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Abstract

Deep neural networks have demonstrated their power in

many computer vision applications. State-of-the-art deep

architectures such as VGG, ResNet, and DenseNet are

mostly optimized by the SGD-Momentum algorithm, which

updates the weights by considering their past and cur-

rent gradients. Nonetheless, SGD-Momentum suffers from

the overshoot problem, which hinders the convergence of

network training. Inspired by the prominent success of

proportional-integral-derivative (PID) controller in auto-

matic control, we propose a PID approach for accelerat-

ing deep network optimization. We first reveal the intrinsic

connections between SGD-Momentum and PID based con-

troller, then present the optimization algorithm which ex-

ploits the past, current, and change of gradients to update

the network parameters. The proposed PID method reduces

much the overshoot phenomena of SGD-Momentum, and it

achieves up to 50% acceleration on popular deep network

architectures with competitive accuracy, as verified by our

experiments on the benchmark datasets including CIFAR10,

CIFAR100, and Tiny-ImageNet.

1. Introduction

Benefitting from the availability of large-scale visual

datasets such as ImageNet [1], deep neural networks

(DNN), especially deep convolutional neural networks

(CNNs), have significantly improved the system accuracy

in many computer vision problems, such as image classi-
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fication [2], object detection [3], and face recognition [4],

etc. Despite the great successes of deep learning, the train-

ing of deep networks on large-scale datasets is usually com-

putationally expensive, costing several days or even weeks

using GPU equipped high-end PCs. It is substantially im-

portant to investigate how to accelerate the training speed

of deep models without sacrificing the accuracy, which can

save the time and memory cost, particularly for resource

limited applications.

The key component of DNN training is the optimizer,

which defines how the millions or even billions of parame-

ters of a deep model are updated. The learning rate is one of

the most important hyper-parameters to train a DNN [5].

Based on how the learning rate is set, deep learning op-

timizers can be categorized into two groups, hand-tuned

learning rate optimizers such as stochastic gradient descent

(SGD) [6], SGD Momentum [7] and Nesterov′s Momen-

tum [7], and auto learning rate optimizers such as Ada-

Grad [8], RMSProp [9] and Adam [10], etc. Auto learning

rate optimizers adaptively tune an individual learning rate

for each parameter. Such a goal of fine adaptation is attrac-

tive and it is expected to yield better deep model learning

results. However, the recent findings by Wilson et al. [11]

show that hand-tuned SGD-Momentum achieves better re-

sult at the same speed or even faster speed. The hypothe-

sis put forth here is that adaptive methods may converge

to different local minima [12]. It is also noted that most of

the best-performance deep models such as ResNet [13] and

DenseNet [14] are usually trained by SGD-Momentum.

The strategy of SGD-Momentum is to consider both the

past and present gradients to update the network parame-

ters. However, SGD-Momentum suffers from the overshoot

problem [15], which refers to the phenomena that a weight′s

value exceeds much its target value and does not change its

update direction. Such an overshoot problem hinders the
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convergence of SGD-Momentum, and costs more training

time and resources. It is of significant importance to inves-

tigate whether we can design a new DNN optimizer which is

free of overshoot problem and has faster convergence speed

while maintaining good accuracy.

It has been found that many optimization algorithms

popularly employed in machine learning studies share cer-

tain similarity to those classic control methods studied since

1950s [16]. In literature of automatic control, the feedback

control system plays a key role, while the proportional-

integral-derivative (PID) controller is the most commonly

used feedback control mechanism due to its simplicity,

functionality, and broad applicability [17]. More than 90%

of industrial controllers are implemented based on PID [18],

including self-driving car [19], unmanned flying vehi-

cles [20], robotics [21], etc. The basic idea of PID con-

trol is that the control action should be proportional to the

current error (the difference between system output and de-

sired output), the integral of the past error over time, and

the derivative of the error, which represents future trend.

Though PID controller has gained massive successes in

different industries of control and automation, little study

has been done on its connections with stochastic optimiza-

tion, as well as its potential applications to DNN training.

