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A Physics-Based Predictive Modeling Framework for
Dielectric Charging and Creep in RF MEMS

Capacitive Switches and Varactors
Ankit Jain, Sambit Palit, Student Member, IEEE, and Muhammad Ashraful Alam, Fellow, IEEE

Abstract—In this paper, we develop a physics-based theoretical
modeling framework to predict the device lifetime defined by the
dominant degradation mechanisms of RF microelectromechanical
systems (MEMS) capacitive switches (i.e., dielectric charging)
and varactors (i.e., creep), respectively. Our model predicts the
parametric degradation of performance metrics of RF MEMS ca-
pacitive switches and varactors, such as pull-in/pull-out voltages,
pull-in time, impact velocity, and capacitance both for dc and ac
bias. Specifically, for dielectric charging, the framework couples
an experimentally validated theoretical model of time-dependent
charge injection into the bulk traps with the Euler-Bernoulli equa-
tion for beam mechanics to predict the effect of dynamic charge
injection on the performance of a capacitive switch. For creep,
we generalize the Euler-Bernoulli equation to include a spring-
dashpot model of viscoelasticity to predict the time-dependent
capacitance change of a varactor due to creep. The new model will
contribute to the reliability aware design and optimization of the
capacitive MEMS switches and varactors. [2011-0086]

Index Terms—Capacitance, creep, electrostatic actuators, mi-
croelectromechanical systems, reliability, switches, varactors.

I. INTRODUCTION

RADIO FREQUENCY microelectromechanical systems
(RF MEMS) are used in radar systems, wireless commu-

nication systems, and instrumentation [1] as ohmic and capaci-
tive switches, tunable capacitors or varactors, high Q inductors,
transmission lines, microwave, and millimeter wave elements
[2]. Specifically, the capacitive switches are used for signal
routing, impedance matching networks, and adjustable gain am-
plifiers. These switches have lower-power consumption, lower
insertion and return loss, higher RF linearity and better isolation
compared to their semiconductor counterparts like Si Field
Effect Transistors (FETs), GaAs Metal Semiconductors FETs,
and p-i-n (PIN) diodes [2]–[4]. Here, RF linearity is defined
by the degree to which the output RF signal is distorted with
respect to the input signal when a MEMS switch is inserted
in the channel (and should not be confused with the nonlinear
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Fig. 1. (a) Schematic of RF MEMS capacitive switch/varactor, defining its
physical parameters. (b) Schematic of the same with electrode M1 modeled as
a fixed-fixed beam. (c) Equivalent, 1-D spring-mass model. (d)–(f) Shapes of
the deflected beam at different operating voltages: (d) before pull in, (e) after
pull-in, (f) just before pull-out.

actuation of the MEMS switch itself). Likewise, varactors find
applications in low noise parametric amplifiers, harmonic fre-
quency generators, and voltage controlled oscillators. In these
cases, classical varactors based on Si or GaAs p-n or Schottky
junction diodes do not provide adequate tuning, sufficient RF
linearity, high enough quality factor, and higher self-resonance
frequency as compared to RF MEMS varactors. As a generic
platform, the RF MEMS capacitive switches and varactors
have similar physical structure [Fig. 1(a)–(c)], with two metal
surfaces (electrodes) separated by a sandwich of an air gap and
a thin dielectric (absent in some varactors). In both cases, upper
electrode M1 moves toward the fixed electrode M2 in response
to the applied voltage V . The only difference is that varactors
operate in an analog mode, with the gap changing continuously
as a function of V (below the pull-in state), whereas switches
operate in the binary mode between “up” (below pull-in) and
“down” (above pull-in) states.

Despite many advantages of RF MEMS, their large-scale
deployment has been stymied by several reliability issues such
as stiction [4], [5], mechanical fatigue [6], creep [7], contact
degradation [8], and dielectric charging [9]. To be commercially
viable, these switches must satisfy stringent reliability require-
ments of failure-free operation over billions of cycles. Despite
this importance, however, relatively few modeling efforts have
discussed the issues of electromechanical reliability within
a comprehensive theoretical framework. Developing such a
framework is the key goal of this paper.

1057-7157/$26.00 © 2011 IEEE
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Fig. 2. (a) Schematic of the MEMS switch showing charge injection into the
bulk traps inside the dielectric when fixed-fixed beam is pulled-in. (b) The
band diagram of a metal-insulator-metal system defining the barrier heights
and current components into and out of the traps. Voltage V has been applied
between the electrode M1 and M2.

Among the several reliability issues of RF MEMS capacitive
switches, dielectric charging [10], [11] is arguably the most
important. When the movable electrode M1 is pulled-in [down
state, Fig. 2(a)], charges are injected into the traps/defects in-
side the dielectric. These trapped charges modify the electrosta-
tic force acting on M1, and cause the capacitance versus voltage
(CV) curve to shift, and the V pI/V pO to change over time.
This parametric degradation eventually leads to catastrophic
failure by stiction: the electrode M1 can no longer be restored to
its pulled-up state even at zero voltage (i.e., V pO < 0), because
the downward electrostatic force exerted by the accumulated
charges within the dielectric now exceeds the restoring spring
force. We will, therefore, define the lifetime (tlife) of the
device due to dielectric charging by the condition V pO(tlife) =
0. To predict tlife, three key factors should be considered:
1) physical mechanism of time-dependent charge injection into
the dielectric, 2) modification of electrostatic force due to
injected charges, and 3) evolution of V pO as a function of time.
In the literature, time dynamics of V pO is modeled either by
a simple first-order resistor-capacitor model, with its time con-
stants fitted to experimental data [12]–[14], or by considering
the injected charge simply as an input parameter [15], [16].
Therefore, it is difficult to know if the predictions from these
empirical models are reliable, or how sensitive the model is to
the changes in physical parameters such as trap density and bar-
rier height, arising from changes in the fabrication conditions.

