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A pig BodyMap transcriptome reveals diverse
tissue physiologies and evolutionary dynamics of
transcription
Long Jin 1,13, Qianzi Tang 1,13✉, Silu Hu1,13, Zhongxu Chen2,13, Xuming Zhou3,13, Bo Zeng1, Yuhao Wang1,

Mengnan He1, Yan Li1, Lixuan Gui2, Linyuan Shen1, Keren Long1, Jideng Ma1, Xun Wang1, Zhengli Chen4,

Yanzhi Jiang5, Guoqing Tang1, Li Zhu1, Fei Liu6, Bo Zhang7, Zhiqing Huang 8, Guisen Li 9, Diyan Li 1,

Vadim N. Gladyshev 10, Jingdong Yin11, Yiren Gu12, Xuewei Li1 & Mingzhou Li 1✉

A comprehensive transcriptomic survey of pigs can provide a mechanistic understanding of

tissue specialization processes underlying economically valuable traits and accelerate their

use as a biomedical model. Here we characterize four transcript types (lncRNAs, TUCPs,

miRNAs, and circRNAs) and protein-coding genes in 31 adult pig tissues and two cell lines.

We uncover the transcriptomic variability among 47 skeletal muscles, and six adipose depots

linked to their different origins, metabolism, cell composition, physical activity, and mito-

chondrial pathways. We perform comparative analysis of the transcriptomes of seven tissues

from pigs and nine other vertebrates to reveal that evolutionary divergence in transcription

potentially contributes to lineage-specific biology. Long-range promoter–enhancer interaction

analysis in subcutaneous adipose tissues across species suggests evolutionarily stable

transcription patterns likely attributable to redundant enhancers buffering gene expression

patterns against perturbations, thereby conferring robustness during speciation. This study

can facilitate adoption of the pig as a biomedical model for human biology and disease and

uncovers the molecular bases of valuable traits.
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S
us scrofa (i.e., pig or swine) is of substantial agricultural
value worldwide and is increasingly used as a model for
human diseases1 and as a source of cells and tissues for

xenotransplantation2. Systematic analysis of the transcriptome is
of central importance to the pig research community. With the
FANTOM 5 Consortium3, ENCODE project4,5, and Genotype-
Tissue Expression (GTEx) Consortium6,7 in the human and
mouse; BodyMap database8 in rats; and the Functional Annota-
tion of Animal Genomes (FAANG) project9,10 in sheep, com-
prehensive characterization of the transcriptome has greatly
contributed to our understanding of the regulatory mechanisms
and genome complexity of mammals. A recently published, high-
quality, continuous reference pig assembly (Sscrofa11.1)11 has
provided a framework to obtain a more complete and accurate
view of transcribed sequences, comparable to the richly annotated
human and biomedically relevant rodent model reference
assemblies (Supplementary Fig. 1).

Apart from protein-coding genes (PCGs), which are the main
drivers of phenotypes, mammalian genomes encode several other
transcript types (including transcripts of unknown coding
potential [TUCPs]12, long noncoding RNAs [lncRNAs]12,13,
microRNAs [miRNAs]14, and circular RNAs [circRNAs]15,16),
which play essential regulatory roles via diverse mechanisms and
underlie the complexity and variation of the transcriptome, as it
relates to tissue physiology17,18. Systematic analysis of the dif-
ferent components that comprise the pig transcriptome has long
been overdue, and elucidation of these different transcripts and
their expression patterns may allow the construction of an atlas of
regulatory functions for the many different transcripts and
interacting gene networks.

To characterize transcriptomic variability with respect to
known tissue-specific physiological activities and identify key
transcripts underlying economically important phenotypes in
pigs (notably, the production of pork for improved nutritional
content), we sequenced 194 paired-end rRNA-depleted RNA-seq
libraries (~14.39 gigabases [Gb] of high-quality sequences per
library; ~2.79 terabases [Tb] total) and 187 single-end small
RNA-seq libraries (~11.91 million [M] reads per library; ~2.23
billion reads total) from 70 tissues (1–3 libraries for each of
17 solid organs, as well as 47 skeletal muscle tissues [SMTs] and
six adipose tissues [ATs] from different body sites), and two
immortalized cell lines (kidney epithelial cells [PK15] and iliac
endothelial cells [PIECs]) (Supplementary Data 1–2). We also
sequenced 142 rRNA-depleted RNA-seq libraries (~12.25 Gb of
high-quality sequences per library; ~1.74 Tb in total) of seven
homologous tissues from eight representative mammalian models
and a bird (chicken) (Supplementary Data 3), with the goal of
examining the evolutionary dynamics of transcription among
animal models in a comparative transcriptomic framework.

Results
An expanded landscape of the pig transcriptome. We per-
formed an enhanced annotation of four distinct transcript types
(Table 1; Supplementary Figs. 2–8), including 2440 TUCPs (first
identified in this study), 19,072 lncRNAs (among which, 12,180,
or 63.86%, were not yet been annotated in the reference genome)
(Supplementary Fig. 6), 48,232 circRNAs (first identified in this
study), and 1245 miRNAs (783, or 62.89%, apparently novel and
absent in the miRbase database19 for pigs) based on 85 RNA-seq
libraries and 78 small RNA-seq libraries from 31 tissues and two
cell lines (Fig. 1a) (representing the core atlas dataset for a de
novo assembly of transcribed sequences, see Methods for details).

Using 21,303 PCGs in the reference pig assembly11 (in our
study, 20,505, or 96.25%, had evidence of transcription
[transcripts per million (TPM) ≥0.1 in at least one sample]), we

investigated the initial characteristics (i.e., sequence or exonic
structural features) of biogenesis and functionally distinct
transcripts, which were highly similar to those in other mammals.
Compared with the evolutionarily conserved PCGs (100-verte-
brate phastCons= 0.67), the relatively rapidly evolving lncRNAs
(phastCons= 0.07) were shorter (1,694 bp vs. 3,259 bp for PCGs)
and had fewer exons (~2.63 exons per transcript vs. ~10.21 for
PCGs), although their average exon length was not shorter (~339
bp vs. ~129 bp for PCGs) (Table 1, Fig. 1e, and Supplementary
Fig. 7a–c). This observation possibly reflects an evolutionary
scenario wherein de novo transcripts arising from ancestral,
nongenic sequences are generally shorter and have fewer exons20,
thus showing reduced transcriptional cost compared to evolutio-
narily older transcripts21, and which are likely to spread/fix under
natural selection22. Notably, compared to PCGs (~2.34 isoforms
per model) and TUCPs (~2.27 isoforms), lncRNAs exhibit
analogous canonical splicing junction sites (Supplementary
Fig. 7f) but relatively infrequent events of alternative splicing
(~1.54 isoforms) (Supplementary Fig. 7d–e). The short circRNAs
(~577 bp in length) tend to originate from linear, middle exons23

(Supplementary Fig. 8c), and often contain multiple, canonical,
linear exons (~172 bp) (Supplementary Fig. 8d–f) that have
longer flanking introns (5375 bp vs. 1592 bp in the control)
(Supplementary Fig. 8g).

