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A physics‑based energy function 
allows the computational redesign 
of a pDZ domain
Vaitea opuu1,3, Young Joo Sun2,3, Titus Hou2, Nicolas Panel1, Ernesto J. Fuentes2* & 

thomas Simonson1*

Computational protein design (CPD) can address the inverse folding problem, exploring a large 
space of sequences and selecting ones predicted to fold. CPD was used previously to redesign several 
proteins, employing a knowledge-based energy function for both the folded and unfolded states. We 
show that a pDZ domain can be entirely redesigned using a “physics‑based” energy for the folded 

state and a knowledge-based energy for the unfolded state. Thousands of sequences were generated 
by Monte Carlo simulation. Three were chosen for experimental testing, based on their low energies 
and several empirical criteria. All three could be overexpressed and had native-like circular dichroism 
spectra and 1D-NMR spectra typical of folded structures. Two had upshifted thermal denaturation 
curves when a peptide ligand was present, indicating binding and suggesting folding to a correct, PDZ 
structure. Evidently, the physical principles that govern folded proteins, with a dash of empirical post-
filtering, can allow successful whole-protein redesign.

Protein sequences have been selected by evolution to fold into speci�c structures, stabilized by a subtle balance 
of interactions involving protein and  solvent1,2. In contrast, random polymers of amino acids are very unlikely 
to adopt a speci�c, folded  structure3,4, and exhibit instead a more disordered  structure5. A powerful approach 
to understand the evolution of proteins and the basis of folding is to perform computer simulations that mimic 
evolution. �is can be done with computational protein design (CPD), which explores a large set of sequences 
and selects ones predicted to adopt a given  fold6–8. A typical simulation imposes a speci�c geometry for the pro-
tein backbone, corresponding to the experimental conformation of a natural protein. Side chains are mutated 
randomly. Variants with a favorable predicted folding free energy are saved. �e folded state energy function 
can be physics-based or knowledge-based9–11 while the unfolded state energy is knowledge-based. �e protein 
is considered “redesigned” if most of the protein side chains are allowed to mutate during the simulation.

�e successful redesign of complete proteins was reported in  20037,12 and small miniproteins were redesigned 
even  earlier6,13. Several other successes were  obtained14–17, including a study where 15000 miniproteins (40–43 
amino acids) were  redesigned18. 6% of the designs were shown to be successful; i.e., the designed miniproteins 
folded into the correct tertiary structure. �e others either could not be overexpressed and puri�ed, or did not 
fold as predicted. All of the applications to proteins described the folded structure with an energy function 
that was at least partly knowledge-based, or statistical. Statistical energy terms included terms derived from 
experimental amino acid propensities and evolutionary  covariances17, terms derived from inter-residue distance 
distributions in crystal  structures16, and terms derived from torsion angle and hydrogen-bond distance distribu-
tions in crystal  structures11,14,15. All of the applications described the unfolded structure with a fully statistical, 
knowledge-based model.

Energy functions for the folded state can also be non-empirical, or physics-based, and taken from molecular 
 mechanics19. �ere are then only two energy terms for nonbonded interactions between protein atoms, which 
correspond to the elementary Coulomb and Lennard-Jones e�ects. �eir parameterization relies mainly on 
�tting quantum chemical calculations performed on small model compounds in the gas phase. �e solvent is 
described implicitly, using varying levels of  approximation20. �e most rigorous model used so far is a dielectric 
continuum  model21. �is requires solving a di�erential equation, which is technically impractical in a protein 
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design framework. �erefore, a Generalized Born (GB) approximation is more common. GB contains much of 
the same physics but provides a simpler, analytical energy  expression20. GB models have been studied extensively 
in the context of protein design but also molecular dynamics, free energy simulations, acid/base calculations, 
ligand binding and protein  folding22–25. �ey reproduce the behavior of the dielectric continuum model rather 
accurately. �erefore, an energy function that combines molecular mechanics for the protein with a GB solvent 
can be considered “physics-based”, even though it is not entirely constructed from �rst principles. A molecular 
mechanics energy, combined with a very simple solvent model, was used to design two arti�cial proteins that 
each consisted of a four-helix bundle, where an elementary unit of 34 amino acids was replicated four  times26,27. 
However, until now, there has not been a complete, experimentally-veri�ed redesign of a natural protein using 
a physics-based energy function for the folded protein.