In this paper, we make the first attempt along this line. We

first bridge the gap between PID controller and stochas-

tic optimization methods such as SGD, SGD-Momentum

and Nesterov′s Momentum, and consequently develop a

PID approach for DNN optimization. Compared with SGD-

Momentum which utilizes the past and current gradients,

the proposed PID optimization approach also utilizes the

gradient changes to update the network. We further intro-

duce the Laplace Transform [22] to initialize the hyper-

parameter introduced in our method, resulting in a simple

yet effective stochastic DNN optimization algorithm. The

major contributions of this work are summarized as follows.

• By linking the calculation of errors in feedback con-

trol system and the calculation of gradient in network

updating, we reveal the intrinsic connections between

deep network optimization and feedback system con-

trol, and show that SGD-Momentum is a special case

of PID controller with only proportional (P) and inte-

gral (I) components.

• We then propose a PID approach to optimize DNN by

utilizing the present, past and changing information of

the gradient. The classical Laplace Transform is intro-

duced to understand and initialize the hyper-parameter

in our algorithm.

• We systematically evaluate the proposed approach, and

the extensive experiments on CIFAR10, CIFAR100

and Tiny-Imagenet datasets demonstrate the efficiency

and effectiveness of our PID approach.

The rest of this paper is organized as follows. Section 2

briefly reviews related work. Section 3 connects PID con-

troller with DNN optimization. Section 4 introduces the

proposed PID approach for DNN optimization. Experimen-

tal results and detailed analysis are reported in Section 5.

Section 6 concludes this paper.

2. Related Work

2.1. Deep Learning Optimization

The learning rate is the most important hyper-parameter

to train deep neural networks [9]. Based on how the learning

rate is set, two classes of deep learning optimization meth-

ods can be categorized. The first class indicates fixed learn-

ing rate methods such as SGD [6], SGD Momentum [7],

and Nesterov′s Momentum [7], etc., and the second class

includes auto learning rate methods, such as AdaGrad [8],

RMSProp [9], and Adam [10], etc. Our work is based

on fixed learning rate methods considering that the current

state-of-the-art results on CIFAR10, CIFAR100, ImageNet,

PASCAL VOC and MS COCO datasets were mostly ob-

tained by Residual Neural Networks [13, 14, 23, 24] trained

by use of SGD Momentum.

Stochastic Gradient Descent (SGD) [6] is a widely used

optimization algorithm for machine learning in general, es-

pecially for deep learning. SGD usually uses a fixed learn-

ing rate. This is because the SGD gradient estimator intro-

duces a source of noise (the random sampling of m training

examples), and that noise does not vanish even when the

loss arrives at a minimum.

SGD Momentum [7] is designed to accelerate learning,

especially in the case of small and consistent gradients.

The momentum algorithm accumulates an exponentially

decayed moving average of past gradients and continues to

move in the consistent direction. The name momentum de-

rives from a physical analogy, in which the negative gradi-

ent is a force moving a particle through parameter space. A

hyper-parameter α ∈ (0,1) determines how much the past

gradients to the current update of the weights.

Nesterov′s Momentum [7] is a variant of the momentum

algorithm that was motivated by Nesterov′s accelerated

gradient method [25]. The difference between Nesterov

momentum and regular momentum lies on where the

gradient is evaluated. With Nesterov′s momentum, the

gradient is estimated after the current velocity is applied.

Thus one can interpret Nesterov′s momentum as attempting

to add a correction factor to the standard method of

momentum. Recently, Nesterov′s Momentum method has

been characterized as a second order ordinary differential

equation in the small step limit [26].
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2.2. PID Controller

The PID controller exploits the present, past and future

information of prediction error to control a feedback sys-

tem [18]. PID based controller originates in the 19th cen-

tury for speed control. The theoretical foundation for the

operation of PID was first described by Maxwell in 1868

in his seminal paper “On Governors” [27]. Minorsky [28]

then gave this a mathematical formulation. Over the years,

many advanced control algorithms have also been proposed.

However, most industrial controllers are implemented with

a PID algorithm because it is simple, robust and easy to

use [29]. A PID controller continuously calculates an error

e(t), which is the difference between the desired optimal

output and a measured system output, and applies a correc-

tion u(t) to the system based on the proportional (P), inte-

gral (I), and derivative (D) terms of e(t). Mathematically,

there is:

u(t) = Kpe(t)+Ki

∫ t

0
e(t)dt +Kd

d

dt
e(t), (1)

where Kp, Ki and Kd are the gain coefficients on the P, I and

D terms, respectively.

One can see that the error e(t), defined as the difference

between the desired value and the actual output, has the

same spirit as the gradient used in deep learning optimiza-

tion. The coefficients Kp, Ki and Kd determine the contri-

butions of present, past and future errors to the current cor-

rection. Such analyses inspire us to adapt the PID control

techniques to the field of deep network optimization. To the

best of our knowledge, we are the first to introduce the idea

of PID into the field of deep learning as a new optimizer. As

we will see later in this paper, the proposed optimizer inher-

its fantastic advantages of PID controller and stays simple

and efficient.

3. PID and Deep Network Optimization

In this section, we disclose the connections between PID

control and SGD based deep optimization. Such connec-

tions motivate us to propose a new optimization method to

accelerate the training of DNNs. Updating the weights in a

deep network can be viewed as deploying many PID con-

trollers to drive the system to reach an equilibrium.

3.1. General Connections

In Figure 1, we show the flowchart of a PID controller

based feedback control system, and the flowchart of SGD-

Momentum based DNN optimization. The goal of a control

system is to measure the output system status consecutively

and update it to the desired status by using a control unit.

In feedback control, the output will affect the input quan-

tity, and the controller will make appropriate updates of the

system status based on the error e(t) between the measured

system status and the desired status. To reach this goal, the

PID controller computes a control variable u(t) based on the

current, past and future (i.e., derivative) of the error e(t), as

shown in Eq. (1).

Deep learning aims to learn an approximation function

or mapping function f with parameters θ to map the input x

to the desired output y, i.e., y = f (x,θ), assuming that there

are (complex) relationships or causality between x and y.

With enough training data, deep learning can train a net-

work with millions of parameters (weights w) to fit those

complex relationships which cannot be formulated using

analytical functions. Usually, a loss function L will be de-

fined based on the desired output y and the predicted output

f (x,θ) to measure whether the goal is reached. The loss af-

fects the weights by performing “backward propagation of

errors” [30]. That is, it distributes the error to each node

by calculating the gradients of weights. If the loss L is not

small enough, the network will update its weights θ based

on the gradients ∂L/∂θ . Therefore, it is reasonable to as-

sociate the “error” in PID control with the “gradient” in

DL. This procedure is iterated till L converges or is small

enough. Many optimizers have been proposed to minimize

the loss L by updating θ using the gradients ∂L/∂θ , includ-

ing SGD, SGD-Momentum, Adam, etc.

From the above discussions, we can see that deep net-

work optimization shares high similarity to PID based con-

trol. Both of them update the system/network based on

the difference/loss between actual output and desired out-

put. The feedback in PID control corresponds to the back-

propagation in network optimization. The major difference

is that the PID controller computes the update using sys-

tem error e(t), while deep network optimizers determines

the updates based on gradient ∂L/∂θ . If we view gradient

∂L/∂θ as the incarnation of error e(t), PID controller can

be fully connected with DNN optimization. In the follow-

ing, we will see that SGD, SGD-Momentum and Nesterov′s

Momentum all can be explained as a kind of PID controller.

3.2. SGD is a P Controller

SGD and its variants are probably the most widely used

optimization algorithms for DNN optimization. The param-

eter update rule of SGD from time (i.e., iteration) t to time

t +1 is given by:

θt+1 = θt − r∂Lt/∂θt , (2)

where r is the learning rate. By viewing the gradient

∂Lt/∂θt as error e(t), and comparing Eq. (2) to PID

controller in Eq. (1), one can see that SGD only uses the

present gradient to update the weights. It is a type of P

controller with Kp = r.
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Figure 1. The connection between control system and deep model training, and the connection between PID controller and SGD-

Momentum.

3.3. Momentum Optimization is a PI Controller

SGD-Momentum is able to reach the objective more

quickly than SGD along the small but consistent directions,

resulting in a faster convergence speed. Its parameter

update rule is given by:

{

Vt+1 = αVt − r∂Lt/∂θt

θt+1 = θt +Vt+1,
(3)

where Vt is the accumulation of history gradient, and α ∈
(0,1) is the rate of moving average decay.

With some mathematical tricks (Sum Formula for a Se-

quence of Numbers [31]), we can remove Vt from Eq. (3),

and rewrite the update rule as:

θt+1 = θt − r∂Lt/∂θt − r(
t−1

∑
i=0

(∂Li/∂θiα
t−i)). (4)

One can see that the update of parameters relies on both the

present gradient (r∂Lt/∂θt ) and the integral of past gradi-

ents r ∑
t−1
i=0(∂Li/∂θiα

t−i). The only difference is that there

is a decay term α in the I term. This difference is because

deep learning algorithms use a mini-batch of training ex-

amples to compute the gradient, and thus the gradients are

stochastic. The introduction of decay term α is to forget the

gradients far away from present to reduce noise. Overall,

SGD-Momentum can be viewed as a PI controller.

3.4. Nesterov′s Momentum Optimization is a PI
Controller with larger P

The Nesterov′s Momentum update rule is given by:

{

Vt+1 = αVt − r∂Lt/∂ (θt +αVt)

θt+1 = θt +Vt+1,
(5)

By using a variable transform θ̂t = θt +αVt , and expressing

the update rule in terms of θ̂ , we have:

{

Vt+1 = αVt − r∂Lt/∂ θ̂t

θ̂t+1 = θ̂t +(1+α)Vt+1 −αVt .
(6)

Again, by using the Sum Formula for a Sequence of Num-

bers [31], we can have (the detailed derivation can be found

in the supplementary file):

θ̂t+1 = θ̂t − r(1+α)∂Lt/∂ θ̂t

− rα(α t−i
t−1

∑
i=1

(∂Li/∂ θ̂i)).
(7)

8525



One can see that like SGD-Momentum, the Nesterov′s Mo-

mentum also uses the present gradient and integral of past

gradients to update the parameters, while the gain coeffi-

cient Kp is larger than that in SGD-Momentum.

4. PID based Deep Optimization

4.1. The Overshoot Problem of SGD­Momentum

From Eq. (4) and Eq. (7), one can see that the Mo-

mentum will accumulate history gradients. However, if the

weights should change their descending direction, the his-

tory gradients will lag the update of weights. Such a phe-

nomenon caused by history gradient is called overshoot,

which is defined in discrete-time control systems [15] as

”the maximum peak value of the response curve measured

from the desired response of the system”. Mathematically,

it is defined as:

Overshoot =
θmax −θ ∗

θ ∗ , (8)

where θmax and θ ∗ are the maximum and optimum values

of the weight, respectively.

One commonly used test benchmark of overshoot is the

first function of De Jong′s [32] because it is smooth, uni-

modal, and symmetric. The function can be defined as

f (x) = 0.1x2
1 + 2x2

2, whose search domain is −10 ≤ xi ≤
10, i = 1,2. There is no local minimum but a global mini-

mum of this function: x∗ = (0,0), f (x∗) = 0.
We add a derivative (change of gradient) term to SGD-

Momentum to build a simple PID optimizer:

PID = Momentum+Kd(∂ f (x)/∂xc −∂ f (x)/∂xc−1), (9)

where c is the current iteration number for x. The simula-

tion results by setting different values of Kd in Eq. (9) are

illustrated in Figure 2. The background is the loss-contour

map; the redder, the bigger the loss value is, and the bluer,

the smaller the loss value is. The x-axis and y-axis de-

note x1 and x2, respectively. Both x1 and x2 are initialized

to −10. The yellow line shows the optimization route of

SGD-Momentum, and the red line shows the route of PID

optimizer. One can see that SGD-Momentum has obvious

overshoot problem. With the Kd set to 0.1, 0.5 and 0.93,

respectively, the PID optimizer exploits more ”future” error

(the change of gradients), and largely reduces the overshoot

problem.

4.2. PID Optimizer for DNN

The toy example in Section 4.1 motivates us to propose

a PID optimizer to accelerate the training of DNN. As we

show in Eq. (4), SGD-Momentum is actually a PI con-

troller which uses present and past gradient information. By

adding a derivative term to introduce the future information,

a PID controller can effectively reduce the overshoot prob-

lem, as shown in Figure 2. Considering that the training of

deep models is usually in a mini-batch based manner, which

may introduce noise in the computing of gradients, we also

compute the moving average of the derivative part. The pro-

posed PID optimizer updates parameter θ at iteration (t+1)
by:










Vt+1 = αVt − r∂Lt/∂θt

Dt+1 = αDt +(1−α)(∂Lt/∂θt −∂Lt−1/∂θt−1)

θt+1 = θt +Vt+1 +KdDt+1.

(10)

As can be seen from Eq. (10), however, our optimizer

introduces a hyperparameter Kd compared with SGD-

Momentum. Fortunately, this hyper-parameter Kd can be

well initialized by employing the theory of Laplace Trans-

form [22] with Ziegler-Nichols [33] tuning method, as we

describe in the following section.

4.3. Initialization of Hyper­parameter Kd

The Laplace Transform converts the function of real vari-

able t (time) to a function of complex variable s (frequency).

Denote by F(s) the Laplace transform of f (t). There is

F(s) =
∫ ∞

0
e−st f (t)dt, for s > 0. (11)

Usually F(s) is easier to solve than f (t), and f (t) can be

recovered from F(s) by the Inverse Laplace transform:

f (t) =
1

2πi
lim

T→∞

∫ γ+iT

γ−iT
estF(s)ds

where γ is a real number and i is the unit of imagery part.

In practice, we could decompose a Laplace transform into

known transforms of functions in the Laplace table [34],

which includes most of the commonly used Laplace trans-

forms, and then construct the inverse transform. With

Laplace Transform, we can convert the PID optimizer into

its Laplace transformed functions of s, and then simplify the

algebra. Once we find the transformed solution of F(s), we

can inverse the transform to obtain the required solution f

as a function of t.

A weight of a deep model node is initialized as a scalar

θ0, and it is updated iteratively to reach its optimal value

denoted by θ ∗. Then the optimization of each weight in

DNN can be simplified as a step response (from θ0 to θ ∗) in

control theory. We can use the Laplace Transform as a guide

to set Kd . Denote by θ(t) the time domain change of weight

θ . After some mathematical derivation (please refer to our

supplementary file for the detailed derivation process), we

have:

θ(t) = θ ∗−
(θ ∗−θ0)sin(ωn

√

1−ζ 2t + arccos(ζ ))

eζ ωnt
√

1−ζ 2
, (12)
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Figure 2. The overshoot problem of momentum. The red and yellow lines are the results obtained by PID and SGD-Momentum, respec-

tively.

tmax

θ0

θ∗

θmax

t

θ(t)

Figure 3. The evolution of the weight by PID optimizer

and
{

(Kp +1)/Kd = 2ζ ωn

Ki/Kd = ω2
n

, (13)

where ζ and ωn are damping ratio and natural frequency of

the system, respectively. In Figure 3, we show the evolution

process of a weight as an example of θ(t). From Eq. (13),

we have Ki =
(Kp+1)2

4Kdζ
. One can see that Ki is a monoton-

ically decreasing function of ζ . Refer to the definition of

overshoot in Eq. (8), one can see that ζ is monotonically

decreasing with overshoot. Then Ki is a monotonically in-

creasing function of overshoot. So more history error (Inte-

gral part), more overshoot the system will have. That is the

reason why SGD-Momentum which accumulates past gra-

dients will overshoot its target and spend more time during

training.

As can be observed from Eq. (12), the term

sin(ωn

√

1−ζ 2t + arccos(ζ )) brings periodically oscilla-

tion change to the weight, which is no more than 1. The

term e−ζ ωnt mainly controls the convergence rate. One

should note the value of hyper-parameter Kd in calculat-

ing the derivate e−ζ ωn = e
−Kp+1

2Kd . It is easy to observe that

the larger the derivate, the earlier the training convergence

we will reach. However, when Kd gets too large, the sys-

tem will be fragile. In practice, we set the hyper-parameter

Kd based on the Ziegler-Nichols optimum setting rule [33],

which is widely used by engineers in PID feedback control

since its origin in 1940s.

According to Ziegler-Nichols′ rule, the ideal setup of

Kd should be one third of the oscillation period, which

means Kd = 1
3
T , where T is the period of oscillation. From

Eq. (12), we can get T = 2π

ωn

√
1−ζ 2

. If we make a simplifica-

tion that the α in Momentum is equal to 1, then Ki =Kd = r.

Combined with Eq. (13), Kd will have a closed form solu-

tion:

Kd = 0.25r+0.5+(1+
16

9
π2)/r (14)

In practice, we can start with this ideal setting of Kd

and change it slightly when use different network models

to train on different datasets.

5. Experimental Results

In this section, we first trained an MLP on the MNIST

handwritten digit dataset in Section 5.2 to show the advan-

tage of PID optimizer, and then trained CNNs on the CI-

FAR datasets in Section 5.3 to demonstrate that PID opti-

mizer is competitive with SGD-Momentum in accuracy but

with much faster training speed. To further validate our PID

optimizer on a larger dataset, in Section 5.4 we performed

experiments on the Tiny-Imagenet dataset [36]. The results

showed that our PID optimizer can generalize to modern

networks and datasets. It should be noted that except for

the additional hyper-parameter Kd which is set by Eq.(14),

all the other hyper-parameters in our PID optimizer are set

as the same as SGD-Momentum. The learning rate starts

from 0.01 and is divided by 10 when the error plateaus. The

source code of our PID optimizer can be found at https:

//github.com/tensorboy/PIDOptimizer.
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Table 1. Test errors and training epochs of PID and SGD-Momentum on CIFAR10 and CIFAR100.

Model Depth-k Params (M) Runs CIAFR10 Epochs CIFAR100 Epochs

- - - - PID/SGD-M PID/SGD-M PID/SGD-M PID/SGD-M

Resnet [13]
110 1.7 5 6.23/6.43 239/281 24.95/25.16 237/293

1202 10.2 5 7.81/7.93 230/293 27.93/27.82 251/296

PreActResNet [23] 164 1.7 5 5.23/5.46 230/271 24.17/24.33 241/282

ResNeXt29 [35]
8-64 34.43 10 3.65/3.43 221/294 17.46/17.77 232/291

16-64 68.16 10 3.42/3.58 209/289 17.11/17.31 229/283

WRN [24]
16-8 11 10 4.42/4.81 213/290 21.93/22.07 229/283

28-20 36.5 10 4.27/4.17 208/290 20.21/20.50 221/295

DenseNet [14]
100-12 0.8 10 3.83/4.30 196/291 19.97/20.20 213/294

190-40 25.6 10 3.11/3.32 194/293 16.95/17.17 208/297

5.1. Dataset

MNIST dataset: The MNIST dataset [37] contains 60,000

training samples and 10,000 test samples of the handwrit-

ten digits from 0 to 9. The images are of 28×28 pixels and

in grey level format.

CIFAR Dataset: The CIFAR10 and CIFAR100

datasets [38] consist of 60,000 RGB color images of

resolution 32×32, drawn from 10 and 100 classes, respec-

tively, and both split into 50,000 training and 10,000 test

images. For data augmentation, we performed horizontal

flips and random crops on the original image padded by 4

pixels on each side.

Tiny ImageNet Dataset: The Tiny-ImageNet [36] dataset

has 200 classes. Each class has 500 training images, 50

validation images, and 50 test images. The Tiny-ImageNet

is more difficult than the CIFAR datasets because more

classes are involved, and the relevant objects to be classified

often cover only a tiny subspace of the image.

5.2. Results of MLP on MNIST dataset

We first trained a simple MLP network on the MNIST

handwritten digit classification dataset using the proposed

PID optimizer and compare it with SGD-Momentum [7].

The MLP network is with ReLU nonlinearity and 1,000

hidden nodes in the hidden layer, followed by the softmax

output layer on top. The training was on mini-batches with

128 images per batch for 20 epochs through the training set.