Similarly, the dependence of tlife on the stress voltage V
has been studied experimentally, and a basic model tlife ∼
exp(−γV ) has been observed to fit the data [12], [17], [18],
where γ is the voltage acceleration factor. This “exponential”
model has been derived by assuming Frenkel-Poole (FP) charge
injection [10], [18], but the applicability of FP conduction to the
dielectrics used in RF MEMS (∼100–500 nm) is questionable
[19]. Generally speaking, therefore, the field lacks a physics-
based theoretical model/framework which can anticipate time
evolution of V pI/V pO and predict tlife as a function of voltage
and duty cycle. In this article, we first develop a model for time-
dependent charge injection inside the dielectric and couple it
with the Euler-Bernoulli (EB) equation (Section II). This is the
first key contribution of the paper.

Varactors, on the other hand, operate below V pI and are
therefore safe from stiction. It has been observed, however,
that a sustained dc bias causes electrode M1 to continuously
sag from its steady-state equilibrium position, resulting in the
steady increase in the capacitance [20], [21]. The change in

the capacitance degrades the tuning range of the varactor.
This phenomenon has been attributed to creep [20], [21], and
has been studied using viscoelastic theory [20], [22]. In the
literature, experimentally derived dynamic spring constant was
used to study the resonator’s frequency degradation over time
[20]. When generalized to a CAD model, it allows us to explore
“creep compliance” as a function of time and interpret the char-
acteristics of resonators and phase shifters [23]. Unfortunately,
this empirical lumped-parameter spring-mass model [Fig. 1(c)]
can neither account for the position-resolved bending of the
upper electrode as a function of time, nor does it address the
“creep-limited lifetime” of the varactors. We define “creep-
limited lifetime” as the time needed to cross a certain predefined
(and circuit-specific) threshold of capacitance degradation due
to creep. In this article, we generalize the EB equation to
include a spring-dashpot model of viscoelasticity to predict the
shape of the upper electrode as a function of time and voltage.
This model allows us to predict parametric degradation of
varactor performance and the associated creep-limited lifetime.
This is the second key contribution of the paper.

The paper has the following seven objectives: 1) couple
the time-dependent charge injection with the EB equation to
establish a scaling relationship for time dynamics of pull-out
voltage, i.e., ΔV pO(t) = g(t/tlife) ∼ (t/tlife(V ))β , where β is
device-specific constant, 2) show that the number of cycles of
reliable operation of a capacitive switch is given by Nlife =
tlife(V )/(dcT − tpI(V )), where dc is the duty cycle, tpI is
the pull-in time, and f = 1/T is the frequency of operation
of actuation voltage, 3) demonstrate that the lifetime predicted
by the empirical “exponential model” is unduly pessimistic;
physics of charge injection within the dielectric anticipates a
more optimistic superexponential voltage scaling, (i.e., tlife �
exp(−γV ), 4) show that the dynamic charge injection within
the dielectric increases the impact velocity vimpact, which
may further degrade surface morphology of the dielectric,
5) generalize the EB equation to include a spring-dashpot
model of viscoelasticity to predict the effect of creep on the
time-dependent capacitance change under dc/ac bias, 6) predict
the creep-limited tlife of a varactor, and finally, 7) study the
effect of duty cycle on creep-induced capacitance change.

The rest of the paper is organized as follows. In Section II, we
describe models for static and dynamic behavior of RF MEMS
switches/varactors using the EB equation, with the explicit
goals of obtaining, C(V ), V pI , V pO, tpI(V ), and vimpact(V )
needed for dielectric charging and creep reliability models. We
then discuss the techniques to include dielectric charging and
creep degradation mechanisms within the EB framework. In
Section III, we first validate the model with the experimental
data, and then use the model to explore the new, nonintuitive
predictions discussed above. Section IV summarizes the find-
ings of this paper and highlights the limitations of our approach,
suggesting opportunities for further contributions.

II. MODEL DESCRIPTION

A. Euler-Bernoulli Equation for the Beam Shape

Since the essential aspects of the dynamics of RF MEMS
switches/varactors under electrostatic actuation have been
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discussed extensively by many groups [24]–[30], here we only
sketch the key elements of the problem for completeness.
Fig. 1(a) shows the schematic of a RF MEMS capacitive
switch/varactor, which involves a movable metal electrode M1,
air gap, a dielectric, and a fixed electrode M2. This movable
electrode M1 is modeled as a fixed-fixed beam [Fig. 1(b)].
When a voltage is applied between electrode M1 and M2, fixed-
fixed beam bends down symmetrically. Fig. 1(d)–(f) shows
the shape of the beam before pull-in [Fig. 1(d)], after pull-in
[Fig. 1(e)], and just before pull-out [Fig. 1(f)]. The shapes of the
beam can be calculated by solving the widely used EB equation
for the beam dynamics [26], [30], i.e.,

ρWH
∂2y(x, t)

∂t2
+ b(y)

