incredibly complex and sophisticated models are cur-

rently employed to simulate the global climate system

to facilitate our understanding of climate as well as

increase our predictive power, most notably in regards

to the effects of increased carbon levels. Our ability

to simulate however has rapidly outpaced our ability to

analyze the resulting data. Often the climate community

resorts to rather simplistic data analyses, such as linear

decomposition methods like EOF analyses [1], [2] or

detecting (linear) trends in climate data time series [3].

Nonlinear and more sophisticated techniques are rarely

brought to bear. Here we focus on one particular aspect

of nonlinear dynamical systems analysis, the detection

and discovery of coherent structures, such as cyclones

and atmospheric rivers in climate data.

Coherent structures were introduced in the study of

fluid dynamics and were initially defined as regions

characterized by high levels of coherent vorticity, i.e.
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regions where instantaneously space and phase cor-

related vorticity are high. The contours of coherent

vorticity constitute an identifier to the structure’s bound-

aries. However, pinning down this concept of coherent

structures with rigorous and principled definitions or

heuristics which produce consistent results across a

wide class of physical systems is a challenging and

open problem [4]. Climate practitioners are left with

more ad hoc approaches [5], [6], [7] which can make it

difficult to draw meaningful conclusions from analysis

[8].

Deep learning attempts to sidestep this issue by learn-

ing how to identify coherent structures from labeled

data [9]. However, we currently can not peer into the

box to find out exactly what the defining characteristics

a deep net uses to identify structures. Current state of

the art achieves semi-supervised bounding box identi-

fication [10]. The ultimate goal would be unsupervised

segmentation; that is, a pixel-level identification without

reliance on labeled training data. It is not yet clear how

to achieve this.

Like deep learning, our theory [11] approaches coher-

ent structures from a rather different (and more general)

perspective than the original context of Lagrangian

coherence principles in fluid flows.

II. METHOD

Starting from basic physics principles, coherent

structures can most generally be seen as localized

broken symmetries. Two questions naturally arise; what

are the symmetries which are broken and how can we

identify such symmetry in a diverse range of spatiotem-

poral systems? Coherent structures can be found in a

variety of systems with different physical properties.

Convection cells in hydrodynamic systems and spiral

waves in reaction-diffusion systems, for example. It

is clear that the common thread is the underlying

nonlinear dynamics of these systems [12], [13], [14].
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A framework known as computational mechanics

[15], [16] has been developed to study pattern and struc-

ture in this dynamical context. The canonical object of

computational mechanics is the ǫ-machine [17], a type

of stochastic finite-state machine known as a hidden

Markov model, which consists of a set of causal states

and transitions between them. The causal states are

constructed from the causal equivalence relation.

←−x i ∼ǫ
←−x j ⇐⇒ Pr(

−→
X |
←−
X =←−x i) = Pr(

−→
X |
←−
X =←−x j).

In words, two pasts←−x i and←−x j are causally equivalent

if and only if they make the same prediction for

the future
−→
X ; that is, they have the same conditional

distribution over the future. The causal states are the

unique minimal sufficient statistic of the past to predict

the future.

For our application to coherent structures we use a

straightforward spatiotemporal generalization known as

the local causal states [18]. For systems which evolve

under some local dynamic and information propagates

through the system at a finite speed, it is quite natural

to use lightcones as local notions of pasts and futures.

Formally, the past lightcone of a spacetime point x(~r, t)
is the set of all points at previous times that could

possibly influence it. That is,

ℓ−(~r, t) ≡
{

x(~r′, t′) | t′ ≤ t and ||~r′ − ~r|| ≤ c(t′ − t)
}

where c is the finite speed of information propagation

in the system. Similarly, the future lightcone is given

as all the points at subsequent times that could possibly

be influenced by x(~x, t).

ℓ+(~r, t) ≡
{

x(~r′, t′) | t′ > t and ||~r′ − ~r|| < c(t− t′)
}

The choice of lightcone representations for both

local pasts and futures is ultimately a weak-causality

argument; influence and information propagate locally

through a spacetime site from its past lightcone to its

future lightcone.

The generalization of the causal equivalence relation

is straightforward. Two past lightcones are causally

equivalent if they have the same conditional distribution

over future lightcones.

ℓ−i ∼ǫ ℓ
−

j ⇐⇒ Pr
(

L+|L− = ℓ−i
)

= Pr
(

L+|L− = ℓ−j
)

This local causal equivalence relation over light-

cones is designed around an intuitive notion of optimal

local prediction [18]. At some site x(~r, t) in spacetime,

given knowledge of all past spacetime points which

could possibly affect x(~r, t), i.e. its past lightcone

ℓ−(~r, t), what might happen at all subsequent spacetime

points which could be affected by x(~r, t), i.e. its future

lightcone ℓ+(~r, t)? Local causal states are minimal suf-

ficient statistics for optimal local prediction. Moreover,

the particular local prediction done here uses lightcone

shapes, which are associated with local causality in the

system. Thus it is not direct causal relationships (e.g.

learning equations of motion from data) that the local

causal states are discovering. Rather, they are exploiting

a kind of causality in the system (i.e. that the future

follows the past and that information propagates at a

finite speed) in order to discover spacetime structure.