We observed variation between the proportions of distinct
transcript types that were transcribed across tissues. For example,
compared to the smaller fractions of TUCPs (~36.94%), lncRNAs
(~38.21%), miRNAs (~30.79%), and circRNAs (~9.37%) that
showed evidence of transcription for a given tissue, more than
two-third of PCGs (~76.66%) also presented evidence of
transcription, ranging from ~65.65% in PIECs to ~89.38% in
the testis (Fig. 1b), and with reduced tissue specificity in their
expression (35.68% of PCGs with τ ≥ 0.75 vs. 70.70, 66.98, 69.24,
and 95.43% for TUCPs, lncRNAs, miRNAs, and circRNAs,
respectively)12 (Fig. 1f). Remarkably, the testis, which has
permissive chromatin that allows transcription of extensive
genomic regions24, had the highest proportion of transcribed
PCGs (~89.38% vs. ~76.26% in each of the other tissues), TUCPs
(~78.88% vs. ~35.63%), and lncRNAs (~76.10% vs. ~37.02%), but
not the highest proportions of biogenesis-distinct short tran-
scripts, i.e., circRNAs (~11.35% vs. ~9.31%) and miRNAs
(~28.92% vs. ~30.85%) (Fig. 1b).

As expected, non-linear circRNAs were more abundant in
brain tissues (23.27% and 11.67% were transcribed in the
cerebellum and cerebrum, respectively, vs. 7.97% in each of the
other tissues) (Fig. 1b). This finding was consistent with the
notion that circRNAs are more likely to be derived from neuron-
specific PCGs16 and that their formation is enhanced by neuron-
specific RNA-binding proteins25 (e.g., quaking protein [QKI],
whose transcript abundances were ~230.09 and 284.20 TPM in
the cerebellum and cerebrum, respectively, vs. ~75.72 TPM in
each of the other tissues). Moreover, a larger proportion of
miRNAs were detected in the cerebrum (40.56%) and cerebellum
(37.71%) than in each of the other tissues (30.26%) (Fig. 1b). This
observation is consistent with miRNA-target coevolution, in
which PCGs that are predominantly expressed in the brain
generally have longer 3′ untranslated regions and thus are more
likely to be targeted by miRNAs26.

We also observed dissimilarities between the distribution of the
abundances of distinct types of transcripts (i.e., complexity)
across tissues. The most abundant transcripts (the top 0.5%, as
ranked by expression levels) in a tissue, accounted for greater
than half of the total transcribed TUCPs (~58.35%), lncRNAs
(~75.53%), and miRNAs (~62.34%), whereas PCGs (~46.26%)
and circRNAs (~35.48%) had a more uniform distribution
(Fig. 1g and Supplementary Fig. 9). Among the few highly
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abundant PCGs (the top 0.5%; ~102) in a tissue, ~69.61% (~71)
were ubiquitously transcribed across tissues (τ ≤ 0.30) and were
commonly enriched in basic cellular functions, including
“oxidative phosphorylation” (P < 2.2 × 10−16) and “regulation of
translation” (P < 2.21 × 10−6). Nonetheless, ~7.84% of PCGs (~8)
were specifically transcribed in a given tissue (τ ≥ 0.75). The
categories “muscle contraction” (P= 3.12 × 10−4), “spermatogen-
esis” (P= 3.37 × 10−6), and “visual perception” (P= 6.17 × 10−7)
were overrepresented among the highly abundant PCGs that were
uniquely transcribed in SMTs (6 of 8 SMTs), the testis, and the
retina, respectively (Supplementary Fig. 10).

Although distinct transcript types exhibited considerable
differences in structural and expression characteristics, their
transcriptional profiles were generally similar among tissues
(Fig. 1c, d and Supplementary Fig. 11a), with circRNAs being
more discriminative among tissues (Supplementary Fig. 11b).
Testis clustered separately, while neural tissues (cerebrum,
cerebellum, and retina) clustered together, whereas other
functionally related tissues also co-clustered. Twelve striated
muscles (eight SMTs and the four chambers of the heart), six
ATs, and three digestive tissues (colon, small intestine, and
stomach) also clustered into obviously separate respective groups
(Fig. 1c and Supplementary Fig. 11a).

Supporting the notion that the transcriptional programs may
store memory of lineage specification and differentiation27, we
observed that the transcriptomic divergence was relatively higher
between tissues of different germ layers than within germ layers
(Supplementary Fig. 12a). We observed that this profound
difference was further amplified for 36 paralogous transcription
factors (TFs) in the homeobox (HOX) superfamily, which are
major regulators of animal morphogenesis and development
(Supplementary Fig. 12b). We identified sets of germ layer-
specific markers (2507 for ectoderm, 1053 for endoderm, and 874
for mesoderm) (Supplementary Fig. 12c) that were critical
specifiers for different germ layers. For example, neurodevelop-
mental genes (such as HK128, VWC229, and NECTIN130), a
metabolic gene (FOXA3)31, and genes in involved in cardiovas-
cular differentiation (TMEM8832 and VIM33) were highly
expressed in tissues derived from ectoderm (i.e., cerebrum,
cerebellum, and retina), endoderm (i.e., liver, small intestine,
colon, and stomach), and mesoderm (typically, heart), respec-
tively (Supplementary Fig. 12d).

Visualization of transcriptional features in the nuclear space.
In addition to the sequence of the genome, its three-dimensional
(3D) structure plays a key role in regulating transcription34. To
visualize the origins of transcription within the nuclear space, we
reconstructed 3D genomic structures for subcutaneous AT (SAT)

(as a representative somatic tissue) (Fig. 2) using an in situ high-
throughput chromatin conformation capture (Hi-C) map of six
pigs (a total of ~2.07 billion uniquely aligned contacts with the
depth of ~344.29 million [M] contacts per library) (Supplemen-
tary Table 1 and Supplementary Data 4; see Supplementary
Methods for details).

These 3D structures initially revealed the radial locations of
chromosomes within the nuclear space. Visual examination
showed that GC-rich chromosomes, which are usually
transcript-rich (e.g., chromosome 17 has a 44.56% GC content
and harbors ~10 PCGs per Mb), were preferentially found in the
interior of the nucleus, while typically transcript-sparse GC-poor
chromosomes (e.g., chromosome 1 with a 40.20% GC content
harbors ~6 PCGs per Mb) preferentially localized in the nuclear
periphery (Spearman’s r=−0.67, P= 2.45 × 10−3 for GC content
and r=−0.51, P= 3.21 × 10−2 for PCG density, when compared
against the average radial position of each autosome with respect
to the nuclear center) (Fig. 2a–c). We also observed correlations
between primary transcription features and chromatin compart-
ments (markers of chromatin accessibility). Compartment A
(1105Mb in length) regions were GC-rich (43.71%), transcript-
rich (13.05 PCGs per Mb) and actively transcribed (5.04 TPM for
PCGs), and were generally biased toward the center of the nucleus.
In contrast, compartment B (1161Mb in length) regions were GC-
poor (38.26%), transcript-sparse (4.22 PCGs per Mb) and poorly
transcribed (0.33 TPM for PCGs), and also tended to be localized
in the periphery (Spearman’s r=−0.9, P < 2.2 × 10−16, between
the compartment A proportion and radial position with respect to
the nuclear center) (Fig. 2d–f and Supplementary Fig. 13a–c).

At a finer scale, we found that PCGs within the same TAD,
which were nearby in the genome and spatially closed, tended to
be co-expressed across tissues more than the global average
(binomial test, P < 2.2 ×10−16). These observations thus sup-
ported the involvement of topologically associating domains
(TADs) in transcriptional regulation via restriction of chromatin
interactions for regulatory sequences35 (Supplementary Fig. 13d).
The lncRNAs and TUCPs also exhibited similar patterns between
transcription and genome folding (Fig. 2, Supplementary Fig. 13).

Extraordinary diversity of transcription among Skeletal Muscle
Tissues (SMTs). SMTs comprise the largest tissues (by weight) in
the pig body (30–70% of porcine carcass weight36) (Supplemen-
tary Fig. 14) and represent its most economically valuable pro-
ducts. Historically, research on SMTs has largely treated them as
a single group of virtually interchangeable tissues. However,
SMTs have highly diverse origins, shapes, metabolic features, and
physical functions. In order to systematically survey and resolve
the transcriptomic differences among these distinct SMT types,

Table 1 The expanded pig transcriptome.