We run the experiments for 10 times and reported the aver-

age results. The detailed training statistics by the two meth-

ods are illustrated in Figure 4, from which we can see that

PID optimizer not only converges more quickly than SGD-

Momentum with lower loss and higher accuracy, but also

has higher generalization ability on the validation dataset.

On the test dataset, PID optimizer achieves 98% accuracy

and SGD-Momentum achieves an accuracy of 97.5%.
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Figure 4. PID vs. SGD-Momentum on the MNIST dataset for 20

epochs. Top row: the curves of training loss and validation loss.

Bottom row: the curves of training accuracy and validation accu-

racy.
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Figure 5. PID vs. SGD-Momentum on the CIFAR10 dataset by

using DenseNet 190-40. Top row: the curves of training loss and

validation loss. Bottom row: the curves of training accuracy and

validation accuracy.
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5.3. Results on CIFAR datasets

We then compared PID and SGD-Momentum optimizers

on CIFAR10 and CIFAR100 by using five state-of-the-art

CNN models, including ResNet [13], PreActResNet [23],

ResNeXt29 [35], WRN [24], and DenseNet [14]. The re-

sults are summarized in Table 1. The second column lists

the number of depth of those networks, while the third col-

umn lists the number of parameters for each network model.

The fourth column indicates the number of runs to calcu-

late the average test error. In the fifth and sixth columns

of Table 1, we presented the average test errors on CI-

FAR10 and showed the numbers of Epochs by PID and

SGD-Momentum when they achieve the reported test errors

for the first time (i.e., the least number of Epochs to reach

the best accuracy). The last two columns of Table 1 present

such comparisons on CIFAR100.

From Table 1, we can have the following observations.

First, our proposed PID optimizer achieves lower test errors

than SGD-Momentum for all the used CNN architectures

on both the two CIFAR datasets, except for ResNet with

depth 1202. Second, PID optimizer converges faster (with

less Epochs) than SGD-Momentum to reach the best results.

In particular, our PID optimizer has on average 35% and

up to 50% acceleration compared with SGD-Momentum.

This demonstrates the importance of the change of gradi-

ent, which can be exploited to reduce the overshoot prob-

lem and speed up the learning process of DNNs. Figure 5

shows the detailed training statistics by the two methods on

CIFAR10 with DenseNet 190-40 (190 layers with growth

rate of 40) [14]. One can see that PID optimizer converges

faster than SGD-Momentum with lower loss and higher ac-

curacy.

5.4. Experiments on Tiny­ImageNet

To further demonstrate the effectiveness of our PID op-

timizer, we employed the DenseNet190-40 architecture to

perform experiments on the Tiny-ImageNet dataset. Fig-

ure 6 shows the curves of training loss and accuracy over

Epochs, as well as the validation loss and accuracy by the

PID and SGD-Momentum optimizers. The learning rate of

SGD-Momentum and PID was fixed to 0.01. Training was

conducted 150 epochs using batch size 64. The results are

averaged over 5 runs.

Similar conclusions to those on CIFAR datasets can be

made. In both training and validation, PID converges faster

than SGD-Momentum, has lower loss and achieves higher

accuracy. Such results confirm the generalization capability

of PID based DNN optimizer to large-scale datasets.

6. Conclusion

Inspired by the prominent success of PID controller in
the field of automatic control, we investigated its connec-
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Figure 6. PID vs. SGD-Momentum on the Tiny-imagenet dataset

by using DenseNet 190-40. Top row: the curves of training loss

and validation loss. Bottom row: the curves of training accuracy

and validation accuracy.

tions with stochastic optimizers such as SGD and its vari-
ants, and presented a novel PID controller approach to deep
network optimization. The proposed PID optimizer exploits
the present, past and change information of gradients to up-
date the network parameters, reducing greatly the overshoot
problem of SGD-momentum and accelerating the learning
process of DNNs. Our experiments on MINIST, CIFAR and
Tiny-ImageNet datasets validated that the proposed PID op-
timizer is 30%∼ 50% faster than SGD-Momentum, whiling
resulting in lower error rate. In future work, we will inves-
tigate how to adapt our PID optimizer to other network ar-
chitectures such as LSTM and RNN, and how to associate
PID optimizer with an adaptive learning rate for DNN opti-
mization.
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