Here, we report the successful use of a physics-based energy function to completely redesign a PDZ domain of 
83 amino acids. PDZ domains (“Postsynaptic density-95/Discs large/Zonula occludens-1”) are globular domains 
that establish protein-protein interaction  networks28. �ey interact speci�cally with target proteins, usually by 
recognizing a few amino acids at the target C-terminus. �ey have been extensively studied and used to eluci-
date principles of protein evolution and  folding29,30. Our design started from the PDZ domain of the Calcium/
calmodulin-dependent serine kinase (CASK) protein. It used the backbone conformation from a new, high-
resolution X-ray structure of apo CASK reported here. Several other CASK X-ray structures are also known, 
with bound peptides. �e CASK melting temperature is about 10 °C higher than that of the Tiam1 PDZ domain, 
which we attempted to redesign  earlier33. �is increased thermostability could aid in retrieving folded CASK 
designs. Design was performed by running long Monte Carlo (MC) simulations where most positions were 
allowed to mutate and all positions could explore a library or conformers, or rotamers. Positions occupied by 
glycine (seven) or proline (two) were not allowed to mutate. 13 positions that directly contact a peptide ligand 
in CASK:peptide complex structures (such as PDB 6NID) also kept their wild-type identity. All 61 of the other 
side chains (73.5% of the sequence) were allowed to mutate freely into any amino acid type except Gly or Pro, 
for a total of 3.7 ×  1076 possible sequences. To describe the folded state, we used a physics-based energy function 
that combined the Amber molecular mechanics force  �eld31 and a GB  solvent32. To describe the unfolded state, 
we used a knowledge-based energy  function33. �e Proteus so�ware was  used34. �ree sampled sequences, or 
designs were chosen for experimental testing, based on their low energies and several empirical criteria. All 
three were shown to fold, with good evidence the folded structure was the target, native PDZ fold. In particular, 
secondary structure content was native-like and binding to one or two peptides that are known CASK ligands 
was demonstrated for two of the three designs. �erefore, the redesign is considered a success. Evidently, the 
physical principles that govern folded proteins, as captured by molecular mechanics and continuum electrostatics 
are su�cient to allow whole-protein design, at least when assisted by a moderate empirical post-�ltering. �is 
is encouraging, since these methods give physical insights, can be systematically improved, and are transferable 
to nucleic acids, sugars, noncanonical amino acids, and ligands of biotechnological interest.

Results
MC simulations were done using the CASK backbone conformation (Fig. 1). �e method is detailed in Sup-
plementary Material. 61 of 83 residues were allowed to mutate into all types except Gly and Pro. 13 residues 
known to be directly involved in peptide binding were not allowed to mutate (but could explore rotamers). �e 
exploration did not use any bias towards natural sequences or any limit on the number of mutations. �e 2,000 
sequences with the lowest folding energies were kept for analysis. Below, we describe their computational char-
acterization and the selection of three representative sequences for experimental characterization.

Computational characterization and sequence selection. �e top 2,000 sequences spanned a fold-
ing energy interval of 1.5 kcal/mol. �ey were analyzed by the Superfamily fold recognition  tool35, which assigns 
sequences to  SCOP36 structural families. None of the top 2,000 Proteus sequences were assigned by Superfam-
ily to any other fold in SCOP; all were recognized as belonging to the PDZ family. Blosum40 similarity scores 
between the designed sequences and natural sequences from the Pfam database were also computed (Fig. 2). 
�e scores were high, and comparable to those of natural PDZ domains. �e peaks in the Proteus histograms are 
narrow, indicating that the 2,000 lowest-energy sequences are similar to each other. Similarities to CASK are in 
Supp. Material (Fig. S1).

To narrow down the number of sequences for experimental testing, we excluded those with isoelectric points 
estimated to be close to the physiological pH, between 6.5 and 8.5, which might be subject to aggregation 
and di�cult to express. �is reduced the number of sequences from 2,000 to 1,268. Next, we used a criterion 
of negative design, by considering the con�dence levels for the Superfamily assignments to the PDZ family, 
instead of another SCOP family. Of the 1,268 sequences le�, we only retained those that had Superfamily match 
lengths above the mean value (over the 1,268) and E-values above the mean (log10 E < − 31). �is le� us with 
692 sequences. We reduced the number further using four empirical criteria. (1) We excluded sequences with 
similarity scores versus Pfam below the mean (over the 692 remaining sequences). �is eliminated a window 
of candidate sequences about 10 points wide, to the le� of the mean, plus a few sequences in the le�hand tail 
of the distribution. We were le� with 215 sequences. (2) We excluded sequences that had a cavity buried in the 
predicted 3D structure. (3) We required a total unsigned protein charge of less than 6. (4) We allowed no more 
than 15 mutations that drastically changed the amino acid type (de�ned by a Blosum62 similarity score between 
the two amino acid types of − 2 or less).

