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Abstract

We introduce the use of the Zig-Zag sampler to the problem of sampling conditional diffusion processes (diffusion bridges). The

Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov

process. Similar to the Lévy–Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated

Faber–Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of

the fully local algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph

of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance

of the proposed methods in a number of examples.

Keywords Diffusion bridge · Conditional diffusion · Diffusion process · Faber–Schauder basis · Intractable target density ·
Local Zig-Zag sampler · Piecewise deterministic Monte Carlo · High-dimensional simulation

1 Introduction

Diffusion processes are an important class of continuous-

time probability models which find applications in many

fields such as finance, physics and engineering. They nat-

urally arise by adding Gaussian random perturbations (white

noise) to deterministic systems. We consider diffusions

described by a one-dimensional stochastic differential equa-

tion of the form

dX t = b(X t )dt + dWt , X0 = u, (1)

where (Wt )t≥0 is a driving scalar Wiener process defined

in some probability space and b is the drift of the process.

The solution of Eq. (1), assuming it exists, is an instance

of one-dimensional time-homogeneous diffusion. We aim to

sample X on [0, T ] conditional on {XT = v}, also known as

a diffusion bridge.
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One driving motivation for studying this problem is esti-

mation for discretely observed diffusions. Here, one assumes

observations D = {xt1 , . . . , xtN
} at observations times t1 <

. . . < tN are given and interest lies in estimation of a parame-

ter θ appearing in the drift b. It is well known that this problem

can be viewed as a missing data problem as in Peters and With

(2012), where one iteratively imputes the missing paths con-

ditional on the parameter and the observations, and then the

parameter conditional on the “full” continuous path. Due to

the Markov property, the missing paths in between subse-

quent observations can be sampled independently and each

of such segments constitutes a diffusion bridge. As this appli-

cation requires sampling iteratively many diffusion bridges,

it is crucial to have a fast algorithm for this step. We achieve

this by adapting the Zig-Zag sampler for the simulation of

diffusion bridges. The Zig-Zag sampler is an innovative non-

reversible and rejection-free Markov process Monte Carlo

algorithm which can exploit the structure present in this

high-dimensional sampling problem. It is based on simu-

lating a piecewise deterministic Markov process (PDMP).

To the best of our knowledge, this is the first application of

PDMPs for diffusion bridge simulation. This method also

illustrates the use of a local version of the Zig-Zag sampler

in a genuinely high-dimensional setting (arguably even an

infinite-dimensional setting).

The problem of diffusion bridge simulation has received

considerable attention over the past two decades, see, for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-021-10008-8&domain=pdf
http://orcid.org/0000-0003-0185-5804
http://orcid.org/0000-0002-2026-261X
http://orcid.org/0000-0001-7246-8612
http://orcid.org/0000-0003-3310-7915


37 Page 2 of 21 Statistics and Computing (2021) 31 :37

example, Bladt and Sørensen (2014), Beskos et al. (2006),

Roberts and Tweedie (1996), van der Meulen et al. (2018),

and Bierkens (2020) and references therein. This far from

exhaustive list of references includes methods that apply

to a more general setting than considered here, such as

multivariate diffusions, conditioning on partial observations

and hypo-elliptic diffusions. Among the methods that can

be applied, most of the methodologies available are of the

acceptance–rejection type and scale poorly with respect to

some parameters of the diffusion bridge. For example, if the

proposed path is not informed by the target distribution, the

probability of accepting the path depends strongly on the

discrepancy between the proposed path and the target dif-

fusion bridge measure and usually scales poorly as the time

horizon of the diffusion bridge T grows. In contrast, gradient-

based techniques which compute informed proposals (e.g.

Metropolis-adjusted Langevin algorithm) require the evalu-

ation of the gradient of the target distribution, which, in this

case, is a path integral that has to be generally computed

numerically and its computational cost is of order T , lead-

ing to computational limitations. The present work aims to

alleviate such restrictions through the use of a rejection-free

method and an exact subsampling technique which reduces

the cost of evaluating the gradient. On a more abstract level,

our method can be viewed as targeting a probability distribu-

tion which is obtained by a push-forward of Wiener measure

through a change of measure. It then becomes apparent that

the studied problem of diffusion bridge simulation is a nicely

formulated non-trivial example problem within this setting

to study the potential of simulation based on PDMPs. Our

results open new paths towards applications of the Zig-Zag

for high-dimensional problems.

1.1 Approach

In this section, we present the main ideas used in this paper.

1.1.1 Brownian motion expanded in the Faber–Schauder

basis

Our starting point is the Lévy–Ciesielski construction of

Brownian Motion. Define φ̄(t) =
√

t , φ0,0(t) =
√

T ((t/T )

1[0,T /2](t)+ (1 − t/T )1(1/2,1](t)
)

and set

φi, j (t) = 2−i/2φ0,0(2
i t − jT ), for

i = 0, 1, . . . , j = 0, 1, ...2i − 1.

If ξ̄ is standard normal and {ξi, j } is a sequence of independent

standard normal random variables (independent of ξ̄ ), then

X N (t) = φ̄(t)ξ̄ +
N
∑

i=0

2i−1
∑

j=0

ξi, jφi, j (t) (2)

converges almost surely on [0, T ] (uniformly in t) to a Brow-

nian motion as N → ∞ [see, for example, Sect. 1.2 of

McKean (1969)]. The basis formed by φ̄ and {φi, j } is known

as the Faber–Schauder basis (see Fig. 1). The larger the

i , the smaller the support of φi, j , reflecting that higher-

order coefficients represent the fine details of the process.

A Brownian bridge starting in u and ending in v can be

obtained by fixing ξ̄ = v/
√

T and adding the function
¯̄φ(t)u = (1 − t/T )u t �→ u(1 − t/T ) to (2). By sampling

ξ N := (ξ0,0, ξ1,0, . . . , ξN ,2N−1) (which in this case are stan-

dard normal), approximate realisations of a Brownian bridge

can be obtained.

1.1.2 Zig-Zag sampler for diffusion bridges

Let Qu denote the Wiener measure on C[0, T ] with initial

value X0 = u [cf. Sect. 2.4 of Karatzas and Shreve (1991)],

and let Pu denote the law on C[0, T ] of the diffusion in

(1). Under mild conditions on b, the two measures are abso-

lutely continuous and their Radon–Nikodym derivative dPu

dQu

is given by the Girsanov formula. Denote by Pu,vT and Qu,vT

the measures of the diffusion bridge and the Wiener bridge,

respectively, both starting at u and conditioned to hit a point

v at time T . Applying the Bayes’ law for conditional expec-

tations (Klebaner 2005, Chapt. 10), we obtain:

dPu,vT

dQu,vT
(X) =

q(0, u, T , v)

p(0, u, T , v)

dPu

dQu
(X), (3)

where p and q are the transition densities of X under P, Q,

respectively, so that for s < t , p(s, x, t, y)dy = P(X t ∈
dy | Xs = x). As p is intractable, the Radon–Nikodym

derivative for the diffusion bridge is only known up to propor-

tionality constant. The main idea now consists of rewriting

the Radon–Nikodym derivative in (3), evaluating it in X N

and running the Zig-Zag sampler for ξ N targeting this den-

sity. Technicalities to actually get this to work are detailed in

Sect. 3. A novelty is the introduction of a local version of the

Zig-Zag sampler, analogously to the local bouncy particle

sampler (Bouchard-Côté 2015). This allows for exploiting

the sparsity in the dependence structure of the coefficients

of the Faber–Schauder expansion efficiently, resulting in a

reduction of the complexity of the algorithm. The method-

ology we propose is derived for one-dimensional diffusion

processes with unit diffusivity. However, diffusions with

state-dependent diffusivity can be transformed to this set-

ting using the Lamperti transform. (An example is given in

Sect. 5.3.) In Sect. 6.1, we generalise the method to mul-

tivariate diffusion processes with unit diffusivity, assuming

the drift to be a conservative vector field.
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1.2 Contributions of the paper

The Faber–Schauder basis offers a number of attractive prop-

erties:

(a) The coefficients of a diffusions have a structural condi-

tional independence property (see Sect. 4 and

Appendix A) which can be exploited in numerical algo-

rithms to improve their efficiency.

(b) A diffusion bridge is obtained from the unconditioned

process by simply fixing the coefficient ξ̄ .

(c) It will be shown (see, for example, Fig. 8) that the non-

linear component of the diffusion process is typically

captured by coefficients ξi j in equation (2) for which i is

small. This allows for a low-dimensional representation

of the process and yet a good approximation. Therefore,

the approximation error caused by leaving out fine details

is equally divided over [0, T ], contrary to approaches

where a proxy for the diffusion bridge is simulated by

Euler discretisation of an SDE governing its dynamics.

In the latter case, the discretisation error accumulates over

the interval on which the bridge is simulated.

(d) It is very convenient from a computational point of view

as each function is piecewise linear with compact support.

We adopt the Zig-Zag sampler (Bierkens et al. 2019)

which is a sampler based on the theory of piecewise determin-

istic Markov processes (see Fearnhead 2018; Bouchard-Côté

2015; Andrieu 2018; Andrieu and Livingstone 2019). The

main reasons motivating this choice are:

a. The partial derivatives of the log-likelihood of a diffusion

bridge measure usually appear as a path integral that has

to be computed numerically (introducing consequently

computational burden derived by this step and its bias).

The Zig-Zag sampler allows us to replace the gradient of

the log-likelihood with an unbiased estimate of it with-

out introducing bias in the target measure. This is done

in Sect. 4.4 with the subsampling technique which was

presented in Bierkens et al. (2019) for applications for

which the evaluation of the log-likelihood is expensive

due to the size of the dataset.

b. In the same spirit as the local Bouncy Particle Sam-

pler of Bouchard-Côté (2015) and Mider (2019), the

local and the fully local Zig-Zag sampler introduced in

Sect. 4 reduces the complexity of the algorithm improv-

ing its efficiency with respect to the standard Zig-Zag

algorithm as the dimensionality of the target distribution

increases (see Sect. 6.2). This opens the way to high-

dimensional applications of the Zig-Zag sampler when

the dependency graph of the target distribution is not

fully connected and when using subsampling. The fac-

torisation of the log-likelihood and the local method we

proposed is reminiscent of other work such as Faulkner

(2018), Meulen and Schauer (2017) and Mider et al.