∂y(x, t)
∂t

+
EI

1 − v2

∂4y(x, t)
∂x4

= Felectrostatic =
Wε0ε

2
rV

2

2 (yd + εry(x, t)) 2
(1)

where ρ is the density of the beam, W is the width of the beam,
H is the thickness of the beam, y is the deflection at location
x, and x is along the length of the beam. t is the time, b(y)
is the squeeze film gas damping coefficient [31]–[33], E is the
young’s modulus of the beam, I(= (WH3/12)) is the second
moment of area of the beam, and v is the Poisson’s ratio of the
beam. Right-hand side of (1) is the electrostatic force per unit
length acting on the electrode M1, where, ε0 is the permittivity
of free space, εr is the dielectric constant of the dielectric, V
is the applied voltage, and yd is the dielectric thickness. In the
specific example of fixed-fixed beam, two ends of the beam are
fixed at y = y0, and the slope ∂y/∂x vanishes at its two ends.
This is mathematically represented by the following boundary
conditions:

y(0, t) = y(L, t) = y0 (2a)
∂y

∂x
(0, t) =

∂y

∂x
(L, t) = 0 (2b)

where L is the length of the beam, and y0 is the air gap. Since
our focus is on calculating the reliability-limited lifetimes of RF
MEMS capacitive switches/varactors, we do not include further
details of the beam dynamics typical of more comprehensive
models, such as the deflection of the electrode M1 along the
width direction (full 3-D model) [27], fringing fields [28],
midplane stretching [34], and the residual stress [29] in the as-
fabricated device. These additional features are not expected
to change the qualitative features of our predictions and are
reserved for future work on this topic.

B. Degradation Mechanisms

In this section, we discuss the theoretical models of dielectric
charging and creep, and techniques to combine them with
the EB equation (1) for the prediction of tlife due to these
degradations.

1) Dielectric Charging: There is a long history of modeling
and experiments related to charge injection into the dielectric,
details of which can be found in references [35]–[38]. Here,
we only highlight the relevant features/equations of dielectric
charging related to RF MEMS capacitive switches. During the

pulled-in state, the switch can be modeled as a metal-insulator-
metal (MIM) system. Fig. 2(b) shows the band diagram of the
MIM system, showing the location of a trap in energy, barrier
height ΦB , and three trapping/detrapping (JIN , JOUT , and
JE) fluxes into and out of the traps. The traps are assumed
electrically neutral (before charge injection from the contact),
uniformly distributed within the dielectric with density NT ,
with a tunneling capture cross section σ, and located at an
energy level ΦT below the dielectric conduction band [39].
The three trapping/detrapping fluxes are based on the following
processes: 1) electrons injected from the metal contacts into
traps by tunneling (JIN ), 2) electrons tunneling out from the
traps back into the contact (JOUT ), and/or 3) electrons emitted
out of the traps into the dielectric conduction band by a field-
assisted, temperature-activated FP emission process (JE). The
expressions for JIN (y), JOUT (y), and JE(y) in terms of
trapped electron density nT (y, t) and device-specific constants
AIN (y), AOUT (y), and AE(y), (details of which can be found
in the section I of the Appendix) are given by (3).

JIN (y) =AIN (y) [NT − nT (y, t)] (3a)

JOUT (y) =AOUT (y)nT (y, t) (3b)

JE(y) =AE(y)nT (y, t). (3c)

The rate of change of nT (y, t) is given by the balance of
current fluxes going into and coming out of the traps, i.e.,

qΔy
dnT (y, t)

dt
= JIN (y) − JOUT (y) − JE(y). (4)

The solution of (4) provides the time dynamics of nT (y, t).
These trapped charges modify the electrostatic force (5) acting
on the electrode M1 as follows:

Felectrostatic =
Wε0ε

2
r (V − ΔV (t))2

2(yd + εry)2
,

ΔV (t) = − q

ε0εr

0∫
−yd

ynT (y, t)dy. (5)

Equations (1) and (2) can now be solved with the modified
electrostatic force (5) to study the effect of dielectric charging
on V pI/V pO, tpI , vimpact, and tlife.

2) Creep: Creep is a time-dependent deformation phenom-
enon during which a material deforms when subjected to a
constant load (or stress) for a prolonged period of time [40].
The creep in RF MEMS varactors has been studied using
theory of viscoelasticity [20], [22]. A viscoelastic material
can be represented as a combination of linear spring (elastic
element) and a dashpot (viscous element) (Fig. 3) [41]. The
linear spring follows the Hooke’s law, σ = Eε, where, σ is the
stress, ε is the strain, and E is the Young’s modulus, whereas
the dashpot follows the Newton’s law σ = η(dε/dt), where, η
is the viscosity of material. The elastic and viscous components
experience the same strain when they are in parallel, but the
total strain is the sum of the two strains when they are in
series. A model of creep with multiple time constants, as
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Fig. 3. Spring-dashpot model of a viscoelastic material. The spring is a linear
element and follows σ = Eε, whereas the dashpot follows σ = η(dε/dt). We
use this model to generalize the EB equation (7) to account for the creep
behavior observed in RF MEMS varactors.

shown in Fig. 3, can be defined by the following stress-strain
relationship:

σ

Ei
=

ηi

Ei

dεi

dt
+ εi, i = 2, . . . , n (6a)

ε =
σ

E1
+

n∑
2

εi (6b)

where Ei, is the Young’s modulus, ηi is the viscosity, εi is the
strain of the ith branch of the model, σ is the total stress, and ε
is the total strain.

The steady-state EB equation [(1), with time derivative set
to zero] describes the steady-state elastic response (σ = Eε)
of the beam. It is, however, necessary to use a time-dependent
stress-strain relationship (6) for modeling the creep behavior
of the varactors. The following generalized EB equation [(7),
derived in section II of the Appendix], accounts for the “spring-
dashpot” response of the beam, and allows us to interpret the
time-dependent creep phenomena observed experimentally.

E1I
∂4y

∂x4
=Felectrostatic + E1I

n∑
2

εm
i (7a)

Felectrostatic

EiI
=

ηi

Ei

dεm
i

dt
+ εm

i , i = 2, . . . n (7b)

where εm
i is an intermediate strain of the beam.

III. RESULTS AND DISCUSSION

We now discuss the results of our numerical simulations,
obtained by solving (1)–(7) self consistently. The numerical
algorithm is summarized in section III of the Appendix. We
first explain, as a reference point, the response of pristine
MEMS (without dielectric charging and creep) and discuss its
static and dynamic behaviors in Sections III-A and B. We then
discuss how the effect of dielectric charging and creep modifies
the response of RF MEMS over time. While the results are
obtained for the specific numerical solution of a switch/varactor
with fixed-fixed beam, the generality of the arguments suggests
that these results may be broadly applicable to wider range of
MEMS configurations.

A. Static Behavior: CV Characteristics and Beam Shapes

The steady-state shapes of the beam for various applied volt-
ages are computed by time-independent solutions of (1) and (2),
and are shown in Fig. 4(a) and (b). The stress voltage has been
ramped up from 0 V to 60 V, and then ramped down to 0 V. In
response, the beam bends toward the dielectric symmetrically

Fig. 4. (a) and (b) Steady-state shapes of the beam when the voltage is
increasing (a) and when it is decreasing (b). (c) The CV curve of a RF MEMS
capacitive switch. Abrupt jump in capacitance at V pI (when voltage is increas-
ing) is due to pull-in behavior of the device. A correspond jump in capacitance
is also observed during pull-out (V pO), when voltage is decreasing. Varactor
operates in the up state, with V < V pI .

[Fig. 4(a)], with a corresponding increase in the capacitance
(Fig. 4(c), bottom branch). When V > V pI , Felectrostatic ex-
ceeds spring-like restoring force [fourth-order derivative term
in (1)], and beam is abruptly pulled in to rest on the dielectric
[Fig. 4(a)]. This pull-in behavior causes the capacitance (C)
to jump discontinuously from the lower to the upper branch
[Fig. 4(c)]. Incidentally, this transition is analogous to a phase
transition in thermodynamics, with displacement y being the
order parameter and V being the forcing function [42]. Any
further increase in V increases the contact area [Fig. 4(a)], and
hence, the capacitance of the device [Fig. 4(c)]. In the reverse
cycle, when voltage is ramped down, the contact area reduces
gradually [Fig. 4(b)], and so does the capacitance [Fig. 4(c)].
At V = V pO, the beam barely touches the dielectric at a single
point, which is shown in Fig. 4(b). When V < V pO, beam is
released from the dielectric and comes back in air [Fig. 4(b)].

B. Pull-in Dynamics: Effect of Voltage and Pressure

For pull-in dynamics of the switch, we solve (1) and (2) in
response to a step voltage. The corresponding shapes of the
beam, displacement, and velocity of the center of the beam as
a function of time are shown in Fig. 5(a) and (b), respectively.
We define tpI as the pull-in time needed for the upper electrode
to reach the dielectric from its up state position, and vimpact as
the impact velocity with which the upper electrode lands on the
dielectric. The rapid increase in the velocity near the contact
[Fig. 5(b)] reflects the rapid increase in Felectrostatic close to
the contact (when y ≈ 0). Fig. 5(c) shows tpI and vimpact as a
function of the applied voltage V . As V increases, Felectrostatic

increases as ∼ V 2 (1) thereby decreasing tpI and increasing
vimpact. Our numerical simulation shows that vimpact increases
almost linearly with voltage (vimpact ∝ V ), and tpI decreases
as tpI ∝ (1/V ) [Fig. 5(c)]. Another important factor in de-
termining tpI and vimpact is the squeeze film gas damping,
which is dictated by the pressure p of the ambient gas [31].
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Fig. 5. Pull-in dynamics of the switch. (a) Shape of the fixed-fixed beam at
different instants of the time during pull-in. Time is increasing in the direction
of arrow. (b) Displacement (left axis) and velocity (right axis) of the center of
beam during pull-in showing tpI and vimpact. (c) Effect of voltage on pull-in
dynamics of the switch. tpI (left axis, ◦) decreases and vimpact (right axis,�)
increases with voltage due to increase in the electrostatic force. (d) Effect of
pressure on pull-in dynamics of the switch. When pressure is low, dynamics
is inertia dominated and hence tpI (left axis, ◦) and vimpact (right axis, �)
are almost constant. Above a certain pressure (in our case ∼0.1 atm), pull-in
dynamics becomes damping dominated, therefore, tpI and vimpact changes
rapidly as a function of pressure.

As p decreases, mean free path of gas molecules (λ ∝ 1/p)
increases, and squeeze film gas damping is reduced [31]. This
reduction in damping decreases tpI [Fig. 5(d)] and increases
vimpact [Fig. 5(d)]. Fig. 5(d) also shows that tpI and vimpact are
insensitive to pressure when p is low (dynamics is dominated
by inertia), whereas tpI increases and vimpact decreases rapidly
above a critical pressure (in this case 0.1 atm), and dynamics
become damping dominated. Apart from voltage and pressure,
pull-in dynamics of the device is also affected by the charges
inside the dielectric, and this will be discussed in the next
section.

