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Abstract
We introduce a new iterative process which can be seen as a hybrid of Picard and
Mann iterative processes. We show that the new process converges faster than all of
Picard, Mann and Ishikawa iterative processes in the sense of Berinde (Iterative
Approximation of Fixed Points, 2002) for contractions. We support our analytical proof
by a numerical example. We prove a strong convergence theorem with the help of
our process for the class of nonexpansive mappings in general Banach spaces and
apply it to get a result in uniformly convex Banach spaces. Our weak convergence
results are proved when the underlying space satisfies Opial’s condition or has
Fréchet differentiable norm or its dual satisfies the Kadec-Klee property.
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1 Introduction and preliminaries
Let C be a nonempty convex subset of a normed space E, and let T : C → C be a mapping.
Throughout this paper, N denotes the set of all positive integers, I the identity mapping
on C and F(T) the set of all fixed points of T .
The Picard or successive iterative process [] is defined by the sequence {un}:

⎧⎨
⎩
u = u ∈ C,

un+ = Tun, n ∈ N.
(.)

The Mann iterative process [] is defined by the sequence {vn}:
⎧⎨
⎩
v = v ∈ C,

vn+ = ( – αn)vn + αnTvn, n ∈N,
(.)

where {αn} is in (, ).
The sequence {zn} defined by

⎧⎪⎪⎨
⎪⎪⎩

z = z ∈ C,

zn+ = ( – αn)zn + αnTyn,

yn = ( – βn)zn + βnTzn, n ∈N,

(.)

where {αn} and {βn} are in (, ), is known as the Ishikawa iterative process [].
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The Ishikawa process can be seen as a ‘double Mann iterative process’ or ‘a hybrid of
Mann process with itself ’. In this paper, we introduce a new process which we call ‘Picard-
Mann hybrid iterative process’. Our process for onemapping case is given by the sequence
{xn}

⎧⎪⎪⎨
⎪⎪⎩

x = x ∈ C,

xn+ = Tyn,

yn = ( – αn)xn + αnTxn, n ∈N,

(.)

where {αn} is in (, ). This process is independent of all Picard, Mann and Ishikawa iter-
ative processes since {αn} and {βn} are in (, ). Even if it is allowed to take αn =  to make
it a special case of the Ishikawa iterative process, our process is faster than Ishikawa and
‘faster is better’ rule should prevail.
The purpose of this paper is to prove that our process (.) converges faster than all of

Picard, Mann and Ishikawa iterative processes for contractions in the sense of Berinde
[]. We support our analytical proof by a numerical example. We also prove a strong con-
vergence theorem with the help of our process for the class of nonexpansive mappings in
general Banach spaces and apply it to get a result in uniformly convex Banach spaces. We
also prove someweak convergence results when the underlying space satisfies Opial’s con-
dition or has the Fréchet differentiable norm or its dual satisfies the Kadec-Klee property.
Let S = {x ∈ E : ‖x‖ = }, and let E∗ be the dual of E. The space E has (i) Gâteaux differ-

entiable norm if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x and y in S; (ii) Fréchet differentiable norm if for each x in S, the above limit
exists and is attained uniformly for y in S, and in this case, it is also well known that

〈
h, J(x)

〉
+


‖x‖ ≤ 


‖x + h‖ ≤ 〈

h, J(x)
〉
+


‖x‖ + b

(‖h‖) (.)

for all x, h in E, where J is the Fréchet derivative of the functional 
‖ · ‖ at x ∈ X, 〈·, ·〉 is

the dual pairing between E and E∗, and b is an increasing function defined on [,∞) such
that limt↓ b(t)

t = ; (iii) Opial’s condition [] if for any sequence {xn} in E, xn ⇀ x implies
that lim supn→∞ ‖xn – x‖ < lim supn→∞ ‖xn – y‖ for all y ∈ E with y �= x; and (iv) the Kadec-
Klee property if for every sequence {xn} in E, xn ⇀ x and ‖xn‖ → ‖x‖ together imply xn →
x as n → ∞. Examples of Banach spaces satisfying Opial’s condition are Hilbert spaces
and all spaces lp ( < p < ∞). On the other hand, Lp[, π ] with  < p �=  fail to satisfy
Opial’s condition. Uniformly convex Banach spaces, Banach spaces of finite dimension
and reflexive locally uniform convex Banach spaces are some of the examples of reflexive
Banach spaces which satisfy the Kadec-Klee property.
A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in C and each

x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.

Lemma  [] Suppose that E is a uniformly convex Banach space and  < p ≤ tn ≤ q <
 for all n ∈ N. Let {xn} and {yn} be two sequences of E such that lim supn→∞ ‖xn‖ ≤
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r, lim supn→∞ ‖yn‖ ≤ r and limn→∞ ‖tnxn + ( – tn)yn‖ = r hold for some r ≥ . Then
limn→∞ ‖xn – yn‖ = .

Lemma  [] Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space, and let T : C → C be a nonexpansive mapping. Then there is a strictly in-
creasing and continuous convex function g : [, )→ [, ) with g() =  such that

g
(∥∥T(

tx + ( – t)y
)
–

(
tTx + ( – t)Ty

)∥∥) ≤ ‖x – y‖ – ‖Tx – Ty‖

for all x, y ∈ C and t ∈ [, ].

Lemma  [] Let E be a uniformly convex Banach space satisfying Opial’s condition, and
let C be a nonempty closed convex subset of E. Let T : C → C be a nonexpansive mapping.
Then I – T is demiclosed with respect to zero.

Lemma  [] Let E be a reflexive Banach space such that E∗ has the Kadec-Klee prop-
erty. Let {xn} be a bounded sequence in E and x∗, y∗ ∈ W = ωw(xn) (weak limit set of {xn}).
Suppose that limn→∞ ‖txn + ( – t)x∗ – y∗‖ exists for all t ∈ [, ]. Then x∗ = y∗.

The following definitions about the rate of convergence are due to Berinde []. See also
Sahu [].

Definition  Let {an} and {bn} be two sequences of real numbers converging to a and b
respectively. If

lim
n→∞

|an – a|
|bn – b| = ,

then {an} converges faster than {bn}.

Definition  Suppose that for two fixed-point iterative processes {un} and {vn}, both con-
verging to the same fixed point p, the error estimates

‖un – p‖ ≤ an for all n ∈N,

‖vn – p‖ ≤ bn for all n ∈ N,

are available where {an} and {bn} are two sequences of positive numbers converging to
zero. If {an} converges faster than {bn}, then {un} converges faster than {vn} to p.

In the sequel, whenever we talk of rate of convergence, we mean the one given by the
above definitions.

2 Rate of convergence
We now show that (.) converges at a rate faster than all of Picard (.), Mann (.) and
Ishikawa (.) iterative processes for contractions.

Proposition  Let C be a nonempty closed convex subset of a normed space E, and let
T be a contraction of C into itself. Suppose that each of the iterative processes (.), (.),

http://www.fixedpointtheoryandapplications.com/content/2013/1/69
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(.) and (.) converges to the same fixed point p of T where {αn} and {βn} are such that
 < λ ≤ αn,βn <  for all n ∈ N and for some λ. Then the iterative process given by (.)
converges faster than all the other three processes.

Proof Let p be a fixed point of T . Then for Picard iterative process (.), we have

‖un+ – p‖ = ‖Tun – p‖
≤ δ‖un – p‖
...

≤ δn‖u – p‖.

Let

an = δn‖u – p‖.

Mann iterative process (.) gives

‖vn+ – p‖ =
∥∥( – αn)(vn – p) + αn(Tvn – p)

∥∥
≤ ( – αn)‖vn – p‖ + αnδ‖vn – p‖
=

(
 – ( – δ)αn

)‖vn – p‖
≤ (

 – ( – δ)λ
)‖vn – p‖

...

≤ (
 – ( – δ)λ

)n‖v – p‖.

Let

bn =
(
 – ( – δ)λ

)n‖v – p‖.

Our process (.) gives

‖xn+ – p‖ = ‖Tyn – p‖
≤ δ‖yn – p‖
≤ δ

∥∥( – αn)(xn – p) + αn(Txn – p)
∥∥

= δ
[
( – αn)‖xn – p‖ + αnδ‖xn – p‖]

= δ
(
 – ( – δ)αn

)‖xn – p‖
≤ δ

(
 – ( – δ)λ

)‖xn – p‖
...

≤ [
δ
(
 – ( – δ)λ

)]n‖x – p‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/69


Khan Fixed Point Theory and Applications 2013, 2013:69 Page 5 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/69

Let

cn =
[
δ
(
 – ( – δ)λ

)]n‖x – p‖.

Now cn
an = [δ(–(–δ)λ)]n‖x–p‖

δn‖u–p‖ = [( – ( – δ)λ)]n ‖x–p‖
‖u–p‖ →  as n → ∞. Thus {xn} converges

faster than {un} to p. Similarly, cn
bn = [δ(–(–δ)λ)]n‖x–p‖

(–(–δ)λ)n‖v–p‖ = δn
‖x–p‖
‖v–p‖ →  as n → ∞. It is not

difficult to prove that for the Ishikawa iterative process, we have ‖zn+ –p‖ ≤ (– (– δ)λ–
(– δ)λδ)n‖z –p‖ ≤ (– (– δ)λ)n‖z –p‖, and hence {xn} converges faster than {zn} to p.
Summing up, we conclude that our process (.) converges faster than all of Picard (.),

Mann (.) and Ishikawa (.) iterative processes. �

We support our above analytical proof by a numerical example.

Example  Let E = R and C = [,∞). Let T : C → C be an operator defined by T(x) =√
x – x +  for all x ∈ C. It is not difficult to show thatT is a contraction. Choose αn = 

 ,
βn = 

 for all n with initial value x = . In order to compare our iterative process (.)
with those of Picard, Mann and Ishikawa, first ten iterations for all these have been given
in Table . All the processes converge to the same fixed point p = . It is clear from Table 
that our process converges faster than all above mentioned processes up to an accuracy of
seven decimal places.

Remark The above calculations have been repeated by taking different values of param-
eters αn and βn. It has been verified every time that our iterative process (.) converges
faster than all Picard, Mann and Ishikawa iterative processes. Moreover, it has been ob-
served that as the values of αn and βn go far below . and near  (above . and near ),
the convergence gets slower (faster), and it happens with every scheme except Picard as it
has nothing to do with these parameters. For example, when αn = 

 , βn = 
 for all n, the

values for the above four processes at the tenth iteration become ., .,
., ., respectively. The accuracy of seven decimal places is obtained
by our process at the th iteration. The values at this iteration for the above processes
are ., ., ., .. By the way, for αn = 

 , βn = 
 for all n,

at the th iteration, we get ., ., . and ., respec-
tively.

Table 1 A comparison of our process with other processes

Iteration # Our process Picard Mann Ishikawa

0 20.0000000 20.0000000 20.0000000 20.0000000
1 14.4083240 16.7332005 17.5499004 15.80624301
2 9.5775523 13.6431080 15.1937181 11.99368021
3 6.3006224 10.8161699 12.9625372 8.825342023
4 5.1644139 8.3940558 10.9011812 6.663235026
5 5.0139785 6.5808606 9.0727196 5.592734334
6 5.0011241 5.5372233 7.5572746 5.192320075
7 5.0000900 5.1344966 6.4300222 5.060469879
8 5.0000072 5.0286263 5.7089159 5.018828059
9 5.0000006 5.0058038 5.3185940 5.005844634
10 5.0000000 5.0011640 5.1346469 5.0018126
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3 Convergence results in uniformly convex Banach spaces
In this section, we use the iterative process (.) for nonexpansivemappings to prove some
convergence theorems.

Lemma Let C be a nonempty closed convex subset of a uniformly convex Banach space E.
Let T be a nonexpansivemapping of C. Let {αn} be such that  < a ≤ αn ≤ b <  for all n ∈N

and for some a, b. Let {xn} be defined by the iterative process (.). Then
(i) limn→∞ ‖xn – q‖ exists for all q ∈ F(T).
(ii) limn→∞ ‖xn – Txn‖ = .

Proof Let q ∈ F(T). Then

‖yn – q‖ =
∥∥( – αn)xn + αnTxn – q

∥∥
≤ ( – αn)‖xn – q‖ + αn‖Txn – q‖
≤ ‖xn – q‖, (.)

and so

‖xn+ – q‖ = ‖Tyn – q‖
≤ ‖yn – q‖
≤ ‖xn – q‖.

This shows that {‖xn – q‖} is decreasing, and this proves part (i). Let

lim
n→∞‖xn – q‖ = c. (.)

To prove part (ii), we first prove that limn→∞ ‖yn – q‖ = c.
Since ‖xn+ – q‖ ≤ ‖yn – q‖, therefore

lim inf
n→∞ ‖xn+ – q‖ ≤ lim inf

n→∞ ‖yn – q‖,

and so

c≤ lim inf
n→∞ ‖yn – q‖. (.)

On the other hand, (.) implies that

lim sup
n→∞

‖yn – q‖ ≤ c.

Reading it together with (.), we get

lim
n→∞‖yn – q‖ = c. (.)

Next, ‖Txn – q‖ ≤ ‖xn – q‖ implies that

lim sup
n→∞

‖Txn – q‖ ≤ c. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/69
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Using (.), (.), (.) and Lemma , we obtain

lim
n→∞‖xn – Txn‖ = . �

Lemma  For any p,p ∈ F(T), limn→∞ ‖txn + ( – t)p – p‖ exists for all t ∈ [, ] under
the conditions of Lemma .

Proof By Lemma , limn→∞ ‖xn –p‖ exists for all p ∈ F(T), and therefore {xn} is bounded.
Thus there exists a real number r >  such that {xn} ⊆D≡ Br()∩C, so that D is a closed
convex nonempty subset of C. Put

fn(t) =
∥∥txn + ( – t)p – p

∥∥

for all t ∈ [, ]. Then limn→∞ fn() = ‖p – p‖ and limn→∞ fn() = limn→∞ ‖xn – p‖ exist.
Let t ∈ (, ).
Define Bn :D→ D by

Bnx = TAnx,

Anx = ( – αn)x + αnTx.

Then Bnxn = xn+, Bnp = p for all p ∈ F(T). It is not hard to show that

‖Anx –Any‖ ≤ ‖x – y‖

and

‖Bnx – Bny‖ ≤ ‖x – y‖.

Set

Rn,m = Bn+m–Bn+m– · · ·Bn, m ≥ 

and

vn,m =
∥∥Rn,m

(
txn + ( – t)p

)
–

(
tRn,mxn + ( – t)p

)∥∥.

Now

‖Rn,mx – Rn,my‖ ≤ ‖Bn+m–Bn+m– · · ·Bnx – Bn+m–Bn+m– · · ·Bny‖
≤ ‖Bn+m– · · ·Bnx – Bn+m– · · ·Bny‖
≤ ‖Bn+m– · · ·Bnx – Bn+m– · · ·Bny‖
...

≤ ‖x – y‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/69
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Moreover, Rn,mxn = xn+m and Rn,mp = p for all p ∈ F(T). By Lemma , there exists a strictly
increasing continuous function g : [, ) → [, ) with g() =  such that

g(vn,m) = ‖xn – p‖ – ‖Rn,mxn – Rn,mp‖
= ‖xn – p‖ – ‖xn+m – p‖.

Since limn→∞ ‖xn – p‖ exists for all p ∈ F(T), g(vn,m) →  as n → ∞. Hence vn,m →  as
n→ ∞.
Finally, from the inequality

fn+m(t) =
∥∥txn+m + ( – t)p – p

∥∥

≤ vn,m +
∥∥Rn,m

(
txn + ( – t)p

)
– p

∥∥

≤ vn,m +
∥∥txn + ( – t)p – p

∥∥

= vn,m + fn(t),

we have lim supm→∞ fn+m(t)≤ lim supm→∞ vn,m + fn(t).
Now limn→∞ lim supm→∞ vn,m =  implies

lim sup
n→∞

fn(t) ≤ lim inf
n→∞ fn(t),

so that limn→∞ ‖txn + ( – t)p – p‖ exists for all t ∈ [, ]. �

Lemma  Assume that all the conditions of Lemma  are satisfied. Then, for any p,p ∈
F(T), limn→∞〈xn, J(p – p)〉 exists; in particular, 〈p– q, J(p – p)〉 =  for all p,q ∈ ωw(xn),
the set of all weak limits of {xn}.

Proof The proof is the same as that of Lemma . of [] and is therefore omitted here.
�

We now give our weak convergence theorem.

Theorem  Let E be a uniformly convex Banach space, and let C, T and {xn} be taken as
in Lemma . Assume that (a) E satisfies Opial’s condition or (b) E has a Fréchet differen-
tiable norm, or (c) the dual E∗ of E satisfies the Kadec-Klee property. If F(T) �= φ, then {xn}
converges weakly to a point of F(T).

Proof Let p ∈ F(T). Then limn→∞ ‖xn – p‖ exists as proved in Lemma . By the bounded-
ness of {xn} and reflexivity of E, we have a subsequence {xni} of {xn} that converges weakly
in C. We prove that {xn} has a unique weak subsequential limit in F(T). For this, let u
and v be weak limits of the subsequences {xni} and {xnj} of {xn}, respectively. By Lemma ,
limn→∞ ‖xn–Txn‖ =  and I –T is demiclosed with respect to zero by Lemma ; therefore,
we obtain Tu = u. Again, in the same fashion, we can prove that v ∈ F(T). Next, we prove
the uniqueness. To this end, first assume (a) is true. If u and v are distinct, then by Opial’s

http://www.fixedpointtheoryandapplications.com/content/2013/1/69
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condition,

lim
n→∞‖xn – u‖ = lim

ni→∞‖xni – u‖
< lim

ni→∞‖xni – v‖
= lim

n→∞‖xn – v‖
= lim

nj→∞‖xnj – v‖

< lim
nj→∞‖xnj – u‖

= lim
n→∞‖xn – u‖.

This is a contradiction, so u = v. Next assume (b). By Lemma , 〈p – q, J(p – p)〉 =  for
all p,q ∈ ωw(xn). Therefore ‖u – v‖ = 〈u – v, J(u – v)〉 =  implies u = v. Finally, say (c) is
true. Since limn→∞ ‖txn + ( – t)u – v‖ exists for all t ∈ [, ] by Lemma , therefore u = v
by Lemma . Consequently, {xn} converges weakly to a point of F and this completes the
proof. �

A mapping T : C → C, where C is a subset of a normed space E, is said to satisfy Con-
dition (I) [] if there exists a nondecreasing function f : [,∞) → [,∞) with f () = ,
f (r) >  for all r ∈ (,∞) such that ‖x–Tx‖ ≥ f (d(x,F(T))) for all x ∈ C, where d(x,F(T)) =
inf{‖x – p‖ : p ∈ F(T)}.

Theorem  Let E be a real Banach space, and let C, T , {xn} be taken as in Lemma . Then
{xn} converges to a point of F(T) if and only if lim infn→∞ d(xn,F(T)) = ,where d(x,F(T)) =
inf{‖x – p‖ : p ∈ F(T)}.

Proof Necessity is obvious. Suppose that lim infn→∞ d(xn,F(T)) = . As proved in Lem-
ma , limn→∞ ‖xn –w‖ exists for all w ∈ F(T); therefore, limn→∞ d(xn,F(T)) exists. But by
the hypothesis, lim infn→∞ d(xn,F(T)) = , we have limn→∞ d(xn,F(T)) = . On lines simi-
lar to [], {xn} is a Cauchy sequence in a closed subset C of a Banach space E; therefore, it
must converge to a point in C. Let limn→∞ xn = q. Now limn→∞ d(xn,F(T)) =  gives that
d(q,F(T)) = . Thus q ∈ F(T). �

Note that this condition is weaker than the requirement that T is demicompact or C
is compact, see []. Applying Theorem , we obtain a strong convergence of the process
(.) under Condition (I) as follows.

Theorem  Let E be a real uniformly convex Banach space, and let C, T , {xn} be taken as
in Lemma . Let T satisfy Condition (I), then {xn} converges strongly to a fixed point of T .

Proof We proved in Lemma  that

lim
n→∞‖xn – Txn‖ = . (.)

From Condition (I) and (.), we get

lim
n→∞ f

(
d
(
xn,F(T)

)) ≤ lim
n→∞‖xn – Txn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/69
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That is,

lim
n→∞ f

(
d
(
xn,F(T)

))
= .

Since f : [,∞) → [,∞) is a nondecreasing function satisfying f () = , f (r) >  for all
r ∈ (,∞), therefore we have

lim
n→∞d

(
xn,F(T)

)
= .

Now all the conditions of Theorem  are satisfied; therefore, by its conclusion, {xn} con-
verges strongly to a point of F(T). �
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