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Abstract— In this paper an approach towards sheet control in
a printer paper path is presented. To make the control problem
feasible, the complex overall control question is formulated in
a hierarchical control set-up with a low level motor control
part and a high level sheet control part. To understand the
essence of the sheet control problem we consider a basic paper
path in which industrial constraints and requirements are
relaxed. Furthermore, the motor control part is assumed to
be ideal and the sheet dynamics are captured in the piecewise
linear modeling formalism. Based on the model of the sheet
dynamics, the controller synthesis is carried out. Both state
and output feedback control designs are presented and stability
and tracking performance are analyzed. The effectiveness of the
control design approaches is demonstrated via simulations.

I. INTRODUCTION

In this paper we consider longitudinal sheet handling in
a cut sheet printer paper path. An example of such a paper
path is shown in Fig. 1. Sheets enter the paper path at the
Paper Input Module (PIM) and are transported to the Image
Transfer Station (ITS) pinch where the image is printed onto
the sheet at high pressure and high temperature. After leaving
the ITS, sheets can either re-enter the first part of the paper
path for back side printing or they can go to the finisher
(FIN), where they are collected. The sheets are driven by
pinches, which are sets of rollers that are, either individually
or grouped together in sections, driven by motors.

One of the objectives of a printer’s sheet handling mech-
anism is to accurately deliver sheets to the ITS. Each sheet
must synchronize with its corresponding image with respect
to both time and velocity to achieve a high printing quality.
Whereas formerly printers were predominantly controlled in
an open-loop fashion, nowadays feedback control is required
to achieve the desired performance [1], [2], [3].

In the design of feedback control, dynamic paper path
models are often used. In [1], [2] the paper path model is
split up into two parts: the Section dynamics and the Sheet
dynamics. The Section dynamics map the motor currents
to section velocities, so these dynamics are essentially in-
tegrators. The Sheet dynamics, on the other hand, consist of
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Fig. 1. Schematic representation of a printer paper path.

switching integrators. [1], [2] use a finite state machine to
describe the discrete switching of a sheet between different
sections: when entering a new section, the sheet velocity
is suddenly dictated by the velocity of that section. The
map from sheet velocities to sheet positions is described by
integrators. The combination of the finite state machine and
the integrators results in a hybrid dynamic model. On the
basis of this model, a distributed, hybrid hierarchical control
strategy is adopted, which controls the spacings between the
sheets. The control design in [1], [2] is done intuitively and
verified by simulation. A disadvantage of the control strategy
used is the lack of analysis and systematic design methods,
which makes it hard to prove the controller works under all
conditions.

In this paper we present a more structured approach
towards sheet control in a printer paper path that includes
model-based control design, as well as stability and tracking
performance analysis. To make the sheet control problem
feasible we split up the control design in a motor control
part and a sheet control part. As [1], [2], we recognize the
state-dependent switching behavior of the Sheet dynamics.
However, we capture these dynamics in the piecewise linear
(PWL) modeling formalism [4]. The benefit of choosing this
formalism is the availability of techniques for both controller
synthesis and analysis, see for example [5], [6], [7], and
the references therein. Regarding control design, we will
exploit two different approaches. The first one covers a state
feedback control design whereas in the second approach
output feedback controllers are designed using loopshaping
techniques [8]. Most literature on the analysis of piecewise
linear control systems is devoted to stability analysis of the
system dynamics. However, since we are dealing with a
tracking problem, we will formulate the system in terms of
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its error dynamics. By analyzing the stability of these error
dynamics we can predict the tracking performance of the
system at hand.

The remainder of this paper is organized as follows: in
Section II the system under consideration will be discussed in
more detail and the problem statement will be given, together
with the control goal. In Section III we will discuss the
two control design approaches. For both approaches, analysis
on stability and performance will be given. In Section IV,
simulation results will be shown, whereas in Section V
the obtained results will be discussed in a broader context.
Conclusions will come at the end.