C. Reliability Implications of RF MEMS Capacitive Switch:
Dielectric Charging

Fig. 6 summarizes the predictions regarding the lifetime
of the capacitive switch due to dielectric charging. Fig. 6(a)
shows the evolution of electron number density (nT ) inside the
dielectric as a function of stress time when actuated by 80 V.
The peak value of nT increases rapidly, and the centroid of nT

profile moves away from the M1-dielectric interface deeper into
the dielectric as a function of contact duration. These negative
charges within the dielectric increases the electrostatic force on
the upper membrane (5), which makes the pull-in of the device
easier (smaller V pI ) and the pull-out difficult (smaller V pO).
This reduction in V pI/V pO shifts the CV curve to the left
[Fig. 6(b)]. Fig. 6(c) shows V pO as a function of stress time
at different stress voltages. When V pO crosses zero, electrode
M1 cannot be pulled-out even at zero applied voltage, because
the electrostatic force by the negative charges becomes stronger
than the restoring “spring” force of the beam. As a result, the
device fails due to stiction. Using this time-dependent degrada-
tion of V pO, which is shown in Fig. 6(c), the dielectric limited

Fig. 6. Effect of dielectric charging on the performance and lifetime of a
capacitive switch. (a) Electron number density (nT ) inside the dielectric at
different instants of the time, when stressed at 80 V. The peak value of nT

increases, and centroid of nT profile moves deeper inside the dielectric with
time. (b) The CV curve shifts to the left because of the accumulation of negative
charges inside the dielectric (time increases in the direction of arrow). (c) V pO

plotted against stress time at various stress voltages. Stress voltage increases in
the direction of arrow with an increment of 10 V. The device fails due to stiction
when V pO crosses zero. (d) When ΔV pO is plotted against t/tlife, all the
curves at different stress voltage overlap. (e) tlife of the device at different stress
voltages. (f) The lifetime of the device defined by the number of cycles (Nlife)
plotted as a function voltage, with dcT as a parameter, i.e., three characteristics
for dcT = 1000 μs(◦), dcT = 100 μs(�), dcT = 25 μs(♦), respectively.

lifetime tlife(V ) can be obtained at arbitrary stress voltage by
requiring that V pO(tlife) = 0. This result is plotted in Fig. 6(e).

Interestingly, if we plot (without any a priori justification)
ΔV pO against a new variable t/tlife(V ), all the curves as-
sociated with different stress voltages overlap, i.e., ΔV pO ∼
g(t/tlife), [Fig. 6(d)]. Although, we cannot offer an analyti-
cal derivation, our numerical simulation of fixed-fixed beam
strongly suggests that

ΔVpO ∼ g

(
t

tlife

)
≈ 1 − exp

(
−

(
t

tlife

)β
)

(8)

which reduces to a power law of the form, ΔV pO ∼ (t/tlife)β ,
at short times. Here, β is constant that depends on mater-
ial parameters and device geometry. Based on some initial
results, we speculate that ΔV pO = g(t/tlife) might apply to
any MEMS geometry, where the functional form of g can be
obtained from experimental data for arbitrarily complex MEMS
switches. If so, this scaling function offers a new algorithm for
accelerated lifetime testing and would allow the device designer
to determine tlife at reduced Vstress based on the failure kinetics
at higher applied biases.
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Fig. 7. Effect of dielectric charging on pull-in dynamics of the switch.
(a) tpI decreases and (b) vimpact increases with stress time due to accumu-
lation of negative charges inside the dielectric. Actuation voltage increases in
the direction of arrow with an increment of 10 V.

Regarding the second objective of the paper, in an operational
circuit, the RF MEMS switch does not operate under dc bias,
but is repeatedly turned on (pulled-in) and off (pulled-out).
Therefore, we need to look into how repeated switching affects
the lifetime. The dc tlife can be viewed as a sum of the contact
times during ac stress. Therefore, the number of cycles of safe
operation (Nlife) of the switch under ac stress can be deduced
from dc tlife, as follows:

Nlife =
tlife

dcT − tpI
(9)

where dc is the duty cycle, and f = 1/T is the frequency of the
operation of actuation voltage. Equation (9) assumes that there
is no relaxation of trapped charges during the time when voltage
is removed. This simplifying assumption is justified by the fact
that at the pulled-up state, the electric field across the dielectric
is small (i.e., E(y) ≈ 0), with correspondingly small emission
current during off-state, i.e., JE(y) ≈ 0, from (12). Therefore,
rate of relaxation of charges will be very small [dnT /dt ≈
0, (4)]. It implies that during ac stress when voltage is re-
moved, ΔV pO does not recover, but remains fixed at the same
value, which it had at the end of previous stress cycle. Hence,
an ac stress that toggles between 0 and V does not improve
integrated lifetime (tlife) of the switch, but it can only improve
Nlife depending upon dc and T . Fig. 6(f) shows Nlife for dif-
ferent values of dcT . Nlife increases as dcT decreases, because
lower dcT implies shorter contact time per cycle. Moreover,
since dcT − tpI is the contact time for dielectric charging, Nlife

increases significantly as dcT → tpI .
We now focus on the third objective of the paper, related to

the voltage acceleration model, i.e., the nonlinearity of tlife(V )
and Nlife(V ) with V . Fig. 6(e) and (f) suggests that an empirical
exponential model tlife(V ) ∼ e−γV , based on voltage accelera-
tion coefficient γ determined from the accelerated tests, might
severely underestimate the lifetime of RF MEMS switches at
operating voltages. Therefore, a more physics-based model like
the one discussed in this paper is needed to correctly predict
tlife/Nlife of the switch.