(2020).

c. The method is a rejection-free sampler, differing from

most of the methodologies available for simulating dif-

fusion bridges.

d. The Zig-Zag sampler is defined and implemented in con-

tinuous time, eliminating the choice of tuning parameters

appearing, for example, in the proposal density of the

Metropolis–Hastings algorithm. This advantage comes

at the cost of a more complicated method which relies

upon bounding from above rates which are model specific

and often difficult to derive (see Sect. 5 for our specific

applications).

(e) The process is non-reversible: As shown, for example,

in Diaconis (2000), non-reversibility generally enhances

the speed of convergence to the invariant measure and

mixing properties of the sampler. For an advanced analy-

sis on convergences results for this class of non-reversible

processes, we refer to the articles Andrieu (2018) and

Andrieu and Livingstone (2019).

The local Zig-Zag sampler relies on the conditional inde-

pendence structure of the coefficients only. This translates to

other settings than diffusion bridge sampling, or other choices

of basis functions. For this reason, Sect. 4 describes the algo-

rithms of the sampler in their full generality, without referring

to our particular application. A documented implementation

of the algorithms used in this manuscript can be found in

Roberts and Stramer (2001).

1.3 Outline

In Sect. 2, we set some notation and recap the Zig-Zag

sampler. In Sect. 3, we expand a diffusion process in the

Faber–Schauder basis and prove the aforementioned con-

ditional dependence. The simulation of the coefficients ξ N

presents some challenges as it is high dimensional and its

density is expressed by an integral over the path. We give two

variants of the Zig-Zag algorithm which enables sampling in

a high-dimensional setting. In particular, in Sect. 4 we present

the local and fully local Zig-Zag algorithms which exploit

a factorisation of the joint density (Appendix A) and a sub-

sampling technique which, in this setting, is used to avoid the

evaluation of the path integral appearing in the density (which

otherwise would severely complicate the implementation of

the sampler). In Sect. 5, we illustrate our methodology using

a variety of examples, validate our approach and compare the

Zig-Zag sampler with other benchmark MCMC algorithms.

We conclude by sketching the extension of our method to

multi-dimensional diffusion bridges, carrying out an infor-

mal scaling analysis and providing several remarks for future

research (Sects. 6 and 7).
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2 Preliminaries

Throughout, we denote by ∂i the partial derivative with

respect to the coefficient ξi , the positive part of a function

f by ( f )+, the i th element and the Euclidean norm of a

vector x , respectively, by [x]i and ‖x‖. The cardinality of a

countable set A is denoted by |A|.

2.1 Notation for the Faber–Schauder basis

To graphically illustrate the Faber–Schauder basis, a con-

struction of a Brownian motion with the representation of

the basis functions is given in Fig. 1. The Faber–Schauder

functions are piecewise linear with compact support. The

length of the support and the height of the function are deter-

mined by the first index, while the second index determines

the location. All basis functions with first index i are referred

to as level i basis functions. For convenience, we often swap

between double and single indexing of Faber–Schauder func-

tions. Denote the double indexing with (i, j) and the single

indexing with n. We go from one to the other through the

transformations

i = ⌊log2(n)⌋, j = n − 2i , n = 2i + j;

where ⌊·⌋ denotes the floor function. The basis with trunca-

tion level N has M := 2N+1 − 1 coefficients. Let ξ N denote

the vector of coefficients up to level N , i.e.

ξ N := (ξ0,0, ξ1,0, . . . , ξN ,2N−1) ∈ RM , (4)

and let X ξ N := X N when we want to stress the dependencies

of X N on the coefficients ξ N . Using double indexing, we

denote by Si, j = supp φi, j .

2.2 The Zig-Zag sampler

A piecewise deterministic Markov process (Davis 1993) is a

continuous-time process with behaviour governed by random

jumps at points in time, but deterministic evolution governed

by an ordinary differential equation in between those times

(yielding piecewise-continuous realisations). If the differen-

tial equation can be solved in closed form and the random

event times can be sampled exactly, then the process can be

simulated in continuous time without introducing any dis-

cretisation error (up to floating number precision) making it

attractive from a computational point of view.

By a careful choice of the event times and deterministic

evolution, it is possible to create and simulate an ergodic and

non-reversible process with a desired unique invariant dis-

tribution (Fearnhead 2018). The Zig-Zag sampler (Bierkens

et al. 2019) is a successful construction of such a processes.

We now recap the intuition and the main steps behind the

Zig-Zag sampler.

The one-dimensional Zig-Zag sampler is defined in the

augmented space (ξ, θ) ∈ R × {+1,−1}, where the first

coordinate is viewed as the position of a moving particle and

the second coordinate as its velocity. The dynamics of the

process t �→ (ξ(t), θ(t)) (not to be confused with the time

indexing the diffusion process) are as follows: starting from

(ξ(0), θ(0)),

(a) its flow is deterministic and linear in its first component

with direction θ(0) and constant in its second component

until an event at time τ occurs. That is, (ξ(t), θ(t)) =
(ξ(0)+ tθ(0), θ(0)), 0 ≤ t ≤ τ .

(b) At an event time τ , the process changes the sign of its

velocity, i.e. (ξ(τ ), θ(τ )) = (ξ(τ−),−θ(τ−)).

The event times are simulated from an inhomogeneous Pois-

son process with specified rate λ : (R×{1,−1}) → R+ such

that P(τ ∈ [t, t + ǫ]) = λ(ξ(t), θ(t))ǫ + o(ǫ), ǫ ↓ 0.

The d-dimensional Zig-Zag sampler is conceived as the

combination of d one-dimensional Zig-Zag samplers with

rates λi (ξ, θ), i = 1, . . . , d, where the rates create a cou-

pling of the independent coordinate processes. The following

result provides a sufficient condition for the d-dimensional

Zig-Zag sampler to have a particular d-dimensional target

density π as invariant distribution. Assume that the target

d-dimensional distribution has strictly positive density with

respect to the Lebesgue measure, i.e.

π(dξ) ∝ exp(−ψ(ξ))dξ, ξ ∈ Rd .

Define the flipping function as Fi (θ) = (θ1, . . . ,−θi , . . . ,

θd), for θ ∈ {−1,+1}d . For any i = 1, . . . , d and (ξ, θ) ∈
Rd × {1,−1}d , the Zig-Zag process with Poisson rates sat-

isfying

λi (ξ, θ) − λi (ξ, Fi (θ)) = θi∂iψ(ξ), (5)

has π as invariant density. Condition (5) is derived in the

supplementary material of Bierkens et al. (2019). Condition

(5) is equivalent to

λi (ξ, θ) = (θi∂iψ(ξ))+ + γi (ξ) (6)

for some γi (ξ) ≥ 0. Throughout, we set γi (ξ) = 0 because

generally the algorithm is more efficient for lower Poisson

event intensity (see, for example, Andrieu 2018, Sect. 5.4).

Assume the target density is π(ξ) = cπ̃ (ξ). The process

targets the specific distribution function through the Poisson

rate λ which is a function of the gradient of ξ �→ ψ(ξ) =
− log(π̃(ξ)), so that any proportionality factor of the density

disappears. Throughout we refer to the function ψ as the
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Fig. 1 Lévy–Ciesielski construction of a Brownian motion on (0, 1).

On the left the Faber–Schauder basis functions up to level N = 3, on

the top right the values of the corresponding coefficients located at the

peak of their relative FS basis function and on the bottom right the

resulting approximated Brownian path X N (black line) compared with

a finer approximation (red line). The truncated sum defines the process

in 2N+1 + 1 finite dyadic points (black dots) with linear interpolation

in between points. A finer approximation corresponds to Brownian fill-

in noise between any two neighbouring dyadic points. (Color figure

online)

energy function. As opposed to standard Markov chain Monte

Carlo methods, the process is not reversible and it is defined

in continuous time.

Example 2.1 Consider a d-dimensional Gaussian random

variable with mean μ ∈ Rd and positive-definite covariance

matrix � ∈ Rd×d . Then,

• π(ξ) ∝ exp
(

−(ξ − μ)′�−1(ξ − μ)/2
)

,

• ∂kψ(ξ) =
[

�−1(ξ − μ)
]

k
,

• λk(ξ, θ) =
(

θk[�−1(ξ − μ)]k
)+

.

Notice that if � is diagonal, then λk(ξ, θ) = 0 whenever the

process is directed towards the mean so that no jump occurs

in the kth component when one of the following conditions is

satisfied: (θk = −1, ξk −μk ≥ 0) or (θk = 1, ξk −μk ≤ 0).

In Fig. 2, we simulate a realisation of the Zig-Zag sampler

targeting a univariate standard normal random distribution.

Algorithm 1 shows the standard implementation of the

Zig-Zag sampler. After initialisation, the first event time

τ ∗ is determined by taking the minimum of event times

τ1, τ2, . . . , τd simulated according to the Poisson rates

λi , i = 1, 2, . . . , d. At event time τ ∗, the velocity vec-

tor becomes θ(τ ∗) = Fi∗(θ), with i∗ = arg min(τ1, . . . ,

τd). The algorithm iterates this step moving forward each

time until the next simulated event time exceeds the final

clock τfinal.

Although we consider the velocities for each dimension

of a d-dimensional Zig-Zag process to be either 1 or −1,

these can be taken to be any nonzero values (θi ,−θi ) for

i = 1, . . . , d. A fine-tuning of θ1, . . . , θN can improve the

performance of the sampler. Note that the only challenge

in implementing Algorithm 1 lies on the simulation of the

waiting times which correspond to the simulation of the first

event time of d inhomogeneous Poisson processes (IPPs)

with rates λ1, λ2, . . . , λd which are functions of the state

space (ξ, θ) of the process. Since the flow of the process is

linear and deterministic, the Poisson rates are known at each

time and are equal to

λi (t; ξ, θ) = λi (ξ + tθ, θ), i = 1, 2, . . . , d.

To lighten the notation, we write λi (t) := λi (t; ξ, θ) when

ξ, θ are fixed. Given an initial position ξ and velocity θ , the

waiting times τ1, . . . , τd are computed by finding the roots

for x of the equations

∫ x

0

λi (s)ds + log(ui ) = 0, i = 1, 2, . . . , d, (7)

where (ui )i=1,2,...,d are independent realisations from the

uniform distribution on (0, 1). When it is not possible to

find roots of equation (7) efficiently; for example, in closed

form, it suffices to find upper bounds for the rate functions

for which this is possible, Sect. 4.4 treats this problem for
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Fig. 2 One-dimensional

Zig-Zag targeting a Gaussian

random variable N (0, 1). Left:

t �→ ξ(t), right: t �→ θ(t)

our particular setting. The linear evolution of the process and

the jumps of the velocities are always trivially computed and

implemented.

Algorithm 1 returns a skeleton of values corresponding

to the position of the process at the event times. From these

values, it is straightforward to reconstruct the continuous path

of the Zig-Zag sampler. Given a sample path of the Zig-Zag

sampler from 0 to τfinal, we can obtain a sample from the

target distribution in the following way:

• Denote by ξ(τ ) the value of the vector ξ at the Zig-Zag

clock τ < τfinal. Fixing a sample frequency τ , we can

produce a sample from the density π by taking the values

of the random vector ξ at time τburn-in + τ, τburn-in +
2τ, . . . , τfinal where τburn-in is the initial burn-in time

taken to ensure that the process has reached its stationary

regime. Throughout the paper, we create samples using

this approach.

Algorithm 1 Standard d-dimensional Zig-Zag sampler

(Bierkens et al. 2019)

procedure ZigZag(τfinal, ξ, θ)

Initialise k = 1, t = 0

τ j ∼ IPP (λ j (·; ξ, θ)), j = 1, . . . , d ⊲ Draw from

Inhomogeneous Poisson process (IPP)

while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, . . . , τd )

Update: ξ ← ξ + θ(τ ∗ − t)

Update: θi∗ ←−θi∗ ; t ← τ ∗

Save ξ (k) ← ξ ; t (k) ← t

for j = 1, . . . , d do

τ j ∼ t + IPP(λ j (·; ξ, θ))

end for

k ← k + 1

end while

return Skeletons (ξ (l), t (l))l=1,...,k−1

end procedure

2.3 Zig-Zag sampler for Brownian bridges

The previous subsections contain all ingredients necessary to

run the Zig-Zag sampler in a finite-dimensional projection of

the Brownian bridge measure Q0,v on the interval [0, T ]. We

fix ξ̄ to v and run the Zig-Zag sampler for ξ N as defined in (4)

targeting a multivariate normal distribution. Figure 3 shows

100 samples obtained from one sample run of the Zig-Zag

sampler where the coefficients are mapped to samples paths

using (2). The final clock of the Zig-Zag is set to τfinal = 500

with initial burning τburn-in = 10.

Both Brownian motion and the Brownian bridge are spe-

cial in that all coefficients in the Faber–Schauder basis are

independent. Of course, these processes can directly be sim-

ulated without need of a more advanced method like the

Zig-Zag sampler. However, for a diffusion process with

nonzero drift this property is lost. Nevertheless, we will see

that when the process is expanded in the Faber–Schauder

basis, many coefficients are still conditionally independent.

This implies that the dependency graph of the joint density

of the coefficients is sparse. We will show in Sect. 4 how

this property can be exploited efficiently using the Zig-Zag

sampler in its local version.

3 Faber–Schauder expansion of diffusion
processes

We extend the results of Sect. 2 to one-dimensional diffu-

sions governed by the SDE in (1). Although the density is

defined in infinite-dimensional space, in this section we jus-

tify both intuitively and formally that the diffusion can be

approximated to arbitrary precision by considering a finite-

dimensional projection of it.

The intuition behind using the Faber–Schauder basis is

that, under mild assumptions on the drift function b, any

diffusion process behaves locally as a Brownian motion.

Expanding the diffusion process with the Faber–Schauder

functions, this notion translates to the existence of a level

N such that the random coefficients at higher levels which
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Fig. 3 100 samples from the

Brownian bridge measure

starting at 0 and hitting 0 at time

1 obtained by one run of the

Zig-Zag sampler targeting the

coefficients relative to the

measure expanded with the

Faber–Schauder basis. The

resolution level is fixed to

N = 6 and the Zig-Zag clock to

τfinal = 500 and initial burn in

τburn-in = 10

are associated with the Faber–Schauder basis are approxi-

mately independent standard normal and independent from

ξ N under the measure P.

Define the function Z t : R+ × C[0, T ] → R+ given by

Z t (X) = exp

(∫ t

0

b(Xs)dXs −
1

2

∫ t

0

b2(Xs)ds

)

(8)

where the first integral is understood in the Itô sense and

X ≡ (Xs, s ∈ [0, T ]).

Assumption 3.1 Z t is a Q-martingale.

For sufficient conditions for verifying that this assumption

applies, we refer to Remark 3.6, Remark 3.9 and Liptser

et al. (2013), Chapter 6.

Theorem 3.2 (Girsanov’s theorem) If Assumption 3.1 is sat-

isfied,

dPu

dQu
(X) = ZT (X). (9)

Moreover, a weak solution of the stochastic differential equa-

tion exists which is unique in law.

Proof This is a standard result in stochastic calculus (see

Liptser et al. 2013, Sect. 6). ⊓⊔

As we consider diffusions on [0, T ] with T fixed, we denote
Z(X) := ZT (X). Due to the appearance of the stochastic Itô
integral in Z(X), we cannot substitute for X its truncated
expansion in the Faber–Schauder basis. Clearly, whereas
the approximation has finite quadratic variation, X has not.
Assuming that b is differentiable and applying Itô’s lemma

to the function B(x) =
∫ x

0 b(s)ds, the stochastic integral can

be replaced and Eq. (8) is rewritten as

Z(X) = exp

(

B(XT ) − B(X0) −
1

2

∫ T

0

(

b2(Xs) + b′(Xs)
)

ds

)

, (10)

where b′ is the derivative of b.

Definition 3.3 Let X be a diffusion governed by (1). Let X N

be the process derived from X by setting to zero all coeffi-

cients of level exceeding N in its Faber–Schauder expansion

[see Eq. (2)]. Set

Z N (X) = exp

(

B
(

X N
T

)

− B
(

X N
0

)

−
1

2

∫ T

0

[

b2
(

X N
s

)

+ b′
(

X N
s

)]

ds
)

.

We define the approximating measure PN by the change of

measure

dPu
N

dQu
(X) =

Z N (X)

cN

, (11)

where cN = EQ

(

Z N (X)
)

.

Note that the measure Pu
N associated with the approxi-

mated stochastic process is still on an infinite-dimensional

space and such that the joint measure of random coeffi-

cients ξ N is different from the one under Qu , while the

remaining coefficients stay independent standard normal and

independent from ξ N . This is equivalent to approximating the

diffusion process at finite dyadic points with Brownian noise

fill-in in between every two points. We now fix the final point

vT by setting ξ̄ = vT . Define the approximated stochastic
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bridge with measure P
u,vT

N in an analogous way of equation

(11), so that

dP
u,vT

N

dQu,vT
(X) =

Z N (X)

c
vT

N

. (12)

where c
vT

N = EQu,vT

(

Z N (X)
)

. The following is the main

assumption made.

Assumption 3.4 The drift b is continuously differentiable,

and b2 + b′ is bounded from below.

Theorem 3.5 If Assumptions 3.1 and 3.4 are satisfied, then

P
u,vT

N converges weakly to Pu,vT as N →∞.

Proof In the following, we lighten the notation by omitting

the initial point u from the notation, which will be assumed

fixed to u = x0. We wish to show that P
vT

N converges weakly

to PvT as N → ∞. This is equivalent to showing that
∫

f dP
vT

N →
∫

f dPvT for all bounded and continuous func-

tions f . Write c
vT
∞ = p(0, x0, T , vT )/q(0, x0, T , vT ). By

equation (3) and (9),

EQvT Z(X) = EQvT

dPx0

dQx0
= cvT

∞EQvT

[

dPvT

dQvT

]

= cvT
∞

and we have that

∣

∣

∣

∣

∫

f dP
vT

N −
∫

f dPvT

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

f

(

Z N

c
vT

N

−
Z

c
vT
∞

)

dQvT

∣

∣

∣

∣

≤ ‖ f ‖∞
∫
∣

∣

∣

∣

Z N (X)

c
vT

N

−
Z(X)

c
vT
∞

∣

∣

∣

∣

dQvT (X)

≤ ‖ f ‖∞
(

1

c
vT

N

∫

∣

∣

∣
Z N (X)− Z(X)

∣

∣

∣
dQvT (X)

+
∫

Z(X)

∣

∣

∣

∣

1

c
vT

N

−
1

c
vT
∞

∣

∣

∣

∣

dQvT (X)

)

≤ ‖ f ‖∞
(

1

c
vT

N

∫

∣

∣

∣
Z N (X)− Z(X)

∣

∣

∣
dQvT (X)+

∣

∣

∣

∣

c
vT
∞

c
vT

N

− 1

∣

∣

∣

∣

)

(13)

where we used Assumption 3.1 for applying the change

of measure between the conditional measures. Notice that

Z N (X) = Z(X N ). The mapping X �→ Z(X), as a function

acting on C(0, T ) with uniform norm, is continuous, since B,

b and b′ are continuous. Therefore, it follows from the Lévy–

Ciesielski construction of Brownian motion (see Sect. 1.1.1)

and the continuous mapping theorem that

Z N (X) → Z(X) QvT − a.s.