Transcripts Detected

transcripts

Annotated in the reference

pig assembly (Sscrofa11.1)a
Features

Length (bp) Exon number Isoform number Tissue

specificity (τ)b
Complexityc (%)

PCG 20,505 21,303 3259 10.21 2.34 0.61 46.26

TUCP 2440 \ 3177 3.54 2.27 0.87 58.35

LncRNA 19,072 6797 1694 2.63 1.54 0.85 75.53

circRNA 48,232 \ 577 4 \ 0.96 35.48

miRNA 1245 462 (annotated in miRbase

for pigs)

23 \ \ 0.90 62.34

A total of 867 miRNA precursors corresponded to 1245 mature miRNAs, including 251 known and 616 conserved precursors corresponding to 462 and 783 mature miRNAs, respectively. LncRNAs were

classified into 14 different locus biotypes by location with respect to PCGs (Supplementary Fig. 5).
aAnnotation release 102 of the Sscrofa11.1 assembly.
bTissue specificity was calculated as the tau score (τ) (see Methods for details).
cComplexity is determined by the fraction of transcripts with the highest abundance (top 0.5%) accounting for the total number of transcribed transcripts for a tissue.
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Fig. 1 Characteristics of the pig BodyMap transcriptome. a Samples derived from 31 tissues and two cell lines were used for ab initio pig transcriptome

reconstruction. ASA: abdominal subcutaneous adipose, ILB: inner layer of backfat, ULB: upper layer of backfat, GOM: greater omentum, MAD: mesenteric

adipose, RAD: retroperitoneal adipose, LIN: lingualis muscle, MAS: masseter muscle, RHO: rhomboideus muscle, TA: transversus abdominis muscle, GAS-

L: gastrocnemius-lateralis muscle, GM: gluteus medius muscle, PM: psoas major muscle, and SOL: soleus muscle. See Supplementary Data 1 for details. b

Proportions of detected transcripts across tissues and cell lines. The number in parentheses indicates the total number of transcripts with evidence of

transcription in at least one sample (i.e., ≥1 TPM [transcripts per million] for miRNAs; ≥0.1 TPM for PCGs, TUCPs, and lncRNAs; and ≥0.05 TPM for

circRNAs). Data are presented as mean values ± SD. c, d Hierarchical clustering (c) and t‑distributed stochastic neighbor embedding (t-SNE) clustering (d)

of samples using PCG expression. For the t-SNE plot, the ellipses indicate the tissues/cell lines with similar transcriptional profiles, constructed at a

probability of 0.95. Notably, PK15 and PIEC cell lines were more similar to the epithelial- and endothelium-rich internal tissues (typically, ovary and uterus)

than to nervous tissue, muscles, and adipose tissues. e Sequence conservation of five transcript types in the pig transcriptome (miRNA n= 321, PCG n=

19,041, circRNA n= 7673, TUCP n= 1119, lncRNA n= 8678). The base (nucleotide resolution) phastCons scores were collected from the UCSC Genome

Browser based on Multiz alignment of 100 vertebrate species. Only pig sequences that could be matched to human sequences were used. The transcript-

level phastCons scores were calculated as their average value among exonic sequences. In the boxplot, the internal line indicates the median, the box limits

indicate the upper and lower quartiles and the whiskers extend to 1.5 IQR from the quartiles. f Tissue specificity of different types of transcripts reflected by

tau (τ) score. g Abundance distribution of distinct types of transcripts across tissues and cell lines. The x-axis indicates the proportion of transcripts sorted

from highest to lowest abundance, with the vertical dashed line indicating the top 0.5% of highest abundance transcripts. The y-axis indicates the

accumulated fraction of transcripts relative to the total transcripts. Colored lines represent mean values across tissues, and lighter-colored shading around

the mean represents dispersion calculated using the standard deviation divided by the cumulative sum of all means. Source data for b–g are provided as a

Source Data file.
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Fig. 2 Transcriptional features in the nuclear space. a 3D genome structure of the representative subcutaneous AT. Left: whole genome; right: separate

chromosomes. X chromosome is excluded from this analysis due to the overriding effect of X-chromosome inactivation. Chromosomes are distinguished

by color. Each point represents 100 kb of chromatin. b Bar plot indicating chromosome distances to the nuclear center and sequence features of each

chromosome. There was a positive correlation between GC content and gene density for PCGs (r= 0.84), lncRNAs (r= 0.74), and TUCPs (r= 0.84).

There was a negative correlation between the distance to the center of nucleus and features, including GC content (r=−0.67), PCG density (r=−0.51),

lncRNA density (r=−0.62), and TUCP density (r=−0.60). The statistical significance of the two-sided P value was calculated using hypothesis testing.

The chromosomes are ranked by distance from the interior (upper) to the periphery (lower). c Examples of preferential localization in the nucleus for two

chromosomes. Gene-rich chromosome 17 preferentially localized to the nuclear interior (left), whereas gene-poor chromosome 1 was consistently

observed on the nuclear periphery (right). d Comparison of genomic properties including GC content, PCG density, and PCG expression between

compartments A (1105Mb in length) and B (1161Mb in length). (P values determined by two-sided Wilcoxon test). In the boxplot, the internal line

indicates the median, the box limits indicate the upper and lower quartiles, and the whiskers extend to 1.5 IQR from the quartiles. GC content: n= 11,060

(A), n= 11,608 (B); PCGs per Mb: n= 11,060 (A), n= 11,608 (B); PCG expression: n= 14,430 (A), n= 4898 (B). e 3D models of the pig genome in SAT.

Compartments A/B (at 100 kb resolution) were aggregated in 3D space. The plot was visualized in quintuplicate, with five intersecting sections plotted

from the interior regions of the nucleus (left) to the periphery (right) based on distance (schematically depicted in the upper-left inset). Color bar indicated

the levels of compartments A/B. f Percentage graph showing trends in the arrangement of the A/B compartments from the interior to the periphery within

the nucleus. The nucleus is equally divided into 20 shells based on the distance to the 3D nuclear center. The numerical value above each bar indicates the

bin (20 kb in size) number within this shell. There was a negative correlation (Spearman’s r=−0.9, P < 2.2 × 10−16) between the compartment A

proportion and the relative distance to the center of the nucleus. The statistical significance of the two-sided P value was calculated using hypothesis

testing. Shells with fewer than 250 bins were excluded from this analysis and are not shown. Source data are provided as a Source Data file.
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we analyzed 130 RNA-seq datasets and their 130 corresponding
small RNA-seq datasets from 47 SMTs (1–3 libraries for each
SMT), which were derived from four anatomically distinct
regions throughout the body (two in the head, 14 in the forelimb,
11 in the trunk, and 20 in the hindlimb) (Fig. 3a). Consistent with
our findings from the core atlas dataset from 31 tissues and two
cell lines (Fig. 1), we identified intrinsic differences in the tran-
scriptional profiles of different transcript types (Supplementary
Fig. 15). We observed extensive transcriptional heterogeneity
among different SMTs. For example, the transcribed proportion
of PCGs across SMTs ranged from 67.40% in the vastus lateralis
(VL) to 79.75% in the hindlimb flexor digitorum profundus

(FDP-H) (Supplementary Fig. 15a), which was a comparable
difference to that observed between the metabolically active liver
(68.52%) and the stimulated cerebrum (82.64%).

To investigate the potential developmental history of anato-
mically distinct SMTs, we checked the expression of paralogous
transcription factors in the HOX superfamily, which are major
regulators of animal morphogenesis and development with
respect to formation of the anterior-posterior axis (i.e., from
head to hindlimb)37,38. A large proportion of HOX paralogs (35
of 37, or 94.59%) had evidence of transcription in SMTs (TPM
≥0.1 in at least one SMT). Multidimensional scaling analysis
revealed that these HOX genes exhibited a clear pattern of
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Fig. 3 The transcriptional diversity among SMTs. a Illustration of the anatomical position of SMTs. a A total of 47 types of SMTs were used to compare

transcriptional profiles between anatomical regions, classified into four general groups: two head SMTs (orange) (LIN: Lingualis, MAS: Masseter); 14

forelimb SMTs (green) (BB: Biceps brachii, DAP: Deltoideus acromial part, DSP: Deltoideus scapular part, EDC: Extensor digitorum communis, EDL(F):

Extensor digitorum lateralis (forelimb), FDP(F): Flexor digitorum profundus (forelimb), FDS(F): Flexor digitorum superficialis (forelimb), ISP: Infraspinatus,

SSP: Supraspinatus, SUB: Subscapularis, TB-LA: Triceps brachii caput lateralis, TB-LO: Triceps brachii caput longum, TB-M: Triceps brachii caput medialis,

TM: Teres major); 11 trunk SMTs (red) (BRA: Brachiocephalicus, LD: Latissimus dorsi, LDM: Longissimus dorsi muscle, OEA: Obiliquus extensor abdominis,

PP: Pectoralis profundus, PS: Pectoralis superficialis, RA: Rectus abdominis, RHO: Rhomboideus, SP: Splenius, TA: Transversus abdominis, TRC: Trapezius

cervicis); and 20 hindlimb SMTs (blue) (ADD: Adductores, BF: Biceps femoris, EDL(H): Extensor digitorum lateralis (hindlimb), FDP(H): Flexor digitorum

profundus (hindlimb), FDS(H): Flexor digitorum superficialis (hindlimb), GSA-L: Gastrocnemius-lateralis, GAS-M: Gastrocnemius-medialis, GM: Gluteus

medius, GRA: Gracillis, PM: Psoas major, RF: Rectus femoris, SAR: Sartorius, SM: Semimembranosus, SOL: Soleus, ST: Semitendinosus, TFL: Tensor fasciae

latae, TIC: Tibialis cranialis, VI: Vastus intermedius, VL: Vastus lateralis, VM: Vastus medialis). b–f Similarity of global PCG transcription (b) and

transcriptional profiles between SMTs from different anatomical regions for HOX genes (c), homeobox family genes (d), secreted myokines (e), and

neuromuscular junction (NMJ) assembly genes (f) based on Spearman’s correlation (upper panel) and multidimensional scaling distances determined by t-

SNE (lower panel). Ellipses in the t-SNE plots indicate the four SMT groups, constructed at a probability of 0.95. Source data for b–f are provided as a

Source Data file.
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independent clustering based on their differences in expression
among these four anatomically distinct regions (Fig. 3c). Notably,
anatomically symmetrical SMTs (e.g., four pairs of SMTs in the
forelimb and hindlimb) were clustered together with their
respective counterparts. Furthermore, anatomically neighboring
SMTs generally exhibited more similar patterns of expression
than those from arbitrarily paired anatomical regions from head
to hindlimb. For example, four SMTs (brachiocephalicus [BRA],
splenius [SP], rhomboideus [RHO], and trapezius cervicis [TRC])
that located around the neck in the front trunk, were clustered
with two SMTs (lingualis [LIN] and masseter [MAS]) in the head
(Supplementary Fig. 16a). The expression profiles of 129 (out of
149, or 86.58%) homeobox family members transcribed in SMTs
reiterated these findings (Fig. 3d, Supplementary Fig. 16b) and
further revealed several master regulators that function in specific
SMTs. For example, MEOX239, PRRX140, and LHX241 tran-
scripts, which are the essential components regulating head
muscle patterning, were more abundant in masseter in the head
than in other SMTs (Supplementary Fig. 16c).

SMTs influence physiology and activity throughout the body
by secreting numerous functionally essential hormones (myo-
kines) involved in autocrine regulation of metabolism42. The vast
majority of myokines (551 of 555, or 99.28%) showed evidence of
transcription in at least one SMT, of which nearly half (271 of
551, or 49.18%) were ubiquitously transcribed (τ ≤ 0.3). Remark-
ably, 222 myokines were highly abundant (TPM >10) in almost
all SMTs, reflecting their essential activities in SMTs, including
angiogenesis (such as VEGF), NAD biosynthesis (such as
NAMPT), and inflammatory response (such as AIMP1, CMTM6,
CXCL12, and HMGB1)42–45. Only a few myokines exhibited
differences in abundance between SMTs (~19 of 551, or 3.45%, in
pairwise comparisons between SMTs), which suggested that the
expression profiles of myokines could be mostly indistinguishable
among different SMTs (Fig. 3e and Supplementary Fig. 17)42,46.

SMTs are voluntarily controlled by the nervous system through
the formation of appropriate neuromuscular junction (NMJ)
assemblies. Understanding how NMJ-related PCGs are expressed
across SMTs is therefore fundamental to neurobiology and
regenerative medicine47,48. We detected the transcripts of 77 (of
77, or 100%) NMJ-related PCGs in at least one SMT. A
considerable fraction (26 of 77, or 33.77%) were ubiquitously
expressed (τ ≤ 0.3). Among these PCGs, 19 were involved in
synapse formation and were highly abundant (TPM >10) in
almost all SMTs (Fig. 3f and Supplementary Fig. 18a). These
results suggested that they were bona fide SMT-derived
transcripts with a conserved role in NMJ assembly, and therefore
excluded the possibility of contamination from nearby neurons.
For example, DVL1 (TPM= 37.52) encodes a signaling protein
necessary for guiding axons to the middle region of myofibers to
form NMJs49, and the disruption of which causes synaptic defects
at the NMJ50. APP, which encodes a key regulator of
neuromuscular synapse structure and function, was widely
present in synapses of the NMJ (TPM= 22.6). APP deficiency
leads to a dramatic reduction in presynaptic terminals and
aberrant synaptic failure in mice51. Only a few NMJ-related PCGs
(~2 of 77, or 2.6%) showed differences in their abundance in
pairwise comparisons between SMTs, which implied intrinsic
similarities in forming neuromuscular synapses and generating
force among SMTs. Notably, nine NMJ-related PCGs (13 of 77,
or 16.88%) differed in abundance between SMTs in the head
versus other anatomical regions. SIX1, a transcription factor
essential for the development of trigeminal ganglia52, is highly
expressed in MAS in the head (TPM= 44.25 vs. 16.1 in other
SMTs), which is innervated by a branch of trigeminal ganglia
(Supplementary Fig. 18b).

Myofiber types are associated with transcriptomic divergence
among SMTs. Mammalian SMTs are mainly composed of het-
erogeneous myofibers with marked differences in contractile and
metabolic features and can thus be classified into different types
based on the transcription of their respective myosin heavy chain
(MYH) isoforms. We performed clustering analysis to compare
expression patterns of ten annotated MYH isoforms across SMTs
(Supplementary Fig. 19a) and found that they were weakly con-
sistent with the global transcription patterns of PCGs and other
transcript types (cophenetic r= 0.343 for PCGs, 0.328 for
TUCPs, 0.329 for lncRNAs, 0.060 for circRNAs, and 0.138 for
miRNAs). This result suggested that the composition of myofiber
types determined by MYH isoforms was insufficient to establish
the diversity of transcriptional patterns across SMTs46.

We next focused on three of four dominant myofiber types
(types I, IIA, and IIB, respectively, correspond to MYH7, MYH2,
and MYH4 isoforms), whereas the MYH1 isoform for type IIX
was not quantified due to mis-annotations in the current
reference genome assembly. We found that changes in the
abundance of the type I, IIA, and IIB marker isoforms were
positively correlated with global divergence in the transcriptome
(reflected by the proportions of each of the five transcript types
that showed altered expression in pair-wise comparisons of
SMTs) (Supplementary Fig. 19b–f). This result suggested that
differences in the physical properties between myofiber types may
be associated with transcriptomic divergence among SMTs
containing different myofiber composition. Highly specialized
oxidative type I myofiber (e.g., MYH7), which provides low force
output but long endurance (Pearson’s r= 0.27, P < 2.2 × 10−16)
and glycolytic type IIB myofiber (e.g., MYH4), which enables the
highest output of force but susceptibility to fatigue (Pearson’s r=
0.41, P < 2.2 × 10−16) may both more profoundly influence the
transcriptomic divergence among SMTs than type IIA myofiber
(e.g., MYH2), which has intermediate features between those of
types I and IIB (Pearson’s r= 0.16, P= 5.13×10−7).

In addition, we further observed that myofiber-specific PCGs
(i.e., the top 10% of PCGs with the highest Pearson’s r for the
expression of their respective MYH isoforms across SMTs) were
overrepresented in different GO enrichment categories between
type I (MYH7) and IIB (MYH4) myofibers (Supplementary Fig. 20),
further supporting the influence of these isoforms on transcriptomic
divergence. The 432 type I myofiber-specific associated PCGs were
mainly enriched in categories related to lipid metabolism, such as
‘fatty acid catabolic process’ (44 PCGs, P < 2.2 × 10−16) and ‘lipid
biosynthetic process’ (37 PCGs, P= 8.98 × 10-10) (Supplementary
Fig. 20b). This finding confirmed published observations that the
triacylglycerol content and fatty droplets were higher in type I
compared to type IIB fibers53. For example, CPT2, encoding an
essential nuclear protein in mitochondrial long-chain fatty acid
oxidation, was specifically associated with type I myofibers
(Pearson’s r= 0.72 with MYH7, P < 2.2 × 10−16). By contrast, the
89 type IIB myofiber-specific associated PCGs were mainly involved
in ‘glycolytic process’ (15 PCGs, P < 2.2 × 10−16) and ‘muscle
contraction’ (15 PCGs, P= 6.12 × 10−13), potentially reflecting type
IIB myofiber demands for rapid contractile speeds and the need to
generate energy via anaerobic glycolytic metabolism during short-
term activity54. For example, we found that a negative regulator of
skeletal muscle cell proliferation and differentiation, MSTN, was
specifically associated with type IIB myofibers (r= 0.75 with
MYH4, P < 2.2 × 10−16). This observation was consistent with the
especially strong inhibitory role of MSTN in type IIB myofibers
compared to that in type I55. Notably, loss of MSTN function has
been associated with markedly increased proportions of type IIB
myofibers but no change in, or even reduced numbers of, type I
myofibers in mice56.
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To identify potential TUCP, lncRNA, circRNA, and miRNAs
potentially involved in specialized muscle function, we also
separately identified putative regulatory transcripts that were co-
expressed with MYH markers for type I, IIA, and IIB myofibers
(Pearson’s r > 0.4, P < 0.05; or the top 10%) by checking for
functional enrichment of their cis-regulated neighboring PCGs
(100 kb up- and downstream) or PCG targets of miRNA
(Supplementary Fig. 20c–e and Supplementary Data 5).

Myofiber type composition of SMTs. To accurately depict the
myofiber composition of SMTs in pigs, we used a single-cell
resolution spatial transcriptomics (ST) approach to dissect the
transcriptional differences among type I, IIA, and IIB myofibers
of the psoas major (PM) muscle as a representative SMT (Fig. 4,
Supplementary Table 2). We subsequently identified several
hundred myofiber-specific PCGs, and detected differentially
activated metabolic and signaling pathways in specific myofibers,
thus leading to more defined PCG signatures (~446) for three
highly specialized myofibers (Supplementary Figs. 21–24). Based
on the signatures of these myofiber-specific PCGs, we next used a
CIBERSORTx deconvolution method57 to estimate the compo-
sitions of type I, IIA, and IIB myofibers (indicated by the pro-
portion of each myofiber type among the total) in 130 bulk RNA-
seq datasets from 47 SMTs (Supplementary Data 6; Supplemen-
tary Methods). Compared with estimates of the proportion of
type I myofibers reflected by a single marker (MYH7), we found
that the assembly of myofiber-specific PCG signatures provided
an estimate of the type 1 proportion that was more consistent
with measurements of ATPase staining across 30 SMTs (Spear-
man’s r= 0.26 with P= 0.16 for the MYH7 marker vs. r= 0.47
with P= 9.42 × 10−3 for multiple PCG signatures) (Supplemen-
tary Fig. 25). As ST analyses simultaneously resolve spatial pat-
terns at the single myofiber- and transcriptome-wide scales, they
enable a much more detailed view of myofibers and result in
much greater discrimination power for different myofibers.

Divergence of myofiber composition between SMTs from
different anatomical regions reflected their distinct physiological
properties (Fig. 4e). For instance, we found that relatively slow
soleus (SOL) (fatigue-resistant muscle involved in posture) had a
larger proportion of type I (53.12%) and fewer type IIA (46.71%)
and IIB (0.16%) myofibers than the fast extensor digitorum
lateralis in the hindlimb (EDL-H) (26.00% for I, 49.05% for IIA,
24.95% for IIB; fatigable muscle involved in rapid movement)
(Fig. 4e), which aligned with patterns observed in humans and
mice58. Although the masseter and tongue have similar develop-
mental histories, they have distinctly different myofiber composi-
tions. Compared to the masseter, which contains a higher
proportion of type I (61.61%) but fewer type IIA (38.39%) and no
IIB myofibers, the tongue has fewer type I (36.82%) but more type
IIA (63.19%) (and also no type IIB) myofibers (Fig. 4e).
Intriguingly, the predominance of type I myofibers in the pig
masseter resembles that in the human masseter59 but differs from
that in the mouse masseter (~75% type IIB but lacking type I)46.
This finding supports the notion that myofiber composition can
substantially differ between analogous SMTs among mammals.
Even between the evolutionarily close mice and rats, surprising
differences have been reported46.

Generally, although anatomically neighboring SMTs can be
classified into a single group, they may have dissimilar myofiber
composition and thus, distinct physical properties. These differ-
ences were evident in comparisons with the caput medialis of the
triceps brachii (TB-M), which revealed that the comparatively
superficial caput lateralis of TB (TB-LA) and caput longum of TB
(TB-LO) tissues had fewer type I (19.57% for TB-LA and 24.28%
for TB-LO vs. 45.69% for TB-M) and more type IIB (38.28% for

TB-LA and 36.69% for TB-LO vs. 21.02% for TB-M) myofibers.
Moreover, the pectoralis profundus (PP) (26.77% type I, 40.91%
type IIA, and 32.32% type IIB) exhibited the opposite composition
of its superficial counterpart (i.e., 6.99% type I, 24.66% type IIA, and
68.35% type IIB for the pectoralis superficialis [PS]). These results
suggested that the deeper layer of SMTs (generally involved in
maintaining posture) had a higher oxidative metabolism and were
thus more likely to contain a higher proportion of type I myofibers
than their superficial counterparts (involved in rapid movements),
which contained more type IIB myofibers60.

Metabolic and inflammatory divergence between subcutaneous
and visceral ATs. Adipose tissues (ATs) can develop in multiple
discrete locations in mammals, and have been treated as separate
‘miniorgans’ due to differences in their functional properties61,62.
To investigate transcriptomic divergence potentially linked to
morphological and functional heterogeneity among anatomically
distinct ATs, we analyzed 15 RNA-seq datasets and their 14
corresponding small RNA-seq datasets from three subcutaneous
ATs (SATs) and three visceral ATs (VATs), with 2–3 libraries for
each AT type.

As expected, we found that the transcriptional profiles of each
transcript type were generally distinguishable between SATs and
VATs (Supplementary Fig. 26a). The PCGs upregulated in SATs
(~196 in SAT vs. VAT comparisons) were mainly involved in
categories related to “organization, structural constituent and
space of extracellular matrix (ECM)” (Supplementary Fig. 26b).
This result supported the metabolically protective roles of SATs
because relaxation of the ECM allows excess nutrient storage in
adipocytes and avoids the pathological features that include
activation of stress-related pathways, inflammation, and ectopic
lipid deposition in other tissues63. Nonetheless, the PCGs
upregulated in VATs (~539 in SAT vs. VAT comparisons) were
enriched in multiple categories related to “inflammation” and
“immunity” (Supplementary Fig. 26b), which was consistent with
reported increases in inflammatory and immune progenitors in
VATs compared with SATs63. In contrast to the direct connection
between SATs and systemic circulation, venous blood in VATs is
drained directly to the liver, and numerous signaling and
mediator proteins secreted by VATs can directly access hepatic
cells64, suggesting VATs carry higher metabolic risks than SATs.

AT is composed of a collection of heterogeneous cell types65,
and changes in the composition of cell subpopulations (in
particular, a marked increase in immune cell infiltration) have
been proposed to contribute some of the negative health
consequences of obesity63. To investigate inflammatory char-
acteristics of visceral greater omentum (GOM) adipose, we used
in silico deconvolution analysis with CIBERSORTx57 to estimate
the relative proportions of four typical cell types in ATs
(adipocytes, macrophages, CD4+ T cells, and microvascular
endothelial cells [MVECs]) in 15 bulk SAT transcriptomes of pigs
using the orthologous cell-type-specific marker genes from their
respective purified single-cell transcriptomes in humans65

(Supplementary Methods). We then compared the proportions
of these cell types in GOM with that in other VATs, including
mesenteric adipose (MAD) and retroperitoneal adipose (RAD),
and with three SATs, including abdominal subcutaneous adipose
(ASA), upper layer of backfat (ULB), and inner layer of backfat
(ILB), to highlight the stronger inflammatory response in GOM.
Notably, we found that GOM exhibited higher infiltration of
macrophages (M1/M2 combined) (9.81%) than the other AT
tissues (MAD= 7.39%; RAD= 6.34%; ASA= 7.18%; ULB=
4.67%; ILB= 5.70%) (Supplementary Fig. 27). Indeed, when the
three VATs were separately compared with each of the SATs,
GOM had a higher average upregulated inflammatory PCGs
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Fig. 4 Spatial transcriptomics (ST) illustrate the myofiber composition of SMTs. a Hematoxylin-and-eosin staining of psoas major (PM) muscle sections.

Scale bars, 500 μm. A representative image of two independent experiments is shown. b Dimensionality reduction and clustering of 2607 spots (replicate

2) identified as type I, IIA, and IIB myofiber clusters. The identified putative myofiber/spot clusters are annotated based on MYH transcriptional profiles, as

well as marker gene transcription, shown in detail in Supplementary Figs. 21 and 22. c Mapping of data points from three putative myofiber clusters to their

spatial positions. d Comparison of the location of type I myofibers identified in ST (upper panel) and ATPase-stained histological sections (lower panel) for

replicate 2 (tissue sections adjacent to that in a). In the ST plot (upper panel), type IIA and IIB myofibers were combined (shown in light blue). Scale bars,

500 μm. Insets show three typical regions/images (denoted with numbers) magnified for comparison matching results (1 vs. 4, 2 vs. 5, and 3 vs. 6). e

Estimates of the myofiber proportions in bulk RNA-seq data using the expression signature matrix (442 and 450 genes for replicate 1 and replicate 2,

respectively) of the three myofibers, shown as the average of replicate 1 and replicate 2. SMTs are ranked by their proportions of type I myofiber from high

(left) to low (right). Source data are provided as a Source Data file.
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(~48) than MAD (~31) and RAD (~7) (Supplementary Fig. 28a,
c) but a greater average number of downregulated ECM-related
PCGs (43) than either MAD (29) or RAD (15) (Supplementary
Fig. 28b, d). In particular, the ALOX15 and F2R, inflammatory
markers66,67 were specifically upregulated in GOM (Supplemen-
tary Fig. 28e). These results led us to postulate that the lower
activity of ECM-related PCGs in GOM may lead to limited space
in the adipocyte ECM and consequently result in metabolic
deterioration of GOMs during expansion of ATs63, thus
supporting a metabolically harmful role of GOM.

In addition, we found that the transcription of 29 HOX
paralogs in GOM and MAD were most dissimilar with that in
three SATs, supporting the likelihood that SATs and VATs
originate from different progenitor lines during development68,69.
Strikingly, the visceral RAD clustered more closely with SATs and
was originally distinguishable from the congeneric GOM and
MAD (Supplementary Fig. 29a). The expression patterns of 95
(66.43% of 143) homeobox family PCGs across ATs also
supported this relationship. Notably, HOXC9 (an indicator of a
beneficial metabolic phenotype and protector against obesity-
related insulin resistance)70 was upregulated in RAD (~3.28
TPM) and SATs (ASA: ~5.10 TPM; ULB: ~1.21 TPM; ILB: ~1.17
TPM) compared to GOM (~0.14 TPM) and MAD (~0.22 TPM)
(Supplementary Fig. 29b, c).

As metabolic risk is often reflected by reduced responsiveness
to catabolic and anabolic signals71, we further examined the
transcription of 22 PCGs essential for glucose and lipid
metabolism72 and found that RAD exhibited greater similarity
to metabolically active SATs in its transcriptional patterns of
these PCGs than to either GOM or MAD. In particular, PCGs
involved in lipid and sterol synthesis (e.g., ACACA), lipolysis (e.g.,
PNPLA2), gluconeogenesis (e.g., HDAC4), glycolysis (e.g.,
PFKFB3), and glycogen uptake (e.g., SLC2A4, also named
GLUT4) and storage (e.g., GYS1) were differentially upregulated
in RAD and SATs compared to GOM and MAD. These results
further supported similarities between RAD and SATs73 (Sup-
plementary Fig. 29d). Further cell lineage tracing is necessary to
determine the full heterogeneity of progenitor lines across ATs
and to better pinpoint the potential ontogenetic sources of RAD.

Diverse mitochondrial pathways across tissues. Mitochondria,
which encode a total of 13 PCGs (mt-PCGs) that are all core
components of oxidative phosphorylation (OXPHOS) in
vertebrates74, are semiautonomous organelles that house
numerous biochemical pathways and perform central functions
in apoptosis and ion homeostasis. Using 1043 nuclear PCG
entries in MitoCarta2.075 that are annotated as post-
translationally imported into mitochondria (mt-localized nu-
PCGs) (Fig. 5a), we constructed a compendium of the mito-
chondrial transcriptome across 70 tissues and two cell lines.

All 13 mt-PCGs exhibited prominent housekeeping features
(i.e., extremely high abundances, ~736.27 TPM; lower tissue
specificity, τ= ~0.20). Compared with the nuclear-encoded PCGs
outside the mitochondria (τ= ~0.70 and TPM= ~2.13), the mt-
localized nu-PCGs were more ubiquitously transcribed and in
higher abundance (τ= ~0.38 and TPM= ~10.78). Of 1043 mt-
localized nu-PCGs, 918 (88.02%) were transcribed in at least one
tissue/cell line, and 817 of which were detected in all tissues/cell
lines (Fig. 5b). We identified 89 (9.69% of 918) mt-localized nu-
PCGs that were transcribed only in a specific tissue (τ ≥ 0.75)
(Fig. 5b) and were enriched in functional categories correspond-
ing to known tissue-specific mitochondrial pathways (Supple-
mentary Fig. 30). For example, three mt-localized nu-PCGs
(CPS1, NAGS, and OTC) that encode enzymes involved in the
urea cycle, an essential pathway for ammonia detoxification

restricted to periportal hepatocytes, were extremely abundant in
the liver (CPS1: 1007.55 in TPM vs. ~2.61 in other tissues; OTC:
346.83 in TPM vs. ~1.14; NAGS: 43.88 in TPM vs. ~0.31). The
transcription of 13 mt-PCGs and 918 mt-localized nu-PCGs
revealed the general tissue diversity of mitochondrial pathways/
inventories, especially for metabolically active striated muscles
(including SMTs and the four chambers of the heart) and ATs,
which clustered with their respective counterparts, but differed
from other tissues/cell lines (Fig. 5c).

We next examined the mitochondrial transcriptome across
tissues with respect to two central metabolic pathways of energy
production, i.e., OXPHOS and fatty acid β oxidation (FAO). We
found that more than half of the PCGs involved in OXPHOS (75 of
111, or 67.57%; P < 2.2 × 10−16, χ2 test) and FAO (36 of 68, or
52.86%, P < 2.2 × 10−16, χ2 test) were located in mitochondria,
supporting the essential function of mitochondria in metabolism76.
All of these genes (75 of 75 for OXPHOS; 36 of 36 for FAO) were
detected in at least one tissue/cell line. As expected, to meet the
higher metabolic cost for striated muscles during intermittent and
continuous tetanic contractions, the SMTs and heart exhibited a
more active OXPHOS system than other tissues (58 of 75, or
77.33%, of OXPHOS-related mt-localized PCGs were upregulated)
(Fig. 5d and Supplementary Fig. 31). Supporting the marked
oxidative capacity of highly specialized oxidative type I myofibers,
the transcription of MYH7 (type I marker) was highly correlated
with OXPHOS-related mt-localized nu-PCGs across SMTs (average
Pearson’s r= 0.37 vs. 0.23 for type IIAMYH2 and -0.07 for type IIB
MYH4) (Supplementary Fig. 32). This association was even stronger
than that between the mitochondrial oxidative metabolism PGC-1α-
and OXPHOS-related mt-localized nu-PCGs (Pearson’s r= 0.26)77.

FAO in mitochondria is an alternative pathway for energy
production. Accordingly, six ATs exhibited more distinct
transcriptional profiles for the 36 FAO-related mt-localized nu-
PCGs than other tissues (Fig. 5e). We observed that ATs
specifically contained upregulated PCGs essential for FAO, such
as ACAA1 (peroxisomal β oxidation) (TPM= 83.08 vs. 7.30 for
other tissues) and ECHDC1 (metabolite proofreading) (TPM=
46.77 vs. 8.45) (Supplementary Fig. 33). Consistent with previous
reports of a larger mtDNA copy number in SATs than in VATs78,
FAO-related mt-localized nu-PCGs were more abundant in SATs
than in GOM and MAD but comparable to those in SAT-like
RAD (Fig. 5e). These results suggested a higher mitochondrial
respiratory capacity and a predominant role for SATs in
metabolism, again supporting the SAT-like features of RAD
(Supplementary Fig. 29d).

Evolutionary dynamics of the transcriptome in animal models.
Pigs have emerged as an important biomedical model. To explore
the evolutionary divergence of the transcriptome that contributes
to tissue-specific biology of animal models, we performed com-
parative analyses of the transcriptomes of seven homologous
tissues from pigs and eight representative vertebrate mammalian
models including non-human primates (rhesus macaque),
rodents (mouse, rat, and guinea pig), lagomorphs (rabbit), car-
nivores (dog and cat), artiodactylids (sheep), and a bird (chicken,
an evolutionarily distant outgroup).

We first compared the transcription of 8428 single-copy
orthologous PCGs as well as the alternative splicing patterns, or
“percent-spliced in” (PSI) index values, of 15,172 orthologous exons
shared by the nine mammals. We observed a tissue-dominated
clustering pattern for PCG transcription (Fig. 6a) but species-
dominated clustering patterns for alternative splicing79,80 (Fig. 6b).

Both unsupervised clustering and principal component analysis
(PCA) recapitulated the distinct transcriptomic characteristics
between transcription and alternative splicing (Fig. 6c–f). These
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results suggested that evolutionarily conserved transcriptional
differences underlie tissue identity across mammals, whereas
exon splicing may be more often affected by species-specific
changes in cis-regulatory elements and/or trans-acting factors
than transcription79,80. These results were also observed over
large evolutionary time scales when using the transcription of
6433 single-copy orthologous PCGs and the alternative splicing
patterns of 12,662 orthologous exons shared by nine mammals
and chicken (Supplementary Figs. 34 and 35).

Notably, in the clustering patterns based on transcription,
tissues of chicken formed a distinct cluster rather than grouping
with their mammalian counterparts (Supplementary Fig. 35a),
which was supported by the greater divergence in transcription
between mammals and chicken (average Pearson’s r= 0.63) than

between mammals (average Pearson’s r= 0.75) for each tissue
(Supplementary Fig. 34). Divergences in transcription were highly
consistent with evolutionary divergence times between pairs of
species for each tissue (average Spearman’s r=−0.68), which
indicated that divergence in transcription among these species
started to surpass divergence between different tissues at
approximately the same time proposed for the divergence of
birds and mammals (~300 million years ago [MYA]). In contrast,
among mammals, mouse, rat, and guinea pig (the most closely
related rodent models, with divergence ~15.9 MYA for mouse
and rat and ~70 MYA for mouse/rat and guinea pig) showed
higher similarity in transcription in each tissue to each other
(average Pearson’s r= 0.80) than to other non-rodent mammals
(average Pearson’s r= 0.74, 0.75, and 0.75 for mouse, rat and
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Fig. 5 Transcriptional patterns of diverse mitochondrial pathways across tissues. a Schematic representation of mitochondrial structure depicting the

compendium of mitochondrial PCGs, including 13 PCGs encoded by mitochondrial DNA and 1043 post-translationally imported nuclear PCGs. mt-PCGs:

mitochondrial protein coding genes; mt-localized nu-PCGs: mitochondria-localized nuclear PCGs. b Density/contour plots of the distribution of tissue

specificity (τ) and transcription level (TPM: transcripts per million) for PCGs located within (left panel) or outside of (right panel) the mitochondria. Data

points in the plot indicate the 13 mt-PCGs, with the horizontal and vertical dashed lines indicating the average transcription level and tissue specificity of

these mt-PCGs, respectively. c t-SNE plot depicting the transcriptional patterns of all mt-localized PCGs across 72 tissues. The transcription levels were

log2-transformed. d t-SNE plot showing clustering of the transcriptional patterns of mt-localized OXPHOS PCGs across tissues (left panel). Ellipse in the

t-SNE plot indicates clustering of SMTs, constructed at a probability of 0.95. The boxplot indicates dynamic transcription levels (right panel, n= 88). In the

boxplot, the internal line indicates the median, the box limits indicate the upper and lower quartiles and the whiskers extend to 1.5 IQR from the quartiles. e

t-SNE plot showing clustering of the transcriptional patterns of the mt-localized FAO PCGs across tissues (left panel). Ellipse in the t-SNE plot indicates the

AT cluster, constructed at a probability of 0.95. The boxplot indicates the dynamic transcription levels (right panel, n= 36). In the boxplot, the internal line

indicates the median, the box limits indicate the upper and lower quartiles and the whiskers extend to 1.5 IQR from the quartiles. Source data for

b–e are provided as a Source Data file.
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guinea pig, respectively) (Supplementary Fig. 36). Relatively high
similarity of transcription was also observed between the more
closely related dog and cat [carnivores] (diverged ~55 MYA) and
between pig and sheep [artiodactylids] (diverged ~64 MYA)
compared to their pairwise comparisons against other evolutio-
narily distant mammals (average Pearson’s r= 0.77 between cat
and dog vs. 0.74; Pearson’s r= 0.79 between pig and sheep vs.
0.76) (Supplementary Fig. 36).

We next investigated the evolutionary divergence of transcrip-
tion between mammalian tissues by measuring the total branch
length of transcription-based trees for each tissue based on 8428
single-copy orthologous PCGs shared by the nine mammals
(Fig. 6g, Supplementary Fig. 37) and found that lung tissue (total
branch length= 1.08) and SAT (1.06) had longer total branch
lengths than other tissues (kidney [1.03], spleen [0.97], heart
[0.94], liver [0.92], and SMT [0.86]), implying a potentially higher
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Fig. 6 Global patterns of PCG transcription and alternative splicing across mammalian models. a, b Comparison of variation between species (nine

mammals) and tissues revealed by (a) transcription and (b) alternative splicing patterns. Bar plots represent pairwise Pearson’s correlations between

species (light blue bar) and between tissues (orange bar). The correlations were calculated based on the transcription levels of 8428 1-1 orthologs and

15,172 orthologous exons across nine mammals. Data are presented as mean values ± SD. Weighted average proportion variances (WAPVs) of PCG

transcription and alternative splicing (reflected by PSI values) were determined using principal variance component analysis (PVCA) and are depicted as

red dots connected by black lines. Boxes (bottom) indicate pairwise comparisons presented in a column according to the color assigned to each species or

tissue. For PCG transcription, there were more profound transcriptional differences among tissues (Pearson’s r= 0.66 and WAPV= 0.29) than among

species (Pearson’s r= 0.75, WAPV= 0.18). By contrast, for alternative splicing, the differences among species (Pearson’s r= 0.70 and WAPV= 0.32)

were greater than those among tissues (Pearson’s r= 0.82 and WAPV= 0.10). c, d Hierarchical clustering analysis of samples using (c) PCG transcription

and (d) alternative splicing (reflected by PSI values). Average linkage hierarchical clustering was based on distances between transcription levels of

samples measured by Pearson’s correlation. e, f Factorial map of the principal component analysis (PCA) of (e) PCG transcription levels and (f) alternative

splicing. The proportion of variance explained by each principal component is indicated in parentheses. The vertical lines of different colors dropping from

the plotted points to the x/y plane show the separation of points based on the first and second principal components. g Box plot depicting the total branch

lengths of neighbor-joining trees of PCG expression (see Supplementary Fig. 37) constructed based on pairwise (1−r) distances (here, r is Spearman’s

correlation coefficient) across nine mammals for each tissue. The distribution is based on random sampling (n= 100 replicates). In the boxplot, the internal
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provided as a Source Data file.
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evolutionary rate than that of other tissues (Fig. 6g). These
findings suggest that divergence in transcription is generally
evolutionarily correlated but is slightly different for functionally
distinct tissues.

Evolutionary pressures during speciation and adaptation are
mainly expected to alter PCG transcription rather than changes in
protein sequences81. In order to test how the evolution of PCG
transcription is shaped by rapidly evolving regulatory elements
(especially enhancers, key regulatory DNA elements that engage
in physical contact with their target-gene promoters), we
generated 13 in situ Hi-C maps of SAT for six mammals (a
total of ~3.81 billion uniquely aligned contacts with a depth of
~293 M contacts per library) (Supplementary Tables 3–5). With
six in situ Hi-C maps of SAT for pigs, we identified a repertoire of
PCG promoter and enhancer interactions at 20 kb resolution for
seven mammals (Supplementary Fig. 38, Supplementary Table 6).
We found that the enhancer number for a PCG was moderately
correlated across mammals (r= 0.452, Supplementary Fig. 39)
and that PCGs associated with larger numbers of enhancers were
more highly expressed in all species (average Spearman’s r=
0.848, between enhancer number and transcription level for each
species, Fig. 7a), suggesting that the majority of the enhancers
identified by this analysis had a measurable additive effect on
target-PCG transcription82.

In comparison with their respective control PCGs matched by
transcription level, we found that PCGs associated with multiple
enhancers (≥5) or with only one or fewer enhancers (≤1) across
species, respectively, showed significantly increased (P= 2.86 ×
10−6, Wilcoxon signed-rank test) and decreased (P= 0.035)
transcriptional conservation (determined by correlations with the
transcription levels of 1557 and 1552 single-copy orthologous
PCGs, respectively, between species) (Fig. 7b, c). Moreover,
compared with PCGs with a low coefficient of variation (CV) for
their transcription across species (i.e., evolutionarily stable), PCGs
with a high CV (i.e., evolutionarily variable) exhibited only
marginal differences in nucleotide sequence conservation esti-
mated by phastCons values (0.11 vs. 0.13, P= 0.063) and phyloP
values (0.13 vs. 0.21, P= 0.188) (Fig. 7d, Supplementary Fig. 40).
This finding implied that the divergence of PCG transcription
across species is independent of sequence conservation, that is,
changes in PCG transcription across species could be largely
driven by the sheer number of regulatory elements (enhancers)
rather than by primary sequence characteristics. These observa-
tions also aligned well with the hypothesis that enhancer
redundancy may contribute to regulatory innovation during
evolution by allowing enhancer sequence variation to subtly alter,
and thus stabilize, the transcription of functionally important
target PCGs83. In contrast, PCGs with relatively few associated
enhancers may have only limited buffering of their transcriptional
regulation against genetic perturbations during speciation, which
could thereby result in transcriptional changes/shifts across
species83,84.

Discussion
The pig, particularly its miniature breeds, has recently emerged as
a biomedical model for multiple complex diseases. The ability to
generate genome-editing mutations in combination with somatic
cell nuclear transfer procedures has yielded useful models for
several human diseases. The pig is also a potential source for
xenotransplantation due to its high anatomical, genetic, and
physiological similarities to humans85. Our study greatly expands
the annotation of transcripts in the reference pig genome and
offers a comprehensive landscape of transcription across tissues/
cell types with different physiologies. In particular, we focused on
metabolically active SMTs and ATs, which are associated with

obesity-related disorders, in addition to being economically
important products.

Comparative transcriptomic analysis of homologous tissues
between pigs and other widely used mammalian models can
provide essential information for the use of this animal as a
biomedical model, including its advantages and disadvantages.
For instance, the PCGs with significant transcriptional shifts
across species should be considered when selecting targets in
animal models to extrapolate diseases or phenotypes. The evo-
lutionary divergence of PCG transcription also provides a pri-
mary reference for the extent to which the biology of a given
species can be extrapolated to another (Supplementary Fig. 41).
Each animal model has unique strengths and weaknesses
regarding the aspects of application.

In practice, large mammals have tissue sizes more comparable to
those of humans, making them more viable as potential sources for
xenotransplantation86. In particular, pigs are broadly available
(especially because of their short generation times and large litter
sizes), ethically more acceptable than canines and non-human pri-
mates, and generally more predictive of therapeutic treatment efficacy
in humans than rodents86,87. Nonetheless, small mammals have been
the preferred models for studies of human biology and diseases (e.g.,
laboratory rodent strains are extensively used for cancer, