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Abstract
Background—While an update rate of 30 Hz is considered adequate for real time graphics, a
much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of
deformable objects, especially when large nonlinear deformations and complex nonlinear material
properties are involved, at these very high rates is one of the most challenging tasks in the
development of real time simulation systems. While some specialized solutions exist, there is no
general solution for arbitrary nonlinearities.

Methods—In this work we present PhyNNeSS - a Physics-driven Neural Networks-based
Simulation System - to address this long-standing technical challenge. The first step is an off-line
pre-computation step in which a database is generated by applying carefully prescribed
displacements to each node of the finite element models of the deformable objects. In the next
step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function
network (RBFN). During real-time computation, these neural networks are used to reconstruct the
deformation fields as well as the interaction forces.

Results—We present realistic simulation examples from interactive surgical simulation with real
time force feedback. As an example, we have developed a deformable human stomach model and
a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box.

Conclusions—A unique computational modeling system has been developed that is capable of
simulating the response of nonlinear deformable objects in real time. The method distinguishes
itself from previous efforts in that a systematic physics-based pre-computational step allows
training of neural networks which may be used in real time simulations. We show, through careful
error analysis, that the scheme is scalable, with the accuracy being controlled by the number of
neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software
Framework for Multimodal Interactive Simulation) for general use.
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1. Background
Real-time physics-based interactive simulation is computationally very demanding (C.
Basdogan et al., 2004). While update rates of at least 30 Hz are necessary for real time
graphical display, real time display of interaction forces through a haptic interface device
such as a PHANToM, requires a much higher update rate of about 1 kHz. To support virtual
environments that include interactions with deformable objects, efficient modeling schemes
must be used (C. Basdogan et al., 2004). Geometry-based models developed by Delp, Loan,
& Cagatay Basdogan (1997); Ho, Cagatay Basdogan, & Mandayam A. Srinivasan (1999)
tend to sacrifice the physics of the deformation process to achieve real time performance.
Physics-based techniques that take into account the underlying mechanics of soft tissue
deformation using mass spring networks (Kuehnapfel & Neisius, 1993) or finite elements
(Bro-Nielsen, 1998) have been developed. Neural networks mimicking mass-spring
dynamics are used by Radetzky, Nürnberger, & Pretschner (1998)

Mass-spring systems are notorious for their instabilities and the necessity to “tweak”
thousands of parameters. Finite element-based techniques are more accurate, very stable, yet
computationally expensive. Techniques such as condensation (Bro-Nielsen, 1998) and
precomputation (Picinbono, Delingette, & Ayache, 2003) have been used to accelerate finite
element computations. Meshfree methods such as the point associated finite field (PAFF)
offer yet another alternative to finite element techniques and several methods have been
presented to reduce computational costs (Suvranu De, Lim, Manivannan, & Mandayam A.
Srinivasan, 2006). Hardware acceleration has also been used to achieve real time rates (Liu
& Suvranu De, 2008).

The presence of nonlinearities in the response of the deformable objects further complicates
the problem as the simulation must now be iterative (Lim & Suvranu De, 2007).
Nonlinearities may be introduced due to large deformations, when the strain is a nonlinear
function of the displacement field, and when the material properties are nonlinear, e.g.,
hyper elastic or inelastic. Of course, possible solutions pursued by us and others include
faster hardware, clever computational algorithms, and use of massively parallelized systems.
A detailed review of simulation of nonlinear response of deformable objects in real time
maybe found in work by Lim & Suvranu De (2007). As the capability of computing
resources has increased over the years, so have the complexities of the simulation scenarios.
Using an example from surgical simulation, a typical surgical scene involves much more
than just tool-tissue interaction. Simulations of multiple organs, medical devices, sutures,
coupled fluid flows due to bleeding, and modeling of physiological consequences of surgical
procedures are now becoming common (M. Harders et al., 2006). With increasing
complexity of surgical simulation scenarios, it is now clear that a straightforward technique
of solving partial differential equations will not be sufficient – at least on commodity
hardware.

In this paper we present a very general approach – the Physics-driven Neural Networks-
based Simulation System (PhyNNeSS) (D. Deo & S. De, 2009) for real time simulation of
linear and nonlinear response of deformable objects. The first step in PhyNNeSS is to
develop geometric models of the deformable objects, ascribe them with realistic material
properties (linear or nonlinear) which may be obtained from actual physical experiments and
simulate them with carefully applied loads. An accurate physics-based computational
scheme such as the finite element or meshfree method may be used in this simulation. This
is a pre-processing step and need not be computationally efficient. This step generates a
massive database which is used to train a set of radial basis function neural networks.
During real time computations, these neural networks are used to compute the deformation
fields and the reaction forces.
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The significance of the method is that linear and nonlinear simulations may be performed
with almost the same operational complexity. Additionally, the quality of the real time
computations may be easily controlled by scaling the number of neurons used in the
computations. This system provides a unique platform to leverage the computational speed
and scalability of soft computation methods for real time interactive simulations. Neural
networks, however, have been previously used in surgical simulation. In the following
paragraphs we will review existing literature in this area.

Neural networks have been utilized in surgery simulation in specialized applications. For
simulation of cutting involving liver, a neuro-fuzzy system was developed by Weiguo & Kui
(2005). To obtain the training data, a specialized scalpel was designed for the acquisition of
cutting parameters. However, very few parameters may be recorded in such experiments
sacrificing the fidelity of the simulations. A geometry-based mesh deformation algorithm
was proposed by De Boer, van der Schoot, & Bijl (2007) which interpolates displacements
of the boundary nodes to interior modes using radial basis functions (RBF's).

Neural networks have also been used in energy-based simulation of deformation (Zhong,
Shirinzadeh, Alici, & Smith, 2006). But this approach is not truly physics-based as they
draw an analogy between a cellular neural network (CNN) and elastic deformation. The
potential energy stored in an elastic body as a result of a deformation caused by an external
force is propagated among mass points by a nonlinear CNN. Another model has been
proposed for animation by Grzeszczuk, Terzopoulos and Hinton (1998), in which large
neural networks are trained to emulate a simple physical system. This recent approach has
not been proven practical for large coupled systems of nonlinear partial differential
equations.

Simulation of structural systems in virtual reality applications using neural networks trained
from finite element simulations was performed by Hambli, Chamekh, & Bel Hadj Salah
(2006). In the field of design optimization response surfaces have been constructed using
radial basis functions. Radial basis function-based meta models have been developed by
Mullur and Messac (2006) and they have been used for representation of static geometrical
surfaces obtained from point clouds by Carr et al., (2001). Neural networks have also been
used by Omar, Eskandarian and Bedew, (1998) to approximate the failure surface in vehicle
crash modeling. In mechanics, neural networks have been used to simplify the responses of
models (Kallassy, 2003) also the validity of using neural networks for approximations of
simple mechanical systems is presented in. In finite element analysis neural networks have
also been used for the approximation of complex visco-plastic constitutive relations for soil
and cement mechanics (Jung & Ghaboussi, 2006). A review of applications of neural
networks in structural engineering is provided by Waszczyszyn and Ziemianski (2001).

A learning algorithm to train a linear 2D mass-spring-damper system that behaves similarly
to a high-fidelity nonlinear finite element (FE) model is presented by Bianchi,
Solenthaler,Gábor Székely and Matthias Harders (2004). In work by Peterlik and Matyska
(2007) a neural network based approach is presented which involves a pre-computation
phase much like PhyNNeSS, however, they use state-space based methods to interpret this
data, unlike PhyNNeSS. In the work by Höver, Kósa, Gábor Székely, and Matthias Harders
(2009) a data driven haptic rendering method was proposed for rendering of forces during
the interaction with visco-elastic materials. This method utilizes RBF for interpolating force
data based on positions and velocities. Unlike PhyNNeSS, this method cannot be
generalized for complex geometries.

Acquiring a computer model by directly recording deformation and force feedback
information is presented in work by Pai et al. (2001). Acquired deformations were used to
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capture spatially varying strain-stress relationships in work by Bickel et al. (2009) to
compute nonlinear deformations but their approach does not reflect true physics of the
objects involved.

In work by Barbič and James (2007), the authors presented an approach to provide 6-DoF
force feedback for reduced deformable body. Saupin, Duriez, and Cotin (2008)'s work also
focuses on contact handling for haptic rendering of non-linear organ models during surgery
simulation.

The organization of this paper is as follows. We introduce PhyNNeSS in section 2, followed
by its application to interactive surgical simulation in section 3 and some concluding
remarks in section 4.

2. Methods
Figure 1 presents the three major steps of PhyNNeSS. The first stage is data generation. This
is a pre-computation step in which geometric models of the deformable models are
generated and are ascribed with boundary conditions and realistic mechanical properties,
possibly based on physical experiments. The models may be discretized either using finite
elements or by using a distribution of nodal points for meshfree analysis (Suvranu De et al.,
2006). In the present work we have chosen finite elements. Each model is then simulated by
prescribing carefully chosen displacements at each node. The response, in terms of the
reaction forces, is computed using finite elements, and stored in a large database. The
second step of PhyNNeSS consists of machine learning in which the data is vastly
condensed and stored as a set of coefficients describing neurons of a Radial Basis Function
network (RBFN) (Park & Sandberg, 1991). The third and final step of PhyNNeSS is real
time simulation in which the neural networks are used to reconstruct the deformation fields
as well as the reaction forces.

Using a combination of hard and soft computing methods, PhyNNeSS is able to reduce the
solution of nonlinear problems to almost the same runtime complexity as solving linear
problems. This technique is not only extremely rapid, but also scalable – which implies that
we have a ‘control knob’ which can be turned up or down to control the accuracy of the
solution. The scalability is controlled by the choice of the number of neurons in the RBFN.
More neurons may be chosen for higher fidelity but slower simulation while fewer neurons
may be chosen for coarser, but more rapid simulation. In the following subsections we
present details of each of the three steps of PhyNNeSS.

2.1. Data generation
The data generation step involves simulating the organ models and solving the equilibrium
equations of mechanics accurately using finite elements. In this section we will briefly
recapitulate the equations governing the deformation of a general nonlinear continuum and
its finite element analysis (Bathe, 1996). The nonlinearity may be due to large deformations
(geometric nonlinearities) or nonlinear stress-strain relationships (material nonlinearity) or a
combination of both.

Let R0 denote a deforming continuum at time t=0 (the ‘reference’ configuration) as shown in
Figure 2, which at time ‘t’ occupies Rt (the ‘current’ configuration). We employ a
Lagrangian description in which a point X = {X1,X2,X3} in the reference configuration
(known as ‘material point’) deforms to the point x = {x1,x2,x3} in the current configuration
(known as ‘spatial point’) using the map
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(1)

The displacement vector at any point is

(2)

The deformation gradient tensor F is defined as

(3)

where the gradient is taken with respect to X.

The material or Green-Lagrange strain is

(4)

where I is the identity tensor.

In finite element analysis, the following weak form of the governing differential equations is
solved (Bathe, 1996) to compute the displacement field

(5)

satisfying prescribed displacements on portion  of the boundary. In this equation, ‘S’ is the
second Piola-Kirchhoff stress tensor; b0 is the body force per unit reference volume

(including inertia forces) and t−0 is the surface traction on the boundary . The operator δ
represents a first order variation of the respective mathematical entities.

In this paper, we will consider hyper-elastic materials only, i.e., we will assume that the
stress (S) may be obtained from a scalar strain energy density function using the following
relationship:

(6)

While there are multiple expressions of ‘W’ available in the literature describing the
response of deformable materials, we will use the following models (Bonet & Wood, 1999)
in the examples presented in this paper:

(1) St. Venant-Kirchhoff

(7)

where μ and λ are Lame constants and E is the Green strain tensor.

(2) Neo-Hookean

De et al. Page 5

Presence (Camb). Author manuscript; available in PMC 2012 May 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

Where, J = det (F)

(3) Mooney-Rivlin

(9)

Where, IC and IIC are the first and second invariants of the right Cauchy-Green tensor C =
FT F.

The weak form in equation 5 is solved numerically using finite element discretization
(Bathe, 1996) where the displacement field (u) is approximated in terms of the nodal point
displacements (U) as

(10)

Where, H is the matrix of nodal shape functions expressed in terms of the reference
configuration. After imposing the displacement boundary conditions, the solution of
equation 5 proceeds in an iterative manner. The most commonly employed technique is the
Newton-Raphson method. For a nonlinear analysis, it is customary to divide the load into
smaller load steps and allow the iterations to proceed in an incremental manner from one
load step to the other.

To completely characterize the response of any nonlinear model and store it in a database,
ideally, each finite element node must be deformed in all possible directions to all possible
magnitudes of displacements and the displacements at all other nodes in all three Cartesian
directions and the reaction forces at the simulated node must be recorded. Such an exercise
is not only infeasible, but also not necessary. In our technique, we fix a few of the nodes to
apply fixed boundary conditions. Each of the remaining nodes is then displaced by a
predetermined amount δ along one of only 26 directions (Figure 3), which we are going to
refer to as “exploratory directions”. We will refer to the node which is being displaced as the
“active node”. The 26 exploratory directions correspond to 26 unit outward normals to a unit
sphere, denoted by {ei}i=1,…,26, as shown in Figure 3, centered at each active node. The
result of each simulation is a “response set” – that includes the coordinates and labels of the
active node, the direction and magnitude of the imposed displacement, the converged values
of the reaction force, and a list of all other deformable nodes with their coordinates and the
computed displacements. Typically, each active node is displaced ‘n’ times successively
along each exploratory direction so that the total displacement at that node is Δ = nδ (see
Algorithm 1). This entire data generation step is automated based on a script written in
Python. It should be noted that for linear analysis, it is sufficient to sample data along the
three Cartesian directions. However, since linear superposition does not hold in nonlinear
analysis, we have chosen the 26 directions. The choice is not unique. More directions can, of
course, be chosen along normals to the unit sphere. However, this will increase
computational costs and storage requirements. Besides, as we show in our results, sufficient
accuracy is achieved using the 26 exploratory directions.

Algorithm 1: Data generation using finite element analysis

Let N=total number of nodes in the model
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Apply fixed boundary conditions to Nfixed (<N) nodes

for each remaining active node J=1,.., Nactive (=N-Nfixed)

 for each exploratory direction {ei}i=1,…,26

  Δ = δ.

  while Δ ≤ nδ

   apply displacement Δei to node J

   solve nonlinear finite elements

   compute and store reaction force fJ at node J

   for I=1,…,Nactive, I≠J

    store displacements uI

   end for

   Δ += δ

  end while

 end for

end for

All the data generated using finite element analysis is not necessary for training the neural
networks (see section 2.2). It has been shown in Kuroe and Kawakami (2007) that a few
vectors from a vector field are sufficient for generalizing the response using a network. For
most effective approximation of input and output mapping using RBFNs, all data columns
must be mapped to a uniform variation. All data fields are centered and scaled to lie between
−1 and +1. The values for centering and scaling are also recorded so that same
transformations may be applied to inputs during simulation.

2.2. Machine learning
The data generated as part of the finite element preprocessing step is used to train the RBFN
(Park & Sandberg, 1993). The basic topology of a RBFN is shown in Figure 4. Two kinds of
RBFNs are designed – a ‘force network’ and a ‘deformation network’. The imposed
displacement vector at the active node δei corresponding to each displacement increment (δ)
of each of the 26 exploratory directions (ei) serves as the common input to both these
networks. However, the force network is trained to compute the three components of the
reaction force at the active node while the deformation network is trained to compute the
displacements of all nodes where the displacements are not prescribed. In addition to the
displacements at the active node, the input to the displacement network includes the nodal
coordinates of the other nodes. Thus each data point (input – output pair) of deformation
network has 6 components of input and 3 components of output, and each data point of force
network has 3 components of input and 3 components of output.

Neural networks are black box functions capable of performing a non-linear mapping
between a vector input X ∈ Rm and a vector output Y ∈ Rm. We use a feed-forward neural
network with a single hidden layer of radial basis function neurons which are capable of
approximating nonlinear functions (Abe & Iiguni, 2006). The activation level of each
neuron in the hidden layer is computed using a radial basis function of the following form:

(11)

where ‖•‖ represents the Euclidean norm, ci∈ Rm is a vector of centers and the ‘ri’ s are the
scalar spread parameters. The output is obtained by a weighted (linear) combination of the
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outputs of the hidden layer neurons and a bias. The ‘jth’ component of the output vector is
computed as

(12)

Where, wj0 is the bias for jth output and wji are scalar weights. Another possibility is to use
weighted averages, which has higher computational complexity.

The goal of the RBFN training is to determine the parameters of the hidden layer (i.e., the
centers ci, and the spread parameters ri) and obtain the output layer weights in such a manner
that optimizes the fit between the RBFN output and the training data obtained from finite
element simulations. The fit is evaluated in terms of the difference between RBFN output
(y) and the finite element output (ŷ)

(13)

e is then used to define the mean squared error (MSE)

(14)

Though the network topology allows for different ‘ri’ (spread parameter) for each of the
hidden neurons, it has been shown that a uniform spread parameter is sufficient for
arbitrarily accurate approximation of any function (Park & Sandberg, 1993). In this work,
we have used a single value of spread parameter for all the neurons. The optimal value of
the spread parameter depends on the model being simulated and may be found by
performing a parametric study as outlined in section 3 (Figure 9).

RBFNs are usually trained in a supervised manner, i.e., a user selected set of training data
points (input-output pairs) is provided which is used to compute the necessary parameters.
The ability of a neural network to efficiently approximate a nonlinear function depends on
the selection the centers of the hidden layer (Orr, 1995; Valdes, Biscay, & Jimenez, 1999).
We have adopted an orthogonal least square selection method which is recommended when
the training set is large (Sherstinsky & Picard, 1996). In this method a Gram-Schmidt type
approach is employed. The network is initiated with empty (zero neurons) hidden layer. The
network is then systematically grown by addition of one radial basis neuron in the hidden
layer during each iteration. The center of each new RBF neuron is selected to coincide with
the data point, which generated the highest error in the previous iteration (Chen, Billings, &
Luo, 1989; Yu, Gomm, & Williams, 1997). Once the centers of the hidden layer are chosen,
the weights and offsets in equation 12 are determined using a least squares minimization of
the error between desired and simulated outputs. The training process is continued until the
MSE is less than a desired value, or the hidden layer reaches a maximum number of
neurons.

2.3. Real time simulation
The coefficients obtained from the RBFN training are exported to text files with mesh
information to use in real time simulation. During real time computation, an efficient
collision detection routine determines the node/s to be displaced. The force neural network
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is used to compute the reaction forces. The deformation neural network is used to compute
the deformation of the nodes at which displacements are not specified.

During runtime, the deformation and reaction force at each movable node are computed
according to equations 11 and 12. If there are ‘m’ inputs and the hidden layer consists of η
neurons, then the total number of floating point operations per output is estimated as O(η
(3m + E+2)) where E operations are necessary for calculating an exponential operation. The
computation of the terms in equation 11 requires O(3m + E) operations which must be
repeated for η neurons. To accomplish the computations in equation 12, O(2η) operations
must be performed. Hence the cost of deforming all the movable nodes of the mesh in
response to an interaction thus scales linearly with the number of neurons in hidden layer
(η).

The information generated in the precomputation stage corresponds to a single point
interaction with the finite element mesh. However, real time simulations are not restricted to
a single point. If deformations UI; I = 1,2,…M are applied at ‘M’ nodes with position
vectors xI; I = 1,2,…,M, then we compute the resultant deformation at any point xas

(15)

Where, ŨI is the displacement vector computed at x due UI and the weights

(16)

For interaction with M nodes using this technique, the operation count is O(η M(3m + E +
2) + 10.M2 + 10M − 1) which shows that the computations grow linearly with the number of
hidden layer neurons.

PhyNNeSS is integrated into our custom developed software framework for multimodal
interactive simulation (SoFMIS) (Halic et al., 2011).

3. Results
While PhyNNeSS is a very general algorithm applicable to any interactive environment, in
this paper we will discuss the application of PhyNNeSS to real time surgical simulation. We
have used two models of varying complexity: a liver model (Figure 5a) and a Penrose drain
model (Figure 5b), which is a soft rubber tube placed in a wound to drain fluids. The liver
model is discretized using 2341 tetrahedral volumetric finite elements. The Penrose drain
model is a hollow tube, with a slit on the top and 436 shell elements are used. The following
four simulation scenarios have been considered:

CASE 1
The liver model is simulated within the linear small deformation regime using a St. Venant-
Kirchhoff material model (equation 7) with Young's modulus (E) = 20 and Poisson's ratio
(μ) = 0.45. In literature, the Young's modulus of liver has been reported to be between 8 and
48 kPa with (Nava, Mazza, Furrer, Villiger, & Reinhart, 2008) reporting 20 kPa, hence the
choice of these material constants is realistic. Case 1 corresponds to linear elastic material
and small deformations, i.e., linear geometric model.
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CASE 2
The liver model is simulated for large deformation loading using a St. Venant Kirchhoff
material model (equation 7) with E = 20 kPa and μ = 0.45. This case corresponds to linear
material model but nonlinear geometric model.

CASE 3
The liver model is simulated for large deformation loading using a neo-Hookean material
model (equation 8) with the following model parameters: C10 = 250Pa and bulk modulus =
100 kPa (D1 = 0.00001) based on work by B. Ahn and Jung Kim (2010). The neo-Hookean
material model is widely used for soft tissue simulation (Kauer, Vuskovic, Dual, Szekely, &
Bajka, 2001; Miller, 2005; G Székely et al., 2000). This case corresponds to nonlinear
material and nonlinear geometric model.

CASE 4
The Penrose drain model is simulated for large deformation loading using a Mooney-Rivlin
material model (equation 9) with the following model parameters: C01 =0.2 Pa, C10=2 Pa
and bulk modulus = 100 kPa (D1 = 0.00001). Penrose drains are made up of rubber for
which the Mooney-Rivlin model is appropriate (Edwards & Tabor, 1976; Lake & Thomas,
1967). This case corresponds to nonlinear material and nonlinear geometric model.

With reference to these four cases we will discuss the errors in the computation and how the
training parameters may be used to control these errors. A Pentium 4, 3 GHz single core
workstation with 2GB RAM and two connected PHANToM Omni force feedback devices
was used for pre-computations and real-time computations. Table 1 provides a summary of
the model specifications, resource requirements and computational times. We can see that
the vast data generated by the finite element computations is condensed into coefficients of
the RBFNs with storage requirements as low as a few Mbs, and still can rapidly reproduce
the response in real-time.

To demonstrate the ability of PhyNNeSS to accurately model response for nodal
interactions, we have graphically plotted the errors between the response recorded from
finite elements and as approximated by the RBFN. Let yi∈R3 be the three components of the
output (force or displacement) corresponding to the ith test point computed using the neural
network and ŷi∈R3 be the corresponding finite element solution. We define the ith

component of the ‘relative error’ as

(17)

The ‘mean relative error’ is computed as the average of all the relative errors. The neural
network should be capable of simulating results for the data points which were not used in
training. Hence all the error computations are done with data points which are different from
those used in training.

In Figure 6 we plot the force displacement relationships for all three cases of the liver model
(Cases 1-3 above) comparing the predictions of PhyNNeSS with that of finite elements
when 50, 75 and 100 neurons are used in the network. The neural networks were trained
with data for tool displacement of up to 2.8 cm. However, the model predictions are for a
maximum of 4 cm tool displacement. These plots clearly show that predictions using
PhyNNeSS compare well with finite element predictions beyond their range of calibration.
This is true for both linear and nonlinear predictions, irrespective of whether the nonlinearity
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arises from the material model or due to large deformations. It is also clear that the
approximation accuracy improves with increasing number of neurons in the network. The
only exception is for Case 2 where the 100 neuron network seems to be performing inferior
to the 75 neuron case. A possible explanation could be due to over fitting of the data
(Samarasinghe, 2006). Also, the convergence may be non-monotonic with respect to the
number of neurons, an issue that requires further analysis to resolve. In the remainder of this
section we will present results for Cases 3 and 4 only. Figure 7 presents a histogram of the
percentage relative error in the displacement for Case 3 using 3000 interaction cases (data
points) of deformation computations and different sizes of the network. As the network is
grown with more neurons in the hidden layer, the approximation improves shifting the peak
of the error histogram towards the left, i.e. for the 20 neuron case the peak is at 5% relative
error which is 2% for the 100 neuron and < 2% for the 300 neuron network. For the 300
neuron network, most of very few test points have errors beyond 6%. In Figure 8, we plot
the % mean relative error as a function of the number of neurons in the hidden layer for both
Cases 3 (liver) and 4 (Penrose drain model). 5000 input-output pairs were used for training
to generate each of the networks and errors were computed using 3000 pairs not used in the
training. The errors reduce super linearly as the neurons in the hidden layer are increased.
However, the rate of decrease slows down with increase in the number of neurons indicating
that a very large number of neurons may not be necessary for an acceptable level of error
based on the “just noticeable difference” or JND of the human sensory system which for
force perception at human fingertips is about 10% (Allin, Matsuoka, & Klatzky, 2002;
Pongrac, Färber, Hinterseer, Kammerl, & Steinbach, 2006; Tan et al., 1994)

Figure 9 shows the percentage mean relative error as a function of the spread parameter (ri)
in equation 11 where a single spread parameter has been assumed for all the neurons. We
observe that a spread parameter of about 0.75 results in the minimum mean relative error in
the liver model, however a spread parameter of 1 is considered more appropriate for the
Penrose drain model.

Another important variable in our study is the effect of the size of the training data set on the
accuracy of the displacement prediction. In Figure 10, we have plotted the percentage mean
error with increase in data points for training. For this study, we have used a network of 200
neurons and 3000 input-output pairs (different from those used in training) were used to
validate the resulting neural network. In general, the results indicate that while larger
training datasets reduce error, the advantage of using very large sets becomes less
significant. A point to note is that the reduction of relative error is not strictly monotonic
which explains the slight increase in error for the Penrose drain model beyond 4000 data
points. Using graphs like these, one may decide the size of the training set for a desired level
of accuracy.

In Figure 11 we present the percentage mean relative error in the force computation as a
function of the number of neurons in the hidden layer. The force RBFN has much less data
points than the deformation RBFN. Hence we have used 100 data points for training the
networks and the error is observed at 30 test cases which are different from the data points
used in the training.

In Figure 12 we show the percentage max relative error in the force computation as a
function of the number of neurons in the hidden layer. In the figure on can see that the %
max relative error is below the JND with 87 neurons for liver mode l and 63 neurons for the
Penrose drain model.

Next we address the issue of how the computational time scales with increase in mesh
resolution. Figure 13 shows three meshes of increasing resolution derived from the original
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mesh model of the liver using successive subdivision based on the Loop subdivision
algorithm (Loop, n.d.). Details of the higher resolution meshes are given in Table 2. Pre-
computed neural networks used in the simulation of the three higher resolution meshes are
the same as that for the lower resolution mesh in Figure 13a. Figure 14 shows that the
performance of PhyNNeSS scales linearly with the number of vertices in the mesh.

The final example concerns interactions of the liver model with two tools. In this
experiment, two nodes are selected on the surface of the liver model and displaced randomly
along two independent directions chosen from among the 26 exploratory directions in Figure
3. The results are reported for maximum of the two displacements. The histogram of errors
in the displacements computed using equation 15 and finite element simulations is presented
in Figure 15. As expected, the error increases with increase in the depth of indentation,
however, the maximum error for the majority of the points is within 2-4%.

4. Concluding remarks
In this paper we have presented a novel method (PhyNNeSS) for real-time physics-based
interactive simulation involving deformable objects which may have arbitrary nonlinearities.
A database is first generated by systematically probing a finite element model of the
deformable objects, which is then utilized to train radial basis function neural networks. The
networks are then used in real time computations. We have analyzed the error in computing
the displacements and forces when the number of neurons as well as the training data set is
increased.

PhyNNeSS results in substantial reduction in runtime computational costs and increased
accuracy by leveraging the use of offline computations leading to enriched visual experience
on commodity hardware. It is important to note that the neural network simulation is a
relatively rapid process with the number of operations scaling linearly with the number of
neurons in the hidden layer. We have observed that the number of neurons required for a
desired level of accuracy depends on the complexity of the model, e.g. for the liver model,
100-300 neurons result in deformation fields which are visually indistinguishable from fields
generated using much larger number of neurons as the mean relative error lies between
2-3%. For this model the performance scales from 154 frames per second for 300 neurons to
about 700 frames per second for 100 neurons, with the force feedback running at haptic rates
of 1000 Hz.

PhyNNeSS is not only extremely rapid, but also scalable – which implies that we have a
‘control knob’ which we can turn up or down to control the accuracy of the solution with
little effort. The scalability is controlled by the choice of the number of neurons in the RBF
networks. More neurons may be chosen for higher fidelity but slower simulation while
fewer neurons may be chosen for coarser, but more rapid simulation. We have applied
PhyNNeSS in a collaborative interactive setup taking advantage of this scalability
(Sankaranarayanan, Dhanannjay Deo, & Suvranu De, 2009).

In this paper we have primarily focused on application of PhyNNeSS for simulation of
vector fields, namely deformation and force fields. However, the method may be easily
extended to simulation of additional degrees of freedom. For example, in the case of
electrosurgery simulation, where (Lister & Desai, 2008; Maciel & Suvranu De, 2008)
temperature changes are responsible for coagulation/ cauterization of soft tissues, the
temperature field may be an additional variable that can be pre-computed and simulated
using a RBFN.

In PhyNNeSS deformation or force at a single node is computed independently once the
network has been trained. This makes PhyNNeSS ideal for implementing on single
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instruction multiple data (SIMD) architectures available on current nowadays graphical
processing units. This makes PhyNNeSS suitable for CUDA (NVIDIA Corporation, n.d.)
architecture, where shared memory is relatively larger (suitable for storing trained neural
networks for complete mesh) and memory of each pipeline is limited, but it can easily
accommodate intermediate data structures for execution of the trained neural network.

In this paper, we have focused attention to static problems. Extension of PhyNNeSS to
dynamics would require a much larger set of data to be stored. Since PhyNNeSS utilizes
precomputed data to train the RBFN, changes of topology, e.g., surgical cutting, may be a
challenge. However, we anticipate developing techniques where local updates may be
applied to a globally computed solution using PhyNNeSS to tackle such problems. In this
paper we have discussed nonlinearities that may be introduced due to nonlinear material
deformations and nonlinear constitutive equations. A third type of nonlinearity may be
introduced due to contact conditions, when multiple organs are in contact and the contact
areas change as a function of loading. This is a nontrivial problem and is left for future
work.
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Figure 1. Schematic Diagram of PhyNNeSS
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Figure 2. Deforming continuum
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Figure 3. The pre-computation step - A finite element model with the active node being displaced
along one of 26 predetermined directions
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Figure 4.
Basic topology of a radial basis function neural network (RBFN) with two inputs and a
single output.
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Figure 5. The finite element mesh and deformed configurations computed using finite elements
of (a) Liver model and (b) Penrose drain model
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Figure 6.
Force-displacement relationships and their approximation using PhyNNeSS using 50, 75 and
100 neurons in the network for (a) Case 1, (b) Case 2 and (c) Case 3.
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Figure 7.
Histograms of displacement error distribution for different neural networks for (a) Case 3
and (b) Case 4.
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Figure 8. Plot of the % mean relative error as a function of the number of neurons in the hidden
layer of the deformation radial basis function neural network (RBFN)
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Figure 9. Plot of % mean relative error as a function of spread parameter used in training of
neural networks for liver and Penrose drain models
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Figure 10. Plot of the % mean relative error with increase in number of data points used in
training of the deformation RBFN
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Figure 11. Plot of % mean relative error with increase in number neurons in hidden layer of
force RBFN
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Figure 12. Plot of % Max relative error with increase in number of neurons in hidden layer of
RBFN
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Figure 13.
(a) Original coarse mesh (subdivision level 0) subdivided to increasing levels of refinement
in (b), (c) and (d).
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Figure 14. Performance of PhyNNeSS scales linearly with the number of mesh vertices
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Figure 15. Histogram of percent relative errors for different magnitudes of displacement
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Table 1
Model data for the example problems

Parameter Liver model Penrose drain model

Number of nodes (N) 739 239

Number of free nodes (Nfree) 486 181

Type of element 3D tetrahedra Triangular shell elements

Number of elements 2341 436

Number of precomputation cases solved 12636 4706

CPU Time required for automated script 15 s 8 s

Total data points stored 75660 23520

Number of neurons in network 200 100

Total number of training samples 5000 5000

Average CPU time for training network, including data extraction 280 s 170 s

Total pre-computation time, including data generation and training 87 hrs 18 hrs

Size of data recorded from FEM 8Gb 6Gb

Size of data extracted for training networks 501 Mb 170 Mb

Size of neural networks 5.4Mb 2.02 Mb

Time for deformation computation in real time (average time for computation of
deformation at Nfree nodes when one node is displaced) 6.5×10−3 s(154 fps) 2.9 ×10−3 s (345 fps)

Time for force computation in real time (average time to compute the reaction force at the
node which is displaced) 1.5×10−6 1.5 ×10−6
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Table 2
Mesh details for successive subdivision

Subdivision Level Index of selected vertex Vertices Triangles Simulation time

0 102 596 1188 0.00936

1 502 2378 4752 0.03748

2 1497 9506 19008 0.15000

3 4699 38018 76032 0.59940
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