Now, notice that, under conditional measures QvT and PvT ,

the term B(XT ) − B(X0) is fixed. By the assumptions on b

and b′, Z is a bounded function and by dominated conver-

gence, we get that

lim
N→∞

E
vT

Q
|Z N (X) − Z(X)| = 0

giving convergence to zero of the first term in (13). This

implies that also the constant cN := E
vT

Q
|Z N (X)| converges

to E
vT

Q
|Z(X)| = c

vT
∞ so that all the terms in (13) converge to

0. ⊓⊔

We now list some technical conditions for the process to

satisfy Assumptions 3.1 and 3.4.

Remark 3.6 If |b(x)| ≤ c(1+|x |), for some positive constant

c, then Assumption 3.1 is satisfied.

Proof See Liptser et al. (2013), Sect. 6, Example 3 (b). ⊓⊔

Remark 3.7 If b is globally Lipschitz and continuously dif-

ferentiable, then Assumptions 3.1 and 3.4 are satisfied.

Proof Assumption 3.4 is trivially satisfied. By Remark 3.6,

also Assumption 3.1 is satisfied. ⊓⊔

In Sect. 5.3, we will present an example where the drift b is

not globally Lipschitz, yet Assumption 3.4 is satisfied.

Assumption 3.8 There exists a non-decreasing function h :
[0,∞) → [0,∞) such that B(x) ≤ h(|x |) and

∫ ∞

0

exp(h(x) − x2/(2T )) dx < ∞.

The above integrability condition is, for example, satisfied if

h(|x |) = c(1 + |x |) for some c > 0.

Remark 3.9 If Assumptions 3.4 and 3.8 hold, then Assump-

tion 3.1 is satisfied.

Proof By Sect. 3.5 in Karatzas and Shreve (1991), (Z t ) is a

local martingale. Say b′(x) + b2(x) ≥ −2C , where C ≥ 0.

Using the assumptions, we have

Z t = exp

(

B(X t ) − B(X0) − 1
2

∫ t

0

{b′(Xs) + b2(Xs)} ds

)

≤ A exp(Ct) exp(h(|X t |)),

with constant A = exp(−B(X0)). Then,

sup
t∈[0,T ]

Z t ≤ A sup
t∈[0,T ]

exp(Ct) exp(h(|X t |)) ≤ A exp(CT )

exp

(

h

(

max
t∈[0,T ]

|X t |
))

.

By Lemma 3.10,

E sup
t∈[0,T ]

Z t ≤ A exp(CT ) E exp(h( max
t∈[0,T ]

|X t |)) < ∞.
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Then, for a sequence of stopping times (τk) diverging to infin-

ity such that (Z
τk
t )0≤t≤T is a martingale for all k, we have

EZ0 = EZ
τk

0 = EZ
τk
t → EZ t

as k →∞ by dominated convergence. ⊓⊔

Lemma 3.10 Suppose h : [0,∞) → [0,∞) is non-decrea-

sing. Let NT = max0≤t≤T |X t | where (X t ) is a Brownian

motion. Then,

E exp h(NT ) ≤ 4

∫ ∞

0

1
√

2πT
exp(h(x) − x2/(2T )) dx .

Proof The maximum MT = max0≤t≤T X t of a Brownian

motion is distributed as the absolute value of a Brownian

motion and thus has density function 2√
2πT

exp(−x2/(2T )),

see Karatzas and Shreve (1991), Sect. 2.8. We have P(NT ≥
y) ≤ 2P(MT ≥ y) from which the result follows. ⊓⊔

Finally, we mention that Theorem 3.5 can be generalised in

the following way to diffusions without a fixed end point.

Proposition 3.11 If Assumption 3.4 is satisfied and B is

bounded, then PN converges weakly to P.

The proof follows the same steps of the one of Theorem 3.5.

In this case, we need to pay attention on B, as for uncondi-

tioned process, the final point is not fixed. If B is bounded,

then Assumption 3.8 is satisfied. By Remark 3.9, also

Assumption 3.1 is satisfied so that we can apply Theorem 3.2

for the change of measure. Finally, by the assumptions on b

and B, the function Z is bounded and by dominated conver-

gence, we get that

lim
N→∞

EQ|Z N (X) − Z(X)| = 0.

4 A local Zig-Zag algorithmwith
subsampling for high-dimensional
structured target densities

In Sect. 4.4, we will show that the task of sampling dif-

fusion bridges boils down to the task of sampling a high-

dimensional vector ξ N ∈ RM under the measure P
u,vT

N .

Define by Pξ N the distribution of the vector ξ N . Under the

target measure,

Pξ N (dξ N ) = π(ξ N )dξ N .

We take the density π to be the M-dimensional invariant

density (target density) for the Zig-Zag sampler. An effi-

cient implementation of piecewise deterministic Monte Carlo

methods including the local and fully local Zig-Zag sampler

can be found in Roberts and Stramer (2001).

4.1 Subsampling technique

In our setting, the integral appearing in the Girsanov formula

(10) poses difficulties when finding the root of equation (7)

and would require numerical evaluation of the integral, hence

also introducing a bias. By adapting the subsampling tech-

nique presented in Bierkens et al. (2019) (Sect. 4), we avoid

this problem altogether (see Sect. 4.4). In general, this tech-

nique requires

(a) unbiased estimators for ∂iψ , i.e. random functions

∂i ψ̃i (ξ, Ui ) such that

EUi
[∂i ψ̃i (ξ, Ui )] = ∂iψ(ξ),

for all i and ξ . These random functions create new (ran-

dom) Poisson rates given by

λ̃i (t; ξ, θ;Ui ) = (θi∂i ψ̃(ξ(t), Ui ))
+, i = 1, 2, . . . , d,

(14)

whose evaluation becomes feasible and computationally

more efficient compared to the original Poisson rates

given by Eq. (6).

(b) upper bounds λ̄i : (R+ × Rd × {−1,+1}d) → R+ for

all i = 1, . . . , d such that for any point (ξ, θ) and t ≥ 0,

we have

P
(

λ̃i (t; ξ, θ;Ui ) ≤ λ̄i (t; ξ, θ)
)

= 1. (15)

As we show in Algorithm 2 and in Sect. 5, these upper

bounds are used for finding the roots of Eq. (7).

Algorithm 2 gives the algorithm for the Zig-Zag sampler with

subsampling. It can be proved (see Bierkens et al. 2019) that

the Zig-Zag sampler with subsampling has the same invariant

distribution as its original and therefore does not introduce

any bias. Note that we slightly modified the algorithm from

Bierkens et al. (2019) in order to reduce its complexity. In

particular, it is sufficient to draw new waiting times and to

save the coordinates only when the if condition at the sub-

sampling step of Algorithm 2 is true.

4.2 Local Zig-Zag sampler

Section 3.1 of Bouchard-Côté (2015) proposes a local algo-

rithm for the Bouncy Particle Sampler which is a process

belonging to the class of piecewise-deterministic Markov

processes. Similar ideas apply to our setting.

Assumption 4.1 The Poisson rate λi for a d-dimensional

target distribution is a function of the coordinates Ni ⊂
{1, . . . , d},
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Algorithm 2 d-dimensional Zig-Zag sampler with subsam-

pling

procedure ZigZag_ws(τfinal, ξ, θ)

Initialise k = 1, t = 0

τ j ∼ IPP(λ̄ j (·; ξ, θ)), j = 1, . . . , d

while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, . . . , τd )

ξold ← ξ

Update: ξ ← ξ + θ(τ ∗ − t)

Update: t ← τ ∗ − t; t ← τ ∗

Ui∗ ∼ Law(Ui∗ ), V ∼ Unif(0, 1)

if V ≤ λ̃i∗ (0, ξ, θ, Ui∗ )/λ̄i∗ (t; ξold , θ) then ⊲ Subsampling

step

Save ξ (k) ← ξ, t (k) ← t

k ← k + 1

θi∗ ← −θi∗

for j ∈ {1, . . . , d} \ {i∗} do

τ j ∼ t + IPP(λ̄ j (·; ξ, θ))

end for

else

τi∗ ∼ t + IPP(λ̄i∗ (·; ξ, θ))

end if

end while

return Skeletons (ξ (l), t (l))l=1,2,...,k−1

end procedure

λi (s; ξ, θ) = λi (s; ξk, θk : k ∈ Ni ).

Recall that by the definition of λi (see equation (6)), the i th

partial derivative of the negative log-likelihood determines

the sets Ni . Now, let us suppose that the first event time τ

is triggered by the coordinate i so that at event time, the

velocity θi is flipped. For all λk which are not function of

this coordinate (k /∈ Ni ), we have

λold
k (τ + s) = λnew

k (s),

which implies that the waiting times drawn before τ are still

valid after switching the velocity i . This allows us to rescale

the previous waiting time and reduce the number of compu-

tations at each step. The sets N1, . . . , Nd are connected to

the factorisation of the target distribution and define its con-

ditional dependence structure. Indeed, take a d-dimensional

target distribution with the following decomposition

π(ξ) =
N
∏

i=1

πi (ξ
(i))

where ξ (i) := {ξ j : j ∈ Ŵi } and Ŵi ⊂ {1, 2, . . . , N } defines

a subset of indices. We have that

−∂k log(π(ξ)) = −
N
∑

i=1

∂k log πi (ξ
(i)), k = 1, . . . , d

where the i th term in the sum is equal to 0 if k /∈ Ŵi .

Since the Poisson rates (6) are defined through the partial

derivatives, the factorisation defines the sets N1, . . . , Nd of

Assumption 4.1.

Algorithm 3 shows the implementation of the local sam-

pler which exploits any conditional independence structure

so that the complexity of the algorithm scales well with the

number of dimensions.

The local Zig-Zag sampler simplifies to independent

one-dimensional Zig-Zag processes if the coefficients are

pairwise-independent coefficients, as it was the case in the

example of sampling a Brownian motion or Brownian bridge

(see Sect. 2.3). On the other hand, it defaults to Algorithm 1

when the dependency graph is fully connected, that is if

Ni = {1, . . . , d},∀i .

Algorithm 3 d-dimensional local Zig-Zag sampler

Input: The bounds λ̄i depend only on ξk , θk , for k ∈ Ni

procedure ZigZag_local(τfinal, ξ, θ)

Initialise k = 1, t = 0

τ j ∼ IPP(λ j (·; ξ, θ)), j = 1, . . . , d

while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, . . . , τd )

Update: ξ ← ξ + θ(τ ∗ − t)

Update: θi∗ ← −θi∗ ; t ← τ ∗

Save ξ (k) ← ξ ; t (k) ← t

k ← k + 1

for j in Ni∗ do ⊲ Local step

τ j ∼ t + IPP(λ j (·; ξ, θ))

end for

end while

return Skeletons (ξ (l), t (l))l=1,...,k−1

end procedure

4.3 Fully local Zig-Zag sampler

Combining the subsampling technique and the local ZZ

can lead to a further reduction of the complexity of the

algorithm. Indeed, the bounds for the Poisson rates might

induce sparsity as λ̄i can be function of few coordinates (see,

for example, Sect. 5.2). This means that, after flipping θi ,

λ̄old
j (τ+t) = λ̄new

j (t) for almost all j �= i making the if state-

ment in the local step of Algorithm 3 almost always satisfied

and improving the efficiency of the algorithm. This means

that, after flipping θi , we have that λ̄old
j (τ + t) = λ̄new

j (t) for

almost all j �= i or, in other words, the cardinality of the set

Ni in the local step of Algorithm 3 is small. Furthermore, the

evaluation of λ̃i (t, ξ, θ) and λ̄i (t, ξ, θ) for i = 1, 2, . . . , d

does not necessarily require to access the location of all the

coordinates ξ j so that, by assigning an independent time for

each coordinate and updating only the coordinates needed

for the evaluation of λ̃i and λ̄i , the algorithm can be made

more efficient. This is shown in the fully local ZZ sampler

(Algorithm 4) where N̄i , Ñi (Ui ) define, respectively, the sub-
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Algorithm 4 Implementation of the d-dimensional fully

local Zig-Zag sampler

Input: The bounds λ̄i depend only on ξk , θk , for k ∈ N̄i and the ran-

dom Poisson rates λ̃i (eq. (14)) depends only on Ui (the randomizing

argument of ∂̃i ψ) and ξk , θk for k ∈ Ñi (Ui )

procedure ZigZag_fully_local(τfinal, ξ, θ)

Initialise: k = 1, t = 0 ∈ Rd , τ ∗ = 0

τ j ∼ IPP(λ̄ j (·; ξ, θ)), j = 1, . . . , d

while max(t) ≤ τfinal do

τ old
i∗ ← τ ∗, ξold

i∗ ← ξi∗

τ ∗, i∗ ← findmin(τ1, . . . , τd )

Ui∗ ∼ Law(Ui∗ )

for j in N̄i∗ ∪ Ñi∗ (Ui∗ ) do

Update: ξ j ← ξ j + θ j (τ
∗ − t j )

Update: t j ← τ ∗

end for

V ∼ Unif(0, 1)

if V ≤ λ̃i∗ (0; ξ, θ;Ui∗ )/λ̄i∗ (τ
∗ − τ old

i∗ ; ξold , θ) then

Update: θi∗ ←−θi∗

Update: k ← k + 1

Save: i (k) ← i∗, s(k) ← τ ∗, ξ (k) ← ξi∗

for n in
(

⋃

j∈N̄i∗
N̄ j

)

\
(

N̄i∗ ∪ Ñi∗ (Ui∗ )
)

do

Update: ξn ← ξn + θn(τ ∗ − tn)

Update: tn ← τ ∗

end for

for j in N̄i∗ \{i∗} do

τ j ∼ τ ∗ + IPP(λ̄ j (·; ξ, θ))

τ old
j ← τ ∗, ξold

j ← ξ j

end for

end if

τi∗ ∼ τ ∗ + IPP(λ̄i∗ (·; ξ, θ))

end while

return reflection tuples ((i (l), s(l), ξ (l)))l=1,...,k

end procedure

set and the random subset of the coordinates required for the

evaluation of λ̄i (·; ξ, θ) and λ̃i (·; ξ, θ;Ui ).

4.4 Sampling diffusion bridges

In order to employ the Zig-Zag sampler to simulate from the

bridge measure, we choose the truncation level N in Eq. (2).

Then, under P
u,vT

N

π(dξ N ) ∝ Z N (X) exp

(

−‖ξ N‖2

2

)

dξ N .

This is a straightforward consequence of the change of mea-

sure in (12) and the Lévy–Ciesielski construction.

We need to make one further assumption:

Assumption 4.2 The drift b of the diffusion process is twice

differentiable.

Assumption 4.2 is necessary in order to compute the ξk-

partial derivative of the energy function, which becomes

∂kψ(ξ N ) =
1

2

∫

Sk

hk(s; ξ N )ds + ξk, (16)

where

hk(s; ξ N ) = φk(s)
(

2b(X N
s )b′(X N

s ) + b′′(X N
s )
)

.

As the index k in the Faber–Schauder basis function gets

larger, both the magnitude of φk and the size of its support

decrease so that typically
∫

hk(s; ξ N )ds gets smaller and

∂kψ(ξ) ≈ ξk which corresponds to the partial derivative of

the energy function of a standardised Gaussian random vari-

able with independent components. This justifies one more

time the intuition that for high levels i , the random variables

ξi j , j = 1, . . . , 2i−1 are approximately normally distributed

and almost independent from the other random coefficients.

In order to avoid the evaluation of the integral appearing

in (16) and the difficulty of drawing a Poisson time from

its corresponding rate (6), we employ the subsampling tech-

nique. Considering ξ N non-random, we take as an unbiased

estimator for ∂kψ(ξN ) the (random) function

1

2
|Sk |hk(Uk; ξ N ) + ξk, (17)

where Uk ∼ Unif(Sk) and as the bounding intensity rate

λ̄k(t, ξ
N , θ N ) =

1

2
|Sk ||θk |�̄k f (ξ N (t)) + (θkξk(t))

+ , ξ N ∈ RM ,

(18)

where �̄k = maxs(φk(s)) and f (ξ N ) ≥
∣

∣

∣
2b(X

ξ N

s )b′(X
ξ N

s )

+b′′(X
ξ N

s )

∣

∣

∣
, ∀s ∈ [0, T ], ξ N ∈ RM . The subsampling

technique avoids the numerical computation of the time

integral (16), thus avoiding a numerical bias and reducing

the computational effort from O(T ) (for fixed discretisation

size) to O(1). The variance of this unbiased estimator can

be reduced by averaging over multiple independent uniform

draws or similar strategies (see, for example, Sect. 5.4), albeit

at the cost of additional computations. In Sect. 5, we show

specifically for each numerical experiment how we derived

the Poisson upper bounds λ̄i .

The compact support of the Faber–Schauder functions

induces a sparse dependency structure on the target mea-

sure π . Indeed, X t only depends on those values of ξl,k for

which t ∈ Sl,k . See Fig. 4 for an illustration. It is easy to

see that this implies that
∂ψ(ξ N )
∂ξ(i, j)

depends only on those ξ(k,l)

for which the interior of Si, j ∩ Sk,l is non-empty. In partic-

ular, define the relation ξi, j ≪ ξk,l to hold if Sk,l ⊂ Si, j . If

this happens, then we refer to ξi, j as the ancestor of ξk,l (and

conversely ξk,l as the descendant). Then, the sets in Assump-

tion 4.1 (using double indexing) can be chosen as Ni, j =
{ξh,d : ξh,d ≪ ξi, j ∨ ξh,d ≫ ξi, j } with cardinality |Ni, j | =
2N−i+1 + i − 1, where N is the truncation level. Formally,

Ni, j are the neighbourhoods of the interval graph induced
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0 T

S3,0 S3,1 S3,2 S3,3 S3,4 S3,5 S3,6 S3,7

S2,0 S2,1 S2,2 S2,3

S1,0 S1,1

S0,0

Fig. 4 Support of the Faber–Schauder functions (φi, j : i ∈
{0, 1, . . . , N }, j = {0, 1, . . . , 2i − 1} with N = 3. The coefficient ξi, j

is independent of the coefficient ξk,l conditionally on the set of common

ancestors (ξm,n : Sm,n ∩ Si, j �= ∅ ∧ Sm,n ∩ Sk,l �= ∅) if Si, j ∩ Sk,l = ∅

by ((Si, j : i ∈ {1, 2, . . . , N }, j ∈ {0, 1, . . . , 2i − 1})) with

vertices {(i, j) : i ∈ {1, 2, . . . , N }, j ∈ {0, 1, . . . , 2i − 1}},
where there is an edge between (i, j) and (l, k) if the interior

of Si, j ∩ Sk,l is non-empty (see Fig. 11). The factorisation of

the partial derivatives leads to a specific dependency structure

of the coefficients under the target diffusion bridge measure:

the coefficient ξi, j is conditionally independent of the coeffi-

cient ξk,l if Si, j∩Sk,l = ∅ conditionally on the set of common

ancestors (ξm,n : ξm,n ≪ ξi, j ∧ ξm,n ≪ ξk,l). This argument

is made more formal by decomposing the likelihood function

in Appendix A.

5 Numerical results

We show numerical results for three representative examples.