Once local causal states have been inferred from

data, each site in a representative spacetime field can

be assigned its local causal state label in a process

known as causal filtering [11]. This is how we achieve

unsupervised image segmentation. Though it must be

clearly stated that this is a spacetime segmentation, and

not a general image segmentation algorithm, exactly

because it works only in systems for which lightcones

are well-defined.

Using the local causal states we can, in a general and

principled manner, discover dynamical spatiotemporal

symmetries in a system from data. These symmetry re-

gions are known as domains and are defined as regions

where the associated local causal state field, after causal

filtering, has spacetime symmetry tilings. A coherent

structure is then defined as a set of spatially localized,

temporally persistent (in the Lagrangian sense) non-

domain local causal states.

From prior work by Hanson and Crutchfield [19],

[20], [21], the domains of 1-D cellular automata are

well understood as dynamically invariant sets of ho-

mogeneous spatial configurations. There is strong em-

pirical evidence [11] that the domains of cellular au-

tomata discovered by the local causal states are exactly

the domains as described by Hanson and Crutchfield.

Therefore the local causal states are discovering spa-

tiotemporally symmetries which are externally well-

defined. In turn there is a strong agreement between the

description of coherent structures in cellular automata

discovered by local causal states and the coherent

structures as described by Hanson and Crutchfield.

III. TOWARDS CLIMATE

With consistent and readily interpretable results on

cellular automata we are now working on generalizing

to real-valued spatiotemporal systems, with specific

emphasis on canonical fluid flows. Others have done

preliminary work on this generalization, where an extra

discretization (typically via clustering) step is needed

during reconstruction [22], [23].
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(a) Raw spacetime field of ECA 54
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(b) Local statistical complexity filter of (a)
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(c) Local causal state coherent structure filter of (a)

(d) Vortex street in atmosphere

(e) Vortex street complexity field

(f) Colored vortices on Cori

Fig. 1. Visualization of results on 1D cellular automata (fully-discrete spatiotemporal models) and projected analogous results for fluid

systems. CA results for elementary cellular automaton rule 54 are given in (a)-(c). The raw spacetime field is shown in (a) and a

corresponding local statistical complexity field in (b). From the local statistical complexity filter, which is a qualitative information-

theoretic “rare event” filter, it is clear there are coherent structures on top of a background domain, but the four different structures can

not be explicitly distinguished and identified. Thus a more detailed coherent structure filter using our unsupervised local causal state

segmentation analysis is given in (c). Here states participating in the domain spacetime symmetry tiling are colored green, and other

non-domain states which satisfy our definition for a coherent structure are colored according to the structure(s) they belong to. Interaction

states not associated with domain or a coherent structure are in black. An outline of analogous results for vortex shedding is shown in

(d)-(f). (d) A vortex street in the cloud layer over the arctic (Source: https://photojournal.jpl.nasa.gov/catalog/PIA03448). (e) The local

statistical complexity of the vorticity field for a canonical vortex street simulation, taken from [22], analogous to the qualitative structure

filter of (b). (f) Closer to the more detailed and principled coherent structure filter of (c) are the colored vortices displayed on the cover

of the NERSC Cori HPC system. We emphasize the analogy is not that learning about coherent structures in CAs will give insight into

fluid and climate structures. Rather, it is to illustrate how we foresee our approach will discover coherent structures in fluids and climate,

in much the same way we can currently discover structures in CAs.

These groups have also used local causal states

for coherent structure detection, including real-valued

applications like fluids and even climate [22]. However,

they have all relied on the “local statistical complexity”

[24], which is the point-wise entropy over local causal

states. At best this is simply a qualitative filtering tool

which aides in visual recognition of structures and at

worst can give both false positive and false negative

misidentification. We are the first to give a principled

and rigorous method for coherent structure discovery

and description using the local causal states, and are

working to generalize this more detailed analysis to

real-valued systems. In doing so we hope to move

beyond the scope of data visualization these prior

groups were working in, and facilitate novel scientific

discovery, particularly in climate science.

On the theory side, we must confirm our methods

on known fluid structures. As the theory is founded in
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basic dynamical principles it is likely to apply without

much modification in fluid systems. We will also begin

to explore whether our methods can facilitate addi-

tional mechanistic insight beyond structure discovery.

For example, whether there are any links between the

local causal state analysis and thermodynamic consid-

erations.

On the implementation side, the computational costs

of local causal state reconstruction in more complex

systems will require fully-distributed execution on large

HPC machines. This will certainly be the case for TB

scale climate data sets we ultimately are interested

in. As our primary objective is automated coherent

structure discovery, moving from canonical fluid flows

to large-scale climate data will largely be a matter

of computational scaling. With access to HPC experts

from the Intel Big Data Center and the NERSC Cori

system at Lawrence Berkeley National Laboratory we

feel well-positioned to tackle these computational chal-

lenges.
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