II. SYSTEM OVERVIEW AND PROBLEM
STATEMENT

When we consider sheet control in a printer paper path as
the one shown in Fig. 1, we observe that the control design is
complicated by industrial constraints and requirements. An
example of such a constraint is that often several pinches
are coupled and driven by the same motor. When there are
two sheets in such a section, no independent sheet control is
possible: adjusting the motor motion to counteract a position
error of one sheet automatically implies the same change in
profile for the other sheet. Another constraint arises when
a sheet is in two sections at the same time, each driven by
its own motor. To avoid buckling or tearing of the sheet,
both sections must have approximately the same velocity.
A requirement that challenges the control design is, for
example, the desired high printing quality. Limited stiffness
of paper path units, e.g. flexibilities in the driving belt
between motors and pinches, will limit the attainable control
performance. Consequently, it is not trivial how to achieve
the desired quality.

To understand the core of the sheet control problem, we
consider a basic version of a printer paper path. As a result,
the fundamental parts of the control design naturally arise
and a structured design approach can be more easily carried
out. Therefore, we introduce the basic paper path depicted in
Fig. 2. Since we consider the sheets only when they are in
the paper path, the PIM and FIN are not taken into account.
Furthermore, the loop is removed, so sheets cannot re-enter
the path. The considered paper path consists of three pinches
(P1, P2, and P3) only, each of which is driven by a separate
motor (M1, M2, and M3, respectively). The locations of the
three pinches in the paper path are represented by xP1, xP2,
and xP3, respectively. These locations are chosen such that

Fig. 2. Schematic representation of the simplified printer paper path.

the distance between two pinches is equal to the sheet length
Ls, so at each time instant the sheet is only in one pinch.
No slip is assumed between the sheet and the pinches and
the coupling between the pinches and motors is assumed to
be infinitely stiff. The mass of the sheet is assumed to be
zero, which simplifies modeling of the sheet dynamics. The
sheet position, defined as xs, is assumed to be measured. As
optical sensors, like the ones used in optical mouse devices,
are really cheap nowadays, this position measurement is
becoming a serious option in printer control design. Despite
this, an observer in combination with sheet sensors like the
ones in the paper path in Fig. 1 may be a more practical
solution.

As [1], [2], we also split up the complete sheet handling
control problem into two levels. The low level encompasses
motor modeling and control design, whereas on the high level
the focus is on modeling and control of the sheet flow. The
motor control is used to tackle disturbances and uncertainties
at the motor level, e.g. friction in the bearings and flexibilities
in the driving belt between motor and pinch. By introducing
feedback at the high sheet level, robustness is obtained for
disturbances and uncertainties on the sheet level. One can
think of, for example, varying sheet characteristics related to
geometry or roughness, tolerances on pinch radii and pinch
positions, or slip between the sheet and pinches. Breaking up
the control problem into two parts therefore seems natural for
the system at hand and replaces the complex overall design
question by two much simpler control questions. In this way,
a cascade control structure is obtained in which the inner
loop (the low level motor control loop) is designed to have
a higher bandwidth than the outer loop (the high level sheet
control loop) [9]. As a result the inner loop will closely track
the reference profiles generated by the outer loop.

For the sheet motion task there are several possibilities, for
example absolute reference tracking control and intersheet
spacing control [1], [2]. In this paper we choose a constant
velocity that has to be tracked by each individual sheet
throughout the entire paper path. The corresponding sheet
position setpoint xs,r will therefore be a first order ramp
function. The control goal we adopt for the basic paper path
case study is, given low level closed-loop systems and a
high level sheet model, the design of high level feedback
controllers (HLCs). These HLCs should result in stability
of the high level closed-loop system and in a good tracking
behavior of the sheet reference profile.

The low level motor control can be designed on the
basis of standard single-input single-output motion control
techniques [8]. The closed-loop linear motor dynamics in
the Laplace domain can be represented by

ΩMi(s) = Ti(s)ΩMi,r(s), i ∈ I, (1)

with Ti(s) the complementary sensitivity function of con-
trolled motor i, which maps the input of the low level closed-
loop system (the motor reference velocity ωMi,r(t), with
ωMi,r(t) the inverse Laplace transform of ΩMi,r(s)), to its
output (the actual motor velocity ωMi(t)). Furthermore, I =
{1, 2, 3} represents the index set of sheet regions. To make
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the control problem even more feasible, we assume perfect
tracking behavior of the controlled motors, i.e., Ti(s) = 1
in (1).

At the high level, modeling and control of the sheet
dynamics are considered. Due to the assumption on ideal
behavior in the low level control loop, the inputs ui of the
high level sheet dynamics will be directly calculated by the
HLCs. This is shown in Fig. 3, which represents the block
diagram of the control system at hand. Since at each time
instant the sheet is only driven by one pinch, only one of the
inputs of the high level sheet dynamics is used to calculate
the sheet position. As the sheet moves through the paper
path, this input will change when the sheet arrives at the next
pinch. This switching behavior can be easily captured in the
PWL modeling formalism. The sheet velocity is derived from
the motor velocities via straightforward holonomic kinematic
constraint relations that describe the relation between motor
velocity and pinch velocity, and pinch velocity and sheet
velocity, respectively. These constraint relations hold under
the assumption that the connection between motor and pinch
is infinitely stiff and that there is no slip between the pinch
and the sheet. The sheet velocity is integrated to obtain the
sheet position. The high level sheet model now becomes:

ẋs = Biu for xs ∈ Xi, i ∈ I , (2)

with the input matrices Bi defined as B1 = [n1rP1 0 0],
B2 = [0 n2rP2 0], and B3 = [0 0 n3rP3], respectively.
In these definitions, ni represents the transmission ratio
between motor i and pinch i and rPi represents the ra-
dius of pinch i. Furthermore, u = [u1 u2 u3]

T , X1 =
{xs|xs ∈ [xP1, xP2)}, X2 = {xs|xs ∈ [xP2, xP3)}, and
X3 = {xs|xs ∈ [xP3, xP3 + Ls)}.

III. HIGH LEVEL CONTROL DESIGN

In this section we present two feedback control design
approaches. Although in practical situations also a feed-
forward control input will be used to achieve the desired
tracking performance, the approaches presented here will
focus only on feedback design. In the first approach, both the
stability analysis and the state-feedback controller synthesis
can be expressed as a convex optimization problem based on
constraints in the form of a set of linear matrix inequalities
(LMIs). Since we will base our analysis on the tracking
error dynamics, stability will be directly linked to track-
ing performance. The second approach encompasses output
feedback control design. Here, the HLCs will be designed

Fig. 3. Block diagram of the total control system.

using loopshaping techniques based on the high level sheet
model (2). After designing the controllers, the tracking error
dynamics will be derived and the stability of these dynamics
will be analyzed by solving a set of LMIs.

A. STATE FEEDBACK CONTROL DESIGN

To formulate the error dynamics for the high level sheet
dynamics (2), we use the error-space approach of [8] and
extend it to the PWL case. Since the sheet reference profile
is assumed to be of first order, it will have zero acceleration:

ẍs,r = 0. (3)

The sheet tracking error is defined as the difference between
the sheet reference position and the actual sheet position:

es = xs,r − xs. (4)

Substitution of (3) in the second derivative of (4) yields

ës = −ẍs. (5)

We now define error-space state ξ as:

ξ = ẍs. (6)

With this definition, (5) becomes

ës = −ξ. (7)

Next, the control input u is replaced by the control input in
error-space, which is defined as:

μ = ü. (8)

With these definitions, the state equation for the error-space
state ξ now becomes:

ξ̇ =
...
xs

= Biμ for xs ∈ Xi, i ∈ I.
(9)

The expressions (7) and (9) now describe the overall system
in the error-space. In standard state-variable form, the error
dynamics now become:

q̇ = Fq + Giμ for xs,r −
[

1 0 0
]
q ∈ Xi, i ∈ I,

(10)
with q = [es ės ξ]T the state vector of the error dy-

namics. The matrices F =

⎡
⎣

0 1 0
0 0 −1
0 0 0

⎤
⎦ and Gi =

[
03×1 03×1 BT

i

]T
represent the state and input matrices of

the error dynamics, respectively.
Given these error dynamics, the goal is to find a control

law that stabilizes these dynamics. This control law should
result in regulation of the error dynamics, i.e. all error states
should go to zero. This automatically implies that the actual
sheet position will become equal to the desired one and,
hence, the desired tracking performance will be obtained.
The control law we propose is based on state feedback:

μ = −KSq, (11)

with KS the matrix with state feedback gains. Elimination
of μ in (8) by substitution of (11) and integrating twice
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yields the control law for each region for the high level sheet
model (2):

ui = −KS,i(3)xs − KS,i(2)
∫ t

t0
esdτ−

−KS,i(1)
∫ t

t0

∫ ζ

t0
esdτdζ

for xs,r −
[

1 0 0
]
q ∈ Xi, i ∈ I,

(12)

with t0 the initial time and KS,i(j) the j-th element of the
i-th row of KS , i ∈ I, j ∈ {1, 2, 3}.

To analyze the stability of the error dynamics and to
calculate the controller gains, first (11) is substituted into
into (10), yielding the following closed loop error dynamics:

q̇ = (F − GiKS) q
for xs,r −

[
1 0 0

]
q ∈ Xi, i ∈ I.

(13)

By making use of the work presented in [10], it can be
analyzed whether the closed-loop error dynamics in (13) is
Globally Exponentially Stable (GES). To do so, we propose
a common quadratic Lyapunov function candidate:

V (q) = qT Pq, (14)

with P = PT > 0. To prove that the error dynamics is GES,
the following set of matrix inequalities in P and KS must
hold:

0 ≥ V̇ (q) + αV (q)
0 ≥ (F − GiKS)T

P + P (F − GiKS) + αP, i ∈ I,
(15)

where α > 0 represents the decay rate of the Lyapunov
function. This parameter is chosen a priori in relation to the
desired tracking performance. A large value of α results in
a fast convergence of the error to zero. When α is chosen
too large, (15) does not have a feasible solution. From (15),
it becomes clear that both the stability analysis and the
calculation of the controller gains can be carried out by
solving the set of matrix inequalities. Since these matrix
inequalities are not linear in the unknown matrices P and
Ks, we pre and post-multiply (15) with P−1 and substitute
Q = P−1 and Y = KSP−1 to obtain the following set of
LMIs in Q and Y :

0 ≥ FQ + QFT − GiY − Y T GT
i + αQ, i ∈ I

0 < Q.
(16)

After solving these LMIs, the controller gains can be calcu-
lated using

KS = Y Q−1. (17)

B. OUTPUT FEEDBACK CONTROL DESIGN

The output feedback control design approach follows a
different strategy than the state feedback design method. In
this case we start with the design of three HLCs for the three
subsystems of the high level sheet model (2). The design
procedure makes use of loopshaping techniques [8]. Since
each subsystem Hi(s) consists of an integrator multiplied
by a gain:

Hi(s) =
nirPi

s
, i ∈ I, (18)

and the sheet reference profile is a ramp function, we propose
a Proportional-Integral (PI) controller for each subsystem:

Ci(s) = Ui(s)
Es(s)

= Pis+Ii

s , i ∈ I.
(19)

The controller gains Pi and Ii are tuned such that the desired
bandwidth is obtained. Given this PI controller and a ramp-
shape reference profile, we enforce a zero tracking error in
each subsystem for t → ∞. This can be shown using the
Final Value Theorem [8]:

lim
t→∞ es(t) = lim

s→0
sEs(s). (20)

In (20), Es(s) is the Laplace transform of es(t), calculated
from the sensitivity function Si(s):

Si(s) = Es(s)
Xs,r(s)

= 1
1+Hi(s)Ci(s)

= s2

s2+PinirP is+IinirP i
, i ∈ I

(21)

with Xs,r(s) representing the Laplace transform of the sheet
reference position xs,r(t). Substitution of (21) into (20)
yields the desired proof for tracking performance of each
individual subsystem.

However, this does not guarantee stability for the high
level error dynamics, due to the switching behavior. To
analyze this stability, we write the control law (19) in the
time domain and differentiate twice with respect to time:

üi = Piës + Iiės, i ∈ I. (22)

Combining (22), (7), and (8) yields the following control
input in the error-space:

μi = −Piξ + Iiės

= KL,iq, i ∈ I,
(23)

with KL,i = [0 Ii − Pi] the i-th row of the matrix KL with
output feedback gains. Substitution of (23) in (10) yields the
closed-loop error dynamics:

q̇ = (F + GiKL) q
for xs,r −

[
1 0 0

]
q ∈ Xi, i ∈ I.

(24)

Using a similar approach as presented in Section III-A,
the stability of the closed-loop error dynamics (24) can be
analyzed. The objective in this case is, given KL,i, to find a
matrix P = PT > 0 in the Lyapunov function candidate (14)
that satisfies the following set of LMIs in P :

0 ≥ (F + GiKL)T
P + P (F + GiKL) + αP, i ∈ I. (25)

When the control laws of the two design approaches are
compared it can be observed that the state feedback controller
integrates the error twice, whereas in the output feedback
case only one integrator is incorporated. In the latter case
the loopgain contains two pure integrators, i.e. one from the
high level sheet model and one from the controller, which
was shown to be needed to obtain a zero tracking error. In
the state feedback approach, the pure integrator in the sheet
model becomes a first order filter due to the proportional
state feedback term −KS,i(3)xs. Consequently, the error
needs to be integrated twice to achieve the desired tracking
performance.
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IV. SIMULATION RESULTS

To demonstrate the effectiveness of the two control design
approaches, simulations have been conducted for the basic
paper path shown in Fig. 2. A letter-format sheet, of which
the length is 0.216 m, enters the paper path at t = 0.5 s. It
has to be transported at a velocity of 0.25 m/s and leaves
the paper path when its trailing edge has left P3. The sheet
reference profile is depicted in Fig. 4. The distance between
the pinches is chosen to be equal to the sheet length: xP1 = 0
m, xP1 = Ls m, and xP3 = 2Ls m. Pinches with different
radii are chosen to emphasize the piecewise linear character
of the high level sheet model: rP1 = 20 · 10−3 m, rP2 =
22 · 10−3 m, rP3 = 25 · 10−3 m. The same has been done
with the transmission ratios: n1 = 1

3 , n2 = 4
9 , and n3 = 1

2 .

A. STATE FEEDBACK CONTROL RESULTS

Given the dimensions of the basic paper path we calculate
the state feedback controller gains and verify the stability
of the error dynamics by solving the set of LMIs given
in (16). A positive definite, symmetric matrix P is found,
which proves that the closed loop error dynamics (13) is
GES. The chosen decay rate α = 50 results in conver-
gence of the tracking error to zero within 0.2 [s]. The
controller gains KS,i to be used in the control law (12) are
the following: KS,1 =

[−4.0 · 107 − 2.2 · 106 3.1 · 104
]
,

KS,2 =
[−2.8 · 107 − 1.5 · 106 2.1 · 104

]
, and KS,3 =[−2.2 · 107 − 1.2 · 106 1.7 · 104

]
Given these controller

gains, the sheet tracking error depicted in Fig. 5 is obtained.
It can be seen that the sheet controller anticipates quickly to
the initial error, which is due to the difference in actual and
desired sheet velocity at t = 0.5 [s]. Furthermore, we notice
that after the transient response the error stays zero, also at
the switching planes.

To analyze the robustness of the controlled system to
changes in the input gains Bi, the gains used in the control
design have been slightly perturbed in the simulation. With
respect to their original values, the actual gains vary 9%,
−7%, and 8%, respectively. The tracking error obtained
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Fig. 4. Sheet position reference profile.
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Fig. 5. State feedback control approach: tracking error without disturbances
for α = 50 (thick) and α = 10 (dashed) and with perturbations for α = 50
(thin).

using these perturbed gains is depicted in Fig. 5 as well.
It can be seen that the maximum deviation from the desired
zero error level after the switching moments is approximately
1.3 · 10−4 m, which is well acceptable, and that these errors
are controlled to zero fast.