In general, when applying our method, we start from a model

(1) and devise a representation of the approximate diffusion

bridge (12) that we sample using generic implementations of

algorithms 1-4 from our package, which are easily adapted to

the task of sampling the coefficients of the Faber–Schauder

expansion. To this end, we provide the k-th partial deriva-

tive of the energy function (16) or an upper bound to the

Poisson rate (18) as argument for the sampler, as well as

the sets Ni, j as given in Sect. 4.4. The reader is referred

to the file faberschauder.jl in the public repository

https://github.com/SebaGraz/ZZDiffusionBridge/src for the

implementation of the expansion and for the generic imple-

mentation of the different variants of the Zig-Zag sampler to

our package (Roberts and Stramer 2001).

The first class of diffusion processes considered are diffu-

sions with linear drift function (Sect. 5.1). This is a special

case, where our method does not require the subsampling

technique described in Sect. 4.1 and only Algorithm 3 has

been employed. Notice that for this class, the transition ker-

nel of the conditioned process is known. In Sect. 5.2, we

apply our method for diffusions which substantially differ

from Brownian motions, being highly nonlinear and multi-

modal and therefore creating challenging bridge distributions

for standard MCMC. Here, we use the fully local algorithm

(Algorithm 4). In the specific example considered, the imple-

mentation of the Zig-Zag sampler is facilitated by the drift

function and its derivatives being bounded, and therefore,

a bounded Poisson rate for the subsampling technique is

available. In view of this, we choose for the third numerical

experiment a diffusion with unbounded drift (Sect. 5.3). For

all the models, Assumptions 3.1, 3.4 and 4.2 are immediate

to verify and Assumption 4.1 is satisfied. For each experi-

ment, the burn-in τburn-in and final clock τfinal are manually

tuned by inspecting the trace of ξ N and ensuring that the pro-

cess reached stationarity before τburn-in and fully explore the

state space before the final clock τfinal. The computations

are performed with a conventional laptop with a 1.8GHz

intel core i7-8550U processor and 8GB DDR4 RAM. We

wrote the program in Julia 1.4.2 which allows profiling

and optimizing the code for high performance. The pro-

gram is publicly available on GitHub at https://github.com/

SebaGraz/ZZDiffusionBridge where the reader can follow

the documentation to reproduce the results.

5.1 Linear diffusions

A linear stochastic differential equation conditioned to hit a

final point vT has the form

dX t = (α + β X t )dt + dWt , X0 = u, XT = vT (19)

for some (α, β) ∈ R2. Assumptions 3.1, 3.4 and 4.2 can be
easily verified. In this case, the energy function of the target
distribution is

ψ(ξ N ) = C1 − ln(Z N (X)) +
‖ξ N‖2

2
= C2 +

1

2

∫ T

0

(

β2
(

X
ξ N

t

)2

+ 2αβ X
ξ N

t

)

dt +
‖ξ N‖2

2
,

for some constant C1, C2. Note that ψ is a quadratic function
of ξ , which means that the target density is still Gaussian
under P

u,vT

N . It follows that

∂ξk
ψ(ξ N ) =

∫

t∈Sk

φk(t)

⎛

⎝β2

⎛

⎝

¯̄φ(t)u + φ̄(t)vT /
√

T +
∑

j∈Nk

φ j ξ j

⎞

⎠

+αβ)) dt + ξk .

Interchanging the integral and the sum, this becomes

∂ξk
ψ(ξ N ) = β2

( ¯̄�ku + �̄kvT /
√

T

+
∑

j∈Nk

� jkξ j

⎞

⎠+ αβ�k + ξk,
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Fig. 5 Simulation of the

diffusion bridge measure (100

samples) given by Eq. (19)

starting at −1.0 and conditioned

to hit 2.0 at T = 10.

α = −5.0, β = −1.0 which is

equivalent to a mean reverting

process with mean reversion at

x = −5 (straight line). The

truncation level is N = 6, final

clock τfinal = 1000 and burn-in

τburn-in = 10

where �k =
∫

φkdt , � jk =
∫

φkφ j dt , �̄k =
∫

φ̄φkdt and
¯̄� =

∫ ¯̄φφkdt . This is a linear function of ξ N , and for each

i , the event times with rates λi , see (6), can be directly simu-

lated without upper bounds. Figure 5 shows samples from the

resulting diffusion bridge measure with α = −5, β = −1

obtained with this method running the Zig-Zag sampler for

τfinal = 1000, with a burn-in time of τburn-in = 10. The closed

form of the expansion of linear processes, or more generally,

reciprocal linear processes, with the Faber–Schauder basis

was also found and used in Schauer and Grazzi (2020) for

the problem of nonparametric drift estimation of diffusion

processes. The results are validated by computing analyti-

cally the density of the random variable XT /2 (which, for

the linear case, is known in close form) and comparing this

with its empirical density obtained from one sample of the

Zig-Zag process (see Fig. 7, left panel).

5.2 Nonlinear multimodal diffusions

The stochastic differential equation considered here has the

form

dX t = α sin(X t )dt + dWt , X0 = u, XT = vT (20)

for some α ≥ 0. When α = 0, the process is a standard Brow-

nian motion, while for positive α, the process is attracted to

its stable points (2k−1)π, k ∈ N. Assumptions 3.1, 3.4, 4.2

follow from drift, its primitive and its derivative being glob-

ally bounded. Fixing N , the energy function is given by

ψ(ξ N ) =
α

2

∫ T

0

(

α sin2(X
ξ N

t ) + cos(X
ξ N

t )
)

dt +
‖ξ N‖2

2
.

Using trigonometric identities, we obtain that

∂ξk
ψ(ξ N ) =

1

2

∫

Sk

φk(t)
(

α2 sin
(

2X
ξ N ,k
t

)

− α sin
(

X
ξ N ,k
t

))

dt + ξk

where X
ξ N ,k
t := ¯̄φ(t)u + φ̄(t)vT /

√
T +

∑

j∈Nk
φ j (t)ξ j . To

avoid the need to find the roots of Eq. (7), we apply the sub-

sampling technique described in Sect. 4.1. Since the drift and

its derivatives are bounded, we can easily find the following

upper bound for (14):

λ̄k(t) = |θk |a1 + (θkξk(t))
+, (21)

with a1 = �̄k Sk(α
2+α)/2, �̄k = max(φk) and ξk(t) = ξk+

θk t . In this case, the upper bound λ̄i is a function only of the

coefficient ξi . Figure 6 shows the results obtained with this

method setting α = 0.7. For this diffusion, the nonlinearity

and multiple modes make the mixing of the Zig-Zag sampler

slower, so we set τfinal = 10,000 and burn-in τburn-in = 10.

Analysing the goodness of the empirical diffusion bridge

distribution obtained is a difficult task since the true con-

ditional distribution is not known in a tractable form. We

start by checking if some geometrical properties of the dif-

fusion bridge distributions are preserved in the simulations.

For example, in Fig. 6, it can be noticed that the diffusion

is attracted to the stable points ±π,±3π, ..., and symmetric

(geometrically speaking, after rotation) around the vertical

axes t = T /2. We furthermore validate our method by simu-

lating forward diffusion processes, using Euler discretisation

in a fine grid and retaining only the paths which end in a ǫ-

ball of a certain point at time T (ǫ-ball forward simulation).

If the final point is such that the probability of ending in this

ǫ-ball is high enough, we can create in this way a sample
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Fig. 6 Simulation of the

diffusion bridge measure (200

samples) given by Eq. (20) with

α = 0.7 starting at −π at time 0

and hitting 3π at T = 50.

Truncation level N = 6, final

clock τfinal = 10,000 and

burn-in 10. The straight

horizontal lines are the

attraction points of the process

from the approximated bridge and compare it to the samples

obtained from the Zig-Zag. The right panel of Fig. 7 shows

the joint empirical distribution with the two methods of the

first quarter and third quarter random variables. Finally, Fig. 8

illustrates that the marginal distribution of the coefficients in

higher levels is approximately Gaussian and the nonlinearity

of the process is absorbed by the coefficients in low levels.

5.3 Diffusions with unbounded drift

Here, we consider stochastic exponential logistic models. For

this class, the process grows exponentially with rate r until

it reaches its saturation point K . Its dynamics are perturbed

by noise which grows as the population grows. The resulting

stochastic differential equation takes the form

dYt = rYt (1 − Yt/K )dt + βYt dWt ,

X0 = u > 0, XT = vT > 0. (22)

We can transform the process in order to get a new process

with unitary diffusivity σ = 1 (Lamperti transform with

X t = − log(Yt )/β). The transformed differential equation

becomes

dX t = (c1 + c2e−β X t )dt + dWt ,

X0 = − log(u)/β, XT = − log(v)/β.

with c1 = β/2 − r/β and c2 = r/(βK ). Note that the drift

function b of the transformed process is not global Lipschitz

continuous. Nevertheless, Assumptions 3.4 and 4.2 are sat-

isfied and by Remark 3.9, also Assumption 3.1 is verified.

In this case, the partial derivative of the energy function is

given by

∂kψ(ξ N ) =
1

2

∫

Sk

φk(s)

(

a1e−β X
ξ N

s − a2e−2β X
ξ N

s

)

ds + ξk,

where a1 = 2r2/(βK ), a2 = a1/K . As before, it is not pos-

sible to simulate directly the first event time using the Poisson

rates given by Eq. (6). The subsampling technique requires

an upper bound for the unbiased estimator (14). Define the

following quantities

b
(1)
k := inf

s∈Sk

⎧

⎨

⎩

¯̄φ(s)u0 + φ̄(s)vT /
√

T +
∑

i∈Nk

φi (s)ξi

⎫

⎬

⎭

,

b
(2)
k := inf

s∈Sk

⎧

⎨

⎩

∑

i∈Nk

φi (s)θi

⎫

⎬

⎭

.

For any a, b, c ∈ R, (a + b + c)+ ≤ (a)+ + (b)+ + (c)+,

and hence, a valid upper bound for the Poisson rate (14) is

given by

λ̄k(t) = λ
(1)
k (t)+ λ

(2)
k (t)+ λ

(3)
k (t) (23)

with

λ
(1)
k (t) = max (0, θkξk(t)) ,

λ
(2)
k (t) = max

(

0,
1

2
θk φ̄k Sk z

(1)
k e−β⋆

k t

)

,

λ
(3)
k (t) = max

(

0,−
1

2
θk φ̄k Sk z

(2)
k e2β⋆

k t

)

and
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Fig. 7 On the left panel: comparison between empirical distribution

(blue line, computed with a kernel estimator) and the exact distribution

(red line) of the mid-point random variable X5 for the linear diffusion

(Eq. 19) with a = −5 and b = −1. The empirical distribution has

been extracted from the same experiment shown in Fig. 5. On the right

panel: comparison between the joint distribution of the variables XT /4

and X3T /4 of the process given in Eq. (20) starting at −π and hitting π

at T = 50. The scatter plot with red dots is obtained with ǫ-ball Euler

simulation with ǫ = 0.1 and discretisation t = 0.0005, while the blue

continuous path is the Zig-Zag path. (Color figure online)

Fig. 8 Q–Q (quantile–quantile) plot against standard normal distri-

butions of the sample path of 7 coefficients, respectively, at level

0, 1, 2, 3, 4, 5, 6 targeting the conditional bridge measure given by Eq.

(20) with α = 0.7 and initial point u = 0 and final point v = 0

at T = 100. On the bottom right panel, the heatmap of the absolute

value of the sample correlation between the coefficients at different

levels. The blue straight lines correspond to the marginal measures of

the coefficients relatively to a Brownian bridge. (Color figure online)
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Fig. 9 Simulation of the

diffusion bridge measure (100

samples) given by the logistic

growth model [Eq. (22)] with

parameters

K = 2000, r = 0.08, β = 0.1,

starting at the value 50 and

hitting 1000 at time 200.

Truncation level N = 6, final

clock τfinal = 1000 and burn-in

τburn-in = 10 . The blue smooth

line is the solution of the

deterministic logistic model

without final condition. (Color

figure online)

z
(1)
k = a1 exp(−βb

(1)
k ), z

(2)
k = z

(1)
k exp(−βb

(1)
k ),

β⋆
k = −βb

(2)
k , φ̄i = max

s
φi (s).

Using the superposition theorem (see, for example, Grim-

mett and Stirzaker 2001), we can simulate a waiting time

with Poisson rate (23) by means of simulating three waiting

times according to the Poisson rates λ
(1)
k , λ

(2)
k , λ

(3)
k and then

take the minimum of the three realisations. Since at any time

t > 0, either λ
(2)
k (t) or λ

(3)
k (t) is 0, we just need to evalu-

ate two waiting times. Figure 9 shows the results obtained

with our method for this process. The final clock of the Zig-

Zag sampler is set to T ⋆ = 1000 and initial burn-in time

τburn-in = 10.

5.4 Numerical comparisons

In this section, we benchmark the fully local Zig-Zag sam-

pler against the Metropolis-adjusted Langevin algorithm

(MALA) (Roberts and Rosenthal 1998), Hamiltonian Monte

Carlo (HMC) (Duane 1987) and another well-known PDMP,

the Bouncy particle sampler (Bouchard-Côté 2015). The

Bouncy Particle sampler can use the exact subsampling

technique in a very similar way as explained in Sect. 4.1.

According to the scaling limit results obtained in Bierkens

et al. (2020), the Zig-Zag is more efficient compared to the

Bouncy Particle sampler in a high-dimensional setting when

the conditional dependency graph corresponding to the tar-

get measure exhibits sparsity (which clearly is the case here).

The MALA sampler is a well-known discrete-time Markov

chain Monte Carlo method which performs informed updates

through the gradient of the target distribution. HMC is con-

sidered a state-of-the-art algorithm. In contrast to PDMPs,

for HMC and MALA the gradient needs to be fully evalu-

ated and no subsampling methods can be exploited. Thus,

the integral in (16) needs to be computed numerically, intro-

ducing bias. Furthermore, contrary to PDMPs, the resulting

Markov chain is reversible. We study the performance of the

samplers for the stochastic differential equation (20) with

u, v = 0 and the time horizon T = 100 and we let α vary. As

α increases, the target distribution on the coefficients presents

higher peaks and valleys and is therefore a challenging distri-

bution for general Markov chain Monte Carlo methods. We

fix the refreshment rate of the Bouncy Particle sampler to 1

to avoid a degenerate behaviour and implement the MALA

algorithm with adaptive step size over 250,000 iterations. We

used the automatically tuned dynamic integration time HMC

Algorithm (Betancourt 2018) with 3000 iterations and with

diagonal mass matrix and integrator step size both adaptively

tuned in a warm-up phase of 2000 iterations, with the lat-

ter adapted using a dual-averaging algorithm (Hoffman and

Gelman 2014) with target acceptance statistic of 0.8. The

algorithm is provided in the package AdvancedHMC.jl

(see Ge et al. 2018) with 3000 iterations. The integral appear-

ing in the gradient of the energy function is computed for the

MALA sampler and for the HMC sampler numerically with

a simple Euler integration scheme over 2N+1 points, where

N is the truncation level which is fixed to 6 for all the exper-

iments. The final clock for the PDMPs is T ′ = 25, 000. We

also include the numerical results of two variants of the Zig-

Zag sampler:

(ZZv1) where the partial derivative in (16) is estimated by

averaging over multiple independent realisations of (17),

with the number of realisations proportional to the length

of the range of the integral in (16);
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Fig. 10 Performance comparison of the fully local Zig-Zag (ZZ), its

variants (ZZv1 and ZZv2), the Bouncy Particle sampler with sub-

sampling (refreshment rate set to 1), MALA and HMC sampler. The

performance measure considered here is, respectively, the effective sam-

ple size (ESS) of the middle point XT /2, the median and the minimum

of the ESS over the dimension of the coefficients of the expansion. The

target diffusion bridge with drift b(x) = α sin(x) with u, v = 0 and

T = 50 and truncation level N = 6. The final clock for the PDMPs is

set to T ′ = 25,000, the number of iterations for the MALA is set to be

250,000 with adaptive time step targeting the acceptance rate 0.6 (Pierre

2020), and the number of iteration for the HMC is 3000 with the algo-

rithm fine-tuned by the packageAdvancedHMC.jl. All the quantities

are normalised by the runtime of execution. The asymptotic variance

estimate used for computing the ESS is obtained using batch means.

Notice that while the subsampling technique adopted for the piecewise

deterministic Monte Carlo methods does not introduce bias on the tar-

get distribution, the numerical integration adopted for the MALA and

HMC samplers introduces bias on the target distribution

(ZZv2) where the partial derivative in (16) is estimated by

decomposing the range of the integral into N subintervals

(with N proportional to the length of the range of the

integral) and evaluating the integrand at a random point

drawn inside each subinterval.

These variants of the Zig-Zag have been proposed after notic-

ing that the coefficients at low levels are the ones deviating the

most from normality and the partial derivative with respect

to those coefficients have larger support. This suggests that

refining the estimates of the partial derivative of the energy

function only with respect to those coefficients can be benefi-

cial and improve the performances of the PDMPs. Figure 10

shows the results obtained. The fully local Zig-Zag and its

variants always outperform the Bouncy Particle sampler, the

MALA and the HMC with respect to the statistics considered,

namely the mean, median and minimum of the effective sam-

ple size computed for each coefficient of the Faber–Schauder

expansion and the effective sample size of the coefficient ξ0,0,

which gives the middle point XT /2 and, as shown in Fig. 10,

is one of the most difficult coefficients to sample.

6 Extensions

In this section, we briefly sketch the extension of the approach

presented in Sect. 3 to a class of multi-dimensional diffusion

bridges. Then, we study the scaling properties of the algo-

rithm with respect to three quantities: the time horizon of the
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diffusion bridge T , the truncation level N and the dimension-

ality of the diffusion bridge d.

6.1 Multivariate diffusion bridge

Consider a d-dimensional diffusion bridge given the stochas-

tic differential equation

dX t = ∇B(X t )dt + dWt , X0 = u, XT = vT , u, vT ∈ Rd ,

where (Wt )t≥0 is a d-dimensional Wiener process and ∇B :
Rd �→ Rd is a conservative vector field, i.e. the gradient
of some scalar-valued function B. Denote its law by Pu,vT .
Similarly to Eq. (10), under mild assumption on ∇B(X t ),
we can write the change of measure between Pu,vT and the
standard d-dimensional Wiener bridge measure Qu,vT as

dPu,vT

dQu,vT
(X) = C exp

{

B(XT ) − B(X0) −
1

2

∫ T

0

‖b(X t )‖2 +B(X t ) dt

}

,

where b = ∇B, B is the Laplacian of B, and C is a

normalisation constant which depends on u, vT and T . It is

straightforward to derive an equivalent approximated mea-

sure as done in equation (12) and prove Theorem 3.11 in the

multi-dimensional setting. In this case, the d-dimensional

diffusion bridge measure is approximated by the same trun-

cated expansion of equation (2) with coefficients ξi, j , i =
0, . . . , N ; j = 0, . . . , 2N which now are d-dimensional ran-

dom vectors. The total dimensionality of the target density

for diffusion bridges becomes d(2N+1 − 1) . Similarly to

the one-dimensional case, Proposition 7.1 holds. (The proof

follows in a similar fashion of the proof of Proposition 7.1

and is omitted for brevity.) The Poisson rates λk
i, j (where,

k ∈ {1, . . . , d} defines the coordinate of the d-dimensional

process) are functions of the sets N k
i, j which have maximum

admissible size |N k
i, j | = d(2N−i+1 + i − 1) ≤ d(2N+1 − 1)

so that Assumption 4.1 holds.

6.2 Scaling for large T,N, d

The following scaling analysis serves as preliminary work

for future explorations. The expected run time of the fully

local Zig-Zag sampler (Algorithm 4) is intimately related to

the number of Poisson event times for a fixed final clock

τfinal and the conditional independence structure appearing

in the target measure. The former is determined by the size

of the Poisson bounding rates λ̄1, . . . , λ̄M , while the latter

is defined by the sets N1, . . . , NM and determines the com-

plexity of the local step of Algorithm 3.

Remark 6.1 For a fixed position and velocity, the Poisson

bounding rates used in the Zig-Zag sampler with subsampling

(Algorithm 2) for diffusion bridges are of the form λ̄i, j =
C1T 3/22−3i/2 +C2, i = 0, 1, . . . , N ; j = 0, 1, . . . , 2i − 1,

for some terms C1 and C2 which do not depend on i and T .

Proof For every i = 0, 1, . . . , N ; j = 0, 1, . . . , 2i − 1, the

time horizon T and scaling index i enter in the bounding

rates of (18) through the terms Si, j and φ̄i, j . The first term

is of O(T 2−i ), and the second one is of O(
√

T 2−i/2). ⊓⊔

Proposition 6.1 helps in understanding how the complex-

ity of the algorithm scales as T grows and as the truncation

level N grows. As T grows, the Poisson rates increase with

order T 3/2 so that the total number of Poisson events for a

fixed Zig-Zag clock increases with the same order.

Furthermore, as the truncation level N grows, the change

of measure affects less and less the coefficients in high lev-

els and the partial derivative of the energy function goes

to zero with rate 2−3N/2) implying that the for large N ,

λ̄N , j ≈ C2 = (ξN , jθN , j )
+ (which is the Poisson rate for

the Brownian bridge). As a consequence, the Poisson pro-

cesses of the coefficients in high levels (i large) will be

approximately independent with all the other coefficients and

not function of the level i so that the complexity of Algo-

rithm 4 scales approximately linearly with the number of

mesh points. This is opposed to the standard Zig-Zag algo-

rithm (Algorithm 1) which does not take advantage of the

approximate independence of the coefficients in high levels

so that the 2N+1 − 1 waiting times have to be renovated at

every reflection of each coefficient.

The scaling result under mesh refinement (when N grows)

is unsatisfactory as the algorithm deteriorates when the reso-

lution of the path increases. A partial solution can be obtained

by letting the absolute value of the marginal velocities |θN , j |
to decrease as N increases. This would enhance the scaling

property of the algorithm under mesh refinement at the cost of

a slow mixing of high-level components. An alternative solu-

tion is considered in Bierkens et al. (2018) where the authors

enhance the scaling property of the algorithm by replacing the

Zig-Zag algorithm with the Factorised Boomerang sampler.

The Factorised Boomerang sampler differs from the Zig-Zag

by having curved trajectories which are invariant to a pre-

scribed Gaussian measure. This allows the process to sample

from the Gaussian measure (Brownian bridge measure) at

barely no cost. However, the main drawback of the factorised

Boomerang sampler is the current limiting techniques for

simulating Poisson times given the curved trajectories which

lead to Poisson upper bounds which are not tight.

Finally, when the dimensionality of the diffusion bridge

is d ≫ 1, both the dimensionality of the target density of the

Zig-Zag sampler and the sets N k
i, j for i = 0, . . . , N ; j =

0, . . . , 2i − 1; k = 1, . . . , d grow linearly with d so that, in

general, we expect the computational time to grow with rate

d2. When the drift of the multi-dimensional bridge presents

a sparse structure, i.e. not all coordinates of the differen-

tial equation interact directly with each other, as common in

the high-dimensional case arising from discretised stochastic

partial differential equations (e.g. Michel et al. 2019, Sect. 6),
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the size of those sets reduces considerably until the extreme

case of d independent diffusion bridges where the sets N k
i, j

are not anymore a function of d and clearly the complexity

grows linearly with the dimensionality d.

7 Conclusions

In this paper, we have introduced a new method for the sim-

ulation of diffusion bridges which substantially differs from

existing methods by using the Zig-Zag sampler and the basis

of representation adopted. We motivated both choices and

presented the method and its implementation. The result-

ing simulated bridge measures are shown to be close to the

real measures, even for low-dimensional approximations and

bridges which are highly nonlinear. We took advantage of the

subsampling technique and a local version of the Zig-Zag to

sample high-dimensional approximation to conditional mea-

sures of diffusions with intractable transition densities. The

subsampling technique is a key property in favour of using

piecewise deterministic Monte Carlo methods for diffusion

bridges (and whenever the target measure is expressed as

an integral that requires numerical evaluation). However, the

main limitation found for these methods is that they rely on

upper bounds of the Poisson rates which are model-specific.

Upper bounds for PDMC are easily derived in situations

where the log-likelihood has a bounded Hessian. In our set-

ting, this means that we wish for the function b2(x) − b′(x)

to have bounded second derivative. In other cases, tailor-

made bounds need to be derived which can be substantially

more complicated. Furthermore, the performance of these

samplers can be affected if the upper bounds are too large.

In conclusion, this is the first time (to our knowledge) the

Zig-Zag has been employed in a high-dimensional practi-

cal setting. We claim that the promising results will open

research towards applications of the Zig-Zag for high-

dimensional problems. We mention below some possible

extensions of the methodology proposed which are left for

future research:

a. The hierarchical structure of the Faber–Schauder basis

suggests that the Zig-Zag should explore the space

at different velocities to achieve optimal performance.

Unfortunately, it is not immediately clear how to tune

the velocity vector;

b. In Sect. 6, we anticipated the possibility to simulate multi-

dimensional diffusion bridges. In order to generalise the

results presented in this paper, we assumed the drift being

a conservative vector field. In order to relax this limiting

assumption, new convergence results have to be derived

which deal explicitly with the stochastic integral appear-

ing in equation (8).

c. The driving motivation for proposing this methodology is

to perform parameter estimation of a discretely observed

diffusion model. For this purpose, the Zig-Zag sampler

runs jointly on the augmented path space given by the

coefficients ξ and the parameter space �.
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Appendix A Factorisation of the diffusion
bridgemeasure

Here, we derive rigorously the conditional independence

structure of the coefficients which arise from the compact

support of the Faber–Schauder functions as shown in Fig. 4.

Recall that the relation ξi, j ≪ ξk,l holds if Sk,l ⊂ Si, j and

in that case we refer to ξi, j as the ancestor of ξk,l (and con-

versely ξk,l as the descendant). Notice that each coefficient

is both descendant and ancestor of itself.

Proposition 7.1 (Conditional independence structure) Deno-

te the set of common ancestors of ξi, j and ξk,l by A(i, j;k,l) :=
{ξh,d : ξh,d ≪ ξk,l ∧ ξh,d ≪ ξi, j }. Under P

vT

N , ξi, j is

conditionally independent from ξk,l , given the set A(i, j;k,l),

whenever the interior of the supports of their basis function is

disjoint that is neither ξi, j ≪ ξk,l nor ξk,l ≪ ξi, j is satisfied.

Proof For i = 1, . . . , N ; j = 1, . . . , 2i − 1, define the

vectors of ancestors and descendants of ξi, j as ξ (i, j) :=
{ξm,n : ξm,n ≪ ξi, j ∨ ξm,n ≫ ξi, j }. Assume, without loss of

generality, that i ≤ k and consider two coefficients ξi, j , ξk,l .

We factorise Z N (X) by partitioning the integration interval

[0, T ] in a sequence of sub-intervals Sk,0, Sk,1, . . . , Sk,2k−1

so that
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ξ3,3
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ξ2,3

ξ3,4

ξ3,5

ξ3,6

ξ3,7

Fig. 11 Graphical representation of the dependency structure of the

random vector of the coefficients under P
u,vT

N . ξi, j ⊥⊥ ξk,l conditionally

on the vertices which have a direct hedge to both ξi, j and ξk,l if ξi, j

does not have a direct edge to ξk,l . The dependency graph is a chordal

graph

Z N (X) =
2k−1
∏

p=1

fk,p(ξ
(k,p)). (24)

Here,

fk,p(ξ
(k,p)) = exp

(

B(X N
max Sk,p

) − B(X N
min Sk,p

)

× −
1

2

∫

Sk,p

b2
(

X
N ;k,p
s

)

+ b′
(

X
N ;k,p
s

)

ds

)

.

with

X
N ;k,p
s = ¯̄φ(s)u + φ̄(s)vT /

√
T +

∑

(i, j) : ξi, j≪ξk,p

φi, j (s)ξi, j

and we used that X N
s = X

N ;i, j
s when s ∈ Si, j , X N

T =
φ̄(T )vT /

√
T and X N

0 = ¯̄φ(0)u. Now, just notice that, under

this factorisation, the only factor which is a function of ξk,l

is fk,l(ξ
(k,l)). Here, if ξi, j �≪ ξk,l , then ξ (k,l) does not con-

tain ξi, j . Conversely, the factors containing ξi, j are those

fk,p(ξ
(k,p)) such that ξi, j ≪ ξk,p with p = 0, 1, . . . , 2k −1.

If ξi, j �≪ ξk,l , none of the vectors ξ (k,p) contains ξk,l . Since,

under the measure Qu,vT , the random variables in the vec-

tor ξ N are pairwise independent, the factorisation on Z N (X)

defines the dependency structure of the vector ξ N under P
vT

N

so that ξi, j and ξk,l are independent conditionally on their

common coefficients given by the set A(i, j;k,l). ⊓⊔

More intuitively, the factorisation of Z(X) gives rise to the

dependency graph displayed in Fig. 11 which shows that the

coefficients in high levels (i large) are coupled with just few

other coefficients and conditionally independent from all the

remaining. The conditional independence of the coefficients

implies that the partial derivatives of the energy function (and

consequently the Poisson rates given by equation (6)) are

functions of only few coefficients in the sense of Assump-

tion 4.1. In particular, the sets in Assumption 4.1 (using

double indexing) can be chosen as Ni, j = {ξh,d : ξh,d ≪
ξi, j ∨ ξh,d ≫ ξi, j } with size |Ni, j | = 2N−i+1 + i −1, where

N is the truncation level.
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