Dielectric charging not only affects the static behavior (V pI ,
V pO and CV curve) of the device, but also affects the pull-
in dynamics (tpI and vimpact) and the understanding of this
phenomenon is the fourth objective of the paper. Fig. 7(a) and
(b) shows tpI and vimpact as a function of total integrated stress
time at different actuation voltages. The trapped charges inside
the dielectric increases the electrostatic force, and therefore,
decreases tpI [Fig. 7(a)], and increases vimpact [Fig. 7(b)]. The

Fig. 8. Comparison of our theoretical model with the experimental data [43].
ΔV pO as a function of stress time for different temperatures. Symbols are the
experimental data, and solid lines are predictions based on the model developed
in this paper.

Fig. 9. Validation of scaling relationship against experimental data [44]
(a) ΔV pO as a function of t for four different stress voltages: 30 V (◦), 35 V
(�), 40 V (♦), 45 V (�). (b) When ΔV pO is plotted against t/tlife assuming
V pO = 1.5 V, all the curves overlap. This confirms the scaling behavior as
anticipated in Fig. 6(d).

increase in vimpact will degrade the dielectric surface through
increased heat dissipation at the surface. The degraded surface
may have higher adhesion force [8], thereby increasing the
chances of failure due to stiction. We believe that the change
in tpI or vimpact as a function of stress time can also be
used to monitor the charge injection inside the dielectric, but
a quantitative model requires further work.

Finally, to validate the model just developed, we interpret the
data from the literature through two nontrivial predictions of
our model. Fig. 8 shows ΔV pO as a function of stress time for
different temperatures [43]. Our simulation matches very well
with the experimental data [43] and suggests that the model is
physically justified. The temperature dependence in our model
comes from temperature-activated FP emission current JE(y),
see (12).

As a second validation, we explore the validity of the novel
scaling relationship proposed in Fig. 6(d) by using the exper-
imental data from [44]. Fig. 9(a) shows ΔV pO as a function
of time for four different stress voltages. When this ΔV pO is
plotted against t/tlife, assuming V pO = 1.5 V, all the curves
overlap [Fig. 9(b)], which is consistent with (8) and anticipated
by our numerical model.

To summarize this section, we have provided a theoretical
framework for parametric degradation of V pI , V pO, tpI and
vimpact and tlife/Nlife prediction due to dynamic charge injec-
tion inside the dielectric. These results confirm that the physical
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Fig. 10. Creep behavior of RF MEMS varactors (a) shape of the fixed-fixed
beam during dc stress. Beam moves further down from its steady-state position
due to creep causing (b) capacitance of the device to increase as a function
of time. Our theoretical model predicts very well the experimentally observed
capacitance change [23]. (c) Capacitance change as a function of time for two
different applied voltages. (d) tlife as a function of applied voltage due to creep.
tlife increases rapidly at low-stress voltages. (e) Shape of the fixed-fixed beam
during stress recovery. When voltage is removed, beam does not go all the way
up, it goes up to a certain amount, and then it recovers slowly which is reflected
in (f) the capacitance of the device as a function of time. (g) and (h) Capacitance
of the device as a function of time during ac stress. When a square voltage
waveform of period 10 h is applied, then at high voltage, capacitance goes
up due to creep, and when voltage is removed, capacitance slowly recovers.
Recovery depends on the duty cycle of the waveform. At (g) duty cycle of
50%, recovery is more as compared to (h) duty cycle of 90%.

model may help interpret many features of the experimental
data that could not be analyzed by simpler empirical models.

D. Reliability Implication for RF MEMS Varactor: Creep

The last three objectives of the paper involve exploring creep-
limited lifetime of RF MEMS varactor. Fig. 10 shows the results
of time-dependent creep, obtained by solving (7). We first vali-
date the theoretical model by comparing against experimental
data [23] based on nickel (Ni) membrane. Fig. 10(b) shows
the capacitance of the device at V = 20 V as a function of

stress time. Using a three branch model of viscoelasticity, our
model predictions reproduce the experimental features of creep
degradation reasonably well [23]. The corresponding shapes of
the beam at different instants of time are shown in Fig. 10(a).
Ideally, with the application of a dc voltage (V < V pI), the
fixed-fixed beam should move down [Fig. 10(a)] and come to
steady state at a position defined by the balance of “spring”
and electrostatic force. However, the beam continues to be
pulled down [Fig. 10(a)] as a function of time due to creep,
as predicted by (7).

The experimentally validated model offers us an opportunity
to explore the creep behavior of varactor at different voltages.
The time-dependent change in capacitance for two different
operating voltages are shown in Fig. 10(c). This change in
capacitance degrades circuit performance, that is, an oscillator
circuit will no longer remain tuned at the desired frequency due
to the creep-induced capacitance change, and an external feed-
back circuit that compensates for the capacitance change will be
necessary for the correct operation of the circuit. To quantify the
capacitance degradation, we define the creep-limited lifetime as
being the time in which capacitance changes by a fixed percent-
age of the capacitance at t = 0, i.e., (C(tlife) − C(0))/C(0) =
r, where C(tlife) is the capacitance at t = tlife and C(0) is the
capacitance at t = 0 at the operating voltage V , and r is the
tolerance limit for degradation. For example, Fig. 10(a) shows
creep-limited lifetime for as a function of stress voltage for
r = 0.05. As operating voltage increases, the lifetime reduces
exponentially. The voltage acceleration observed here is mainly
due to spring-softening effect, which effectively weakens the
spring as a function of stress voltage.

When the voltage is removed, the beam should ideally be
restored to the initial position of zero deflection, but creep
prevents this instant restoration of the pristine beam shape
[Fig. 10(e)]. Instead, the beam (and the capacitance) is re-
stored asymptotically to the original shape over a long period
of time [Fig. 10(f)]. In practice, however, device is operated
continuously, and voltage is applied repeatedly. For such an ac
stress, Fig. 10(g) and (h) show the capacitance of the device at
stress voltage and at zero voltage. When the voltage is applied,
the capacitance continues to increase due to creep, and when
voltage is removed, it recovers slowly. If the time allowed for
recovery is insufficient, residual capacitance at zero voltage
increases with number of cycles [Fig. 10(g) and (h)]. This
increase in the capacitance at zero voltage is higher for higher
duty cycle [Fig. 10(g) and (h)], because less time is available
for recovery. We want to mention here that the effect of cyclic
loading and duty cycle on creep dynamics has also been studied
in literature [22] though in the context of a capacitive switch.

To summarize this section on creep, our analysis shows that
creep can be incorporated in the EB equation framework using
viscoelastic theory. The framework presented can explain the
experimentally observed time-dependent capacitance change
and offers the possibility to predict creep-limited lifetime for
arbitrary voltages. However, we want to mention here that our
analysis does not account for residual stress which people have
looked into to some extent in the context of a capacitive switch
[45]. Even though their approach is similar to our approach,
they use a simple analytical formula for the calculation of
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restoring force, whereas we do full numerical simulation of EB
equation.

IV. CONCLUSION

In this paper, we have presented a physics-based theoretical
modeling framework for the dominant degradation mechanisms
of RF MEMS capacitive switches and varactors. Specifically,
our model can predict, for arbitrary bias conditions, the drift
of the parameters (V pI , V pO, tpI , vimpact, C) of a capacitive
switch or a varactor over time. Based on this models of para-
metric degradation, one can reliably predict the RF MEMS
lifetime defined by the dielectric charging and/or creep. For
dielectric charging, the model offers scaling relationship for
ΔV pO, more optimistic voltage acceleration models (tlife >
exp(−γV )), and explains how lifetime improves at higher
frequency and reduced duty cycle. Likewise, the experimentally
validated creep model suggests opportunities of improving
creep performance at reduced voltage [Fig. 10(d)] and higher
operating frequency and reduced duty cycle.

Even though our modeling framework integrates and gen-
eralizes several existing models in the literature and offers
many new insights regarding reliability of RF MEMS, there
are scopes for further refinement by including fringing fields
for the electrostatic force, residual stress in the fixed-fixed
beam, midplane stretching [34], and surface roughness of the
dielectric for dielectric charging [46], [47]. Similarly, although
the model is validated against a number of experimental results
from the literature, a broader experimental validation of the
effects of dielectric charging on pull-in dynamics, creep-limited
lifetime, effect of duty cycle on creep induced degradation, etc.,
could be pursued in future experiments.

Our modeling framework is an important step toward re-
liability aware design/optimization of a capacitive switch or
varactors. Moreover, our physics-based modeling framework
both for dielectric charging and creep will offer more than just
reliable lifetime prediction and help designers/experimentalist
improve the device design/process flow by correctly identifying
the critical parameters responsible for such degradations.

APPENDIX

I. Dielectric Charging

The electron injection current from the metal contacts into a
trap located at a distance y from the contact—JIN (y) is given
by a modified form of the Tsu-Esaki equation [48]:

JIN (y) =
4πm−q

h3
σΔy [NT (y) − nT (y)]

×
∞∫

−∞

T r(E, y)β1(E, y)S(E)f(E)dE (10a)

JIN (y) =AIN (y) [NT (y) − nT (y)] (10b)

where the factor σΔy[NT (y) − nT (y)] is the integrated capture
cross sections of all the empty traps inside a region of width
Δy. T r(E, y) is the elastic transmission tunneling probability
of electrons from the metal contacts to a distance y into the
dielectric at an energy E and can be calculated by the Wentzel-

Kramers-Brillouin approximation [49]. S(E) is called the
supply function and is obtained by integrating the lateral mo-
mentum of the electrons inside the metal over the energy. The
Fermi-Dirac distribution function f(E) gives the fraction of
occupied states, and therefore the fraction of electrons available
for injection at energy E from the contact metal work function
(EF ). We account for the phonon scattering for the electron
tunneling from the contacts to relax into the trap energy level,
through a scattering factorβ1(E, y).

Similarly, the flux of trapped electrons leaking back to the
empty states in the metal by tunneling can be expressed as
follows:

JOUT (y)=
4πm−q

h3
σΔy [nT (y)]

×
∞∫

−∞

T r(E, y)β2(E, y)S(E)(1−f(E))dE (11a)

JOUT (y)=AOUT (y)nT (y). (11b)

Here, the term σΔy[nT (y)] represents the ratio of the effec-
tive area of all filled traps inside a region of width Δy within the
insulator, to the total cross section of the metal-insulator contact
interface, and the term 1 − f(E) denotes the fraction of empty
states in the metal as a function of energy E.

The trapped electrons can also escape from the traps into
the dielectric conduction band by a temperature-activated,
field-assisted FP emission process [50], [51]. Higher electric
field reduces the effective trap depth of a negatively charged
(filled) trap. The expression for the FP emission flux (JE(y))
is given by

JE(y) = γqΔy [nT (y)] exp

⎛
⎝−

ΦT −
√

q3E(y)
πε0ε∞

kBT

⎞
⎠ (12a)

JE(y) = AE(y)nT (y). (12b)

Here, γ is the attempt frequency [52] and ε∞ is the high
frequency dielectric constant of the insulator, and equals the
square of its refractive index [53].

II. Creep

Using the spring-dashpot model of Fig. 3 and (6), we can
obtain the following equations:

−Mu

IEi
=

ηi

Ei

d
(
−u∂2yi

∂x2

)
dt

− u
∂2yi

∂x2
, i = 2, 3, . . . n (13)

− u
∂2y

∂x2
=

−Mu

IE1
−

n∑
2

u
∂2yi

∂x2
(14)

where σ = −(Mu/I), ε = −u(∂2yi/∂x2), and u is the dis-
tance of a point on the beam from its neutral axis, which is at
the center of the beam for a rectangular cross-sectional beam.
On differentiating (13) and (14) twice with respect to x, and
using Felectrostatic = ∂2M/∂x2 and εm

i = ∂4yi/∂x4, we get
(7a) and (7b).
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III. Numerical Methods

1) Static Behavior (Beam Shape and CV Curve): The static
behavior of a fixed-fixed beam with voltage V is governed by
(1), with time derivative set to zero. To solve (1) numerically,
it is discretized using a simple finite difference technique with
constant grid size of Δx = L/(N − 1), where N is the total
number of nodes used for discretization. We also change the
variable from y to y0 − y. The boundary conditions of (2) can
be written in terms of the displacement of nodes 1, 2, N,N − 1
as follows:

y1 = yN = 0 (15a)
y2 = yN−1 = 0. (15b)

At any generic node i, the discretized form of (1) is given by:

y1+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

=
(Δx)4

D
Felectrostatic(xi, yi) (16)

where yi is the displacement of the node i, D = EI/(1 − v2),
and Felectrostatic is the electrostatic force acting on the node i,
where i = 3, 4, . . . , N − 3, N − 2. Equations (15) and (16) can
be rewritten in the form of a matrix as follows:

[A][Y ] = [F ] (17)

where [A] is the coefficient matrix, [Y ] is the displacement
vector, and [F ] is the force vector. Equation (17) is a nonlinear
equation, because Felectrostatic(xi, yi) depends on yi; therefore,
it is solved iteratively to obtain the shape of the beam for a given
voltage V .

2) Dynamic Behavior (Pull-in Time and Impact Velocity):
The dynamics of the fixed-fixed beam in response to an applied
voltage V is again described by (1). Once again, with the
change of the variable from y to y0 − y, initial conditions of
the beam dynamics are given as follows:

y(x, 0) = 0 (18a)

v(x, 0) =
∂y

∂t
(x, 0) = 0 (18b)

where v(x, t) is the velocity of a point at location x on the beam
and at time t. (18b) signifies that beam starts from rest. Using
the forward difference technique, for any generic node i, (1) can
be written as follows:

ρl
vi(t + Δt) − vi(t)

Δt
+ b (yi(t)) vi(t) +

EI

1 − v2

∂4yi

∂x4

= Felectrostatic(xi, yi) (19)

where Δt is the time step. Equation (19) can be rewritten to
obtain the velocity of node i at time t + Δt as follows:

vi(t+Δt)=vi(t)+
Δt

ρl

(
Felectrostatic(xi, yi)−b (yi(t)) vi(t)

− EI

1−v2

yi+2−4yi+1+6yi−4yi−1+yi−2

(Δx)4

)
. (20)

Now, the displacement of any node i can be computed from
its velocity as follows:

yi(t + Δt) = yi(t) + Δtvi(t + Δt). (21)

3) Dielectric Charging: Equations (4) and (5) can be writ-
ten for all the grid points between y = −yd and y = 0 and then
converted in the form of a matrix equation as follows:

dN(t)
dt

= ANN(t) + D (22)

where

AN = −

⎡
⎢⎢⎣

AIN (y=0)+AOUT (y=0)+AE(y=0)
AIN (y=Δy)+AOUT (y=Δy)+AE(y=Δy)

...
AIN (y=−yd)+AOUT (y=−yd)+AE(y=−yd)

⎤
⎥⎥⎦

(23a)

D=

⎡
⎢⎢⎣

AIN (y=0)NT (y=0)
AIN (y=Δy)NT (y=Δy)

...
AIN (y=−yd)NT (y=−yd)

⎤
⎥⎥⎦ (23b)

N(t)=

⎡
⎢⎢⎣

nT (y=0, t)
nT (y=Δy, t)

...
nT (y=−yd, t)

⎤
⎥⎥⎦ . (23c)

Equation (22) can be discretized in time to calculate time
dynamics of nT (y, t) using the more stable Backward Euler
method as follows:

N(t + Δt) − N(t)
Δt

= ANN(t + Δt) + D. (24)

Equation (24) can be rearranged to obtain a linear system for
(t + Δt) as follows:

[I − ANΔt]N(t + Δt) = [N(t) + DΔt] . (25)

Now, (25) is solved using the CSparse library.
4) Creep: The effect of creep on the behavior of varactor is

studied using (7). To solve (7), we start with the following initial
conditions for intermediate strain (strain is zero at t = 0):

εm
i (x, 0) = 0, i = 2, 3 . . . , n. (26)

The time evolution of strain and Felectrostatic can be com-
puted, as follows:

εm
i (x, t+Δt)=εm

i (t)+
ΔtEi

ηi

(
Felectrostatic

E1I
−εm

i (x, t)
)

. (27)

Once the strain is obtained, the shape of the beam is obtained
by solving (28) which is

E1I
∂4y

∂x4
= Felectrostatic + E1I

n∑
2

εm
i . (28)

Equations (27) and (28) are coupled through Felectrostatic and
εm
i , and hence are solved iteratively self-consistently at each

time t.
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