Fig. 5 also shows the tracking error obtained without
perturbing the input gains but with using controller gains
resulting from setting α = 10. These smaller controller gains
result in a slower transient response and in a nonzero tracking
error when transferring the sheet from P1 to P2. Also during
this switch between regions the error is not amplified.

B. OUTPUT FEEDBACK CONTROL RESULTS

Also the output feedback controllers are tuned to achieve a
fast convergence of the tracking error to zero. The controller
gains Pi and Ii in (19) are chosen such that a crossover
frequency is realized that is comparable to the one obtained
with the state feedback control approach in case α = 50. In
Fig. 6 the frequency response functions of the loopgains of
the first subsystem, obtained in both control approaches, are
depicted. From this figure, it can be seen that the crossover
frequency is approximately 11 Hz. By placing the zero of the
controller (19) at 11 Hz, a phase margin of 45◦ is obtained,
which results in robustness for model uncertainties.

The controller gains obtained in the output feedback
control design are the following: P1 = 7.3·103, I1 = 5.0·105,
P2 = 5.0 · 103, I2 = 3.4 · 104, and P3 = 3.9 · 103, I3 =
2.7·104. Using these controller gains, the set of LMIs in (25)
is solved, yielding a positive definite, symmetric matrix P ,
which proves that the closed loop error dynamics (24) is
GES. Also using this controller simulations have been carried
out. The results obtained when the input gains Bi have been
perturbed are shown in Fig. 7. As with the state feedback
design approach, the initial error as well as the errors after
the switching moments are quickly removed.

In both control design approaches, high controller gains
can lead to high demands on actuators in the low level control
loop. Therefore, in practical cases, care must be taken not
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to violate physical constraints, such as maximum allowable
velocities and accelerations. Incorporating such constraints
in the control design will be subject of future research.

V. DISCUSSION

In the sheet control case-study presented, two design
approaches have been applied. In the state-feedback control
design, both the stability analysis and the controller synthesis
are performed by solving an optimization problem. This is
a benefit over the output feedback control design approach,
in which the stability has to be post-analyzed. A drawback,
however, is that there is less insight in the tuning of the
controller than in the loopshaping approach.

Besides the control design approaches presented in this pa-
per, there are more possible design procedures, e.g., feedback
linearization [11]. In order to achieve perfect linearization
and, hence, a linear control problem, the system parame-
ters must be exactly known. However, robustness against
uncertainty and variations of these parameters was the main
motivation for sheet feedback control in the first place.
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Fig. 7. Output feedback control approach: tracking error with perturbations.

VI. CONCLUSIONS

This paper presents an approach towards sheet control in
a printer paper path. By introducing assumptions that relax
some of the industrial constraints and requirements, and by
splitting up the complex overall control design problem into
a simple motor and sheet control design part, the core of
the design question is exposed. As the inner loop of the
resulting cascade control system, i.e., the motor control loop,
is assumed to be perfect, the focus is on the design of
feedback controllers for the remaining piecewise linear sheet
dynamics. Controllers that result in stable error dynamics and
good tracking performance have been proposed. In the case
of state feedback control, both the controller synthesis as well
as the stability analysis have been expressed as a convex opti-
mization problem based on constraints in the form of a set of
linear matrix inequalities. The output feedback control design
has been carried out using loopshaping techniques, whereas
the analysis of both stability and tracking performance have
been carried out by solving a set of linear matrix inequalities
a posteriori. Simulation results confirm the good tracking
performance and show robustness against varying system
parameters. Since industrial printer paper paths are far more
complex than the one used in this paper, future research will
gradually release the simplifying assumptions made in this
paper. Topics for investigation will be, for example, control
design for cases in which pinches are coupled into sections,
driven by one motor, and cases in which more than one pinch
can influence the sheet motion.
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