We were le� with 16 candidate sequences, shown in Fig. 3. �ey were separated into four groups by visual 
inspection. Group 2 was eliminated based on its Arg494 residue, absent from CASK homologs. One candidate 
was selected from each of the other groups (highlighted in Fig. 3), with a preference for native or homologous 
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residue types at positions 492 (candidate 1350), 494 (candidate 1555), and 548 (candidate 1669)—positions 
that are close to the peptide binding interface. �e three candidates were simulated by molecular dynamics 
with explicit solvent for one microsecond each, and their stabilities and �exibilities appeared comparable to the 
wild-type (Supplementary Material, Figs. S2–S3). �erefore, the three sequences were retained for experimental 
testing. �e number of mutations, compared to wild-type CASK, were 50 (candidate 1350), and 51 (candidates 
1555 and 1669), representing just over 60% of the sequence.

Experimental characterization of selected sequences. Earlier designs based on the Tiam1 tem-
plate. Computational redesign of Tiam1 was described  earlier33. It used the Tiam1 PDZ domain structure 
(PDB code 4GVD; Supplementary Material, Fig. S4). �e GB electrostatics model included an additional “Native 
Environment Approximation” (NEA)37, where each atom experienced a constant dielectric environment that 
corresponded to the native sequence and conformation (see Computational Methods in Supplementary Mate-
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Figure 1.  CASK 3D structure. �e 13 amino acids in yellow are involved in ligand binding and were not 
allowed to mutate in the simulations.

Figure 2.  Blosum similarity scores compared to natural Pfam sequences. Black line: histogram of scores for the 
top 2,000 Proteus sequences, considering only 15 core positions (le�) or all positions (right). Dashed line: scores 
for the Pfam sequences themselves. WT CASK score is indicated by an arrow.
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rial). �is removed the many-body character of the GB model and made the calculations very e�cient. Eight 
designs were expressed and puri�ed. �eir yields were low. CD gave spectra typical of random coil polymers, 
suggesting the proteins were misfolded (Supplementary Material, Fig. S5). 1D-NMR spectra of the amide region 
of the NEA designs had limited dispersion and broad resonances compared to the native Tiam1 PDZ domain, 
corroborating the CD data. An example is shown below; others are in Fig. S6. Di�erential scanning �uorimetry 
(DSF) in the presence of known Tiam1 ligands did not show any binding by the Tiam1 NEA designs, while the 
Tiam1 PDZ domain showed robust binding (Supplementary Material, Fig. S7). Together, these data indicate that 
the NEA-based designs of the Tiam1 PDZ domain could be overexpressed but adopted unfolded structures, un-
able to bind known Tiam1 peptide ligands.

Designs based on the CASK template. Next, we characterized the three designs selected above, which we refer 
to as FDB-1350, FDB-1555, and FDB-1669. �ey were obtained using as template a new apo CASK PDZ domain 
structure (PDB code 6NH9, reported here). �e Tiam1 and CASK backbone conformations have a small rms 
deviation of 1.0 Å, despite a low sequence identity of 20.5%. CASK has a ~ 10 °C higher melting temperature, 
which could facilitate its redesign. �e new calculations used a more rigorous GB electrostatics model (Supple-
mentary Material), termed the “Fluctuating Dielectric Boundary” model (FDB)38. With this model, the dielectric 
environment of each atom was updated on-the-�y during the simulation, instead of being represented by a mean 
environment. �e expression yields in E. coli were improved over the NEA Tiam1 designs, though not to the 
level typically seen with native PDZ domains. In contrast to the NEA Tiam1 designs, CD spectra were similar 
to native PDZ domains, suggesting these designs were structured (Fig. 4). 1D-proton NMR of the amide region 
showed good dispersion and sharp lines, consistent with a folded protein (Fig. 5B) and in contrast to the earlier, 

Figure 3.  WT and the 16 �nal candidate designed sequences based on the CASK template (Clustal colors). �e 
sequences tested experimentally are indicated by red arrows. Asterisks (above) indicate positions not allowed to 
mutate during the design, in addition to Gly, Pro.

Figure 4.  Circular dichroism spectra of a natural PDZ domain (CASK, black) and three selected designs based 
on the CASK template and the FDB electrostatic model. FDB-1350 (green), FDB-1555 (red), and FDB-1669 
(blue) all have α helix and β strand signals similar to a native PDZ domain like CASK (black). �e concentration 
of each protein ranged from 10 to 20 μM.
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Tiam1 redesigns (Figs. 5A and S6). �e designed proteins’ spectra had noisier baselines, due to a seven- to ten-
fold lower concentration, compared to CASK.

We tested the ability of the designs to bind CASK ligands, using DSF experiments. �e CASK PDZ domain 
showed binding to SDC1, Caspr4 and NRXN (Fig 6 and Table 1), as expected. Strikingly, two of the three CASK 
FDB designs characterized also showed binding to some of the peptides. �us, FDB-1350 had a signi�cant ther-
mal shi� in the presence of NRXN and SDC1. FDB-1669 showed a 1.0 °C change in T 1/2 in the presence of the 

Figure 5.  Proton NMR spectra of the natural Tiam1 PDZ domain and selected designs. (A) Le�: a design 
obtained with the Tiam1 template and the NEA electrostatic model; right: Tiam1. (B) 3 designs obtained based 
on the CASK template and the FDB electrostatic model. �e concentration of the designed proteins ranged from 
14 to 22 μM; Tiam1 concentration was 150 μM.

Table 1.  DSF for wild-type CASK and three Proteus designs. a Protein concentration was ~ 25 μM (about 
0.25 mg/ml). Peptide concentration was 300 μM. b When δT1/2 was larger than sum of the standard deviation 
of apo and each peptide, we considered the peptides to have a signi�cant change in T 1/2 , indicating binding to 
the PDZ domain. ± indicates standard deviation of three biological replicates. Peptides in bold (right column) 
produced the largest changes.

Proteina

T1/2 ( ◦ C) and δT1/2 = T 
apo
1/2 − T 1/2 (in parentheses)

BindingbApo SDC1 Caspr4 NRXN

CASK PDZ 57.2 ± 0.2
58.4 ± 0.1 58.7 ± 0.1 58.1 ± 0.2 SDC1, Caspr4

(+ 1.2) (+ 1.5) (+ 0.9) NRXN

FDB-1350 49.8 ± 0.4
50.7 ± 0.2 50.4 ± 0.4 51.3 ± 0.2 SDC1

(+ 0.9) (+ 0.6) (+ 1.5) NRXN

FDB-1669 49.1 ± 0.1
49.6 ± 0.1 49.5 ± 0.0 50.1 ± 0.1 NRXN

(+ 0.4) (+ 0.4) (+ 1.0)

FDB-1555 49.9 ± 0.2
50.2 ± 0.1 50.3 ± 0.1 50.5 ± 0.6 –

(+ 0.3) (+ 0.5) (+ 0.6)
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NRXN peptide. In contrast, FDB-1555 did not show signi�cant thermal shi�s in the presence of any peptide. 
From these data, we conclude that the three CASK FDB designs were folded and two were capable of interacting 
with peptide ligands. In principle, the CD and NMR spectra could be obtained with an alternative protein fold, 
distinct from the target PDZ fold. However, the structural data clearly indicate that the designs are well-ordered 
and have a secondary structure content similar to the CASK target. Importantly, the ordered character, the 
secondary structure content, the ability to bind CASK ligands, the structural stability during microsecond MD 
runs, and the Superfamily classi�cation as a PDZ domain strongly suggest that the designed proteins adopt the 
target PDZ fold. 

Discussion
Protein folding is thought to be induced by protein–solvent and solvent–solvent  interactions39, since folding 
buries nonpolar groups and allows waters to interact with polar amino acid side chains and other waters. In this 
picture, the protein dielectric properties play a role, with the low-dielectric interior pushing polar protein groups 
out towards high-dielectric solvent. �e protein nonpolar surface also plays a role, with exposed surface leading 
to fewer water–water  interactions40. �us, it is common to discuss protein solvation in terms of nonpolar and 
electrostatic components, and most implicit solvent models rely on this  separation20. Small proteins have been 
found to fold correctly in MD simulations with both explicit solvent and accurate implicit solvent  models22,41, 
which can all be considered physics-based. �e inverse folding problem is even more complex, since it explores 
an enormous space of sequences, albeit with a reduced conformation set. Modeling the solvent is a key step to 
solve this problem, and a key ingredient of our procedure.

�e �rst solvation component in our model is nonpolar and uses accessible surface areas and atomic surface 
tensions. Nonpolar solvation of a large collection of small molecules correlated well with surface  area42, support-
ing this treatment. �e surface tension parametrization was updated recently, compared to our earlier Tiam1 
 designs43. Surface interactions in proteins are complex and have a many-body  character6,32, since three or more 
groups can have surfaces that all overlap. Our model explicitly includes backbone-side chain triple overlaps, 
while others are accounted for  implicitly43.

(A) (B)

(C) (D)

Figure 6.  Di�erential scanning �uorimetry of (A) a natural PDZ domain (CASK) and (B–D) three selected 
designs based on the CASK template and the FDB electrostatic model. Signals in the absence and presence of 
the SDC1, Capr4 and NRXN peptides.
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�e largest solvation e�ects are electrostatic, and they also have a many-body character. Indeed, a side chain 
can desolvate an interacting pair, a�ecting the strength of their interaction. �e electrostatic, Generalized Born 
component of our model captures this e�ect. However, for previous Tiam1 design  calculations33, we had used 
an approximation where each protein residue experienced a constant, native-like, dielectric environment. �is 
removed the many-body character of electrostatic solvation. �e Tiam1 designs were shown here to be largely 
unsuccessful: the proteins could be overexpressed but were only weakly structured. In contrast, preserving the 
many-body solvation was shown previously to give improved accuracy for side chain pKa’s38 and increased 
similarity between CPD sequences and natural sequences of several PDZ  proteins38. �erefore, for the CASK 
redesign, we applied the newer, many-body FDB model and obtained improved results. We did not test whether 
the improved, FDB model would have also produced valid designs with the Tiam1 backbone as the template.

Our calculations used a CASK X-ray structure reported here, determined at 1.85 Å resolution. In our design 
procedure, the protein backbone was held �xed in the X-ray conformation, while side chains mutated and 
explored rotamers. More precisely, the backbone motions were not ignored but were treated implicitly, through 
the protein dielectric constant, ǫP . �e value used here, ǫP = 4 , is known to be physically reasonable for proteins. 
MD simulations further showed that the tested sequences have backbone structures very similar to the wild-type 
protein and native-like �exibilities.

While our folded state model was physics-based, the design procedure included two other elements that were 
knowledge-based. For the unfolded state, we assumed a simple, extended peptide model, to which an empirical 
correction was added that involved type-dependent amino acid chemical  potentials37. All successful whole-
protein redesigns have used similar, knowledge-based unfolded models. Second, we used several �lters to choose 
a handful of sequences for experimental testing, and most of the �lters were empirical. Indeed, the folded and 
unfolded models are imperfect, and while they produced at least three sequences that fold correctly (true posi-
tives), they presumably also produced false positives. �e empirical �ltering did not a�ect the sequence design, 
but was used to increase the chances that we would pick true positives for experimental testing. Starting from 
sequences within 1.5 kcal/mol of the top folding energy, we used the (computed) isoelectric point to reduce the 
chances of aggregation. We also used negative design, based on the Superfamily fold recognition tool. Indeed, 
negative design against aggregation or alternate folds was not included in the MC calculations. �is le� us with 
692 designed sequences. Next, we eliminated sequences whose Blosum similarity to natural PDZ sequences was 
below the average of the 692 remaining sequences. �is criterion was not very stringent, because the distribu-
tion of the Blosum scores was already very narrow (see Fig. 2, right panel, solid line and Fig. S1). At this point, 
we were le� with 215 sequences. We then eliminated sequences whose structural models included large cavities 
and ones with a large net charge, which could lead to electrostatic repulsion within the folded structure. Finally, 
we eliminated sequences with more than 15 “drastic” mutations (corresponding to Blosum scores of − 2 or less). 
�is le� us with 16 sequences. We chose 3 that were representative.

�e three tested proteins could be overexpressed, had sharp 1D-NMR peaks typical of a folded protein and 
native-like CD spectra. Two exhibited a shi� of their thermal denaturation in the presence of one or two peptides 
that are known CASK ligands. Evidently, our physics-based folded model and empirical unfolded model can be 
used to successfully redesign a whole protein, at least with the help of some empirical post-�ltering. �e expres-
sion yields, protein solubilities and stabilities of the designed sequences were lower than for wild-type CASK, 
so that it was not possible to produce large amounts of pure protein for 2D-NMR or X-ray crystallography. It 
may be possible to improve this behavior by testing a larger number of designs, by using a more sophisticated 
�ltering of candidate sequences for solubility (beyond estimating the isoelectric point), or by improving the 
physical model even further. Model improvements might include backbone-dependent rotamers and/or multiple 
backbone conformations.

�e present design method, which combines molecular mechanics, continuum electrostatics, and Boltzmann 
sampling, is an example of physics-based CPD. It is striking and encouraging that this approach allows whole 
protein redesign to be done successfully. We expect that the physics-based route will increasingly yield valuable 
insights and should be a valuable complement to knowledge-based CPD and experimental design.

Received: 18 March 2020; Accepted: 8 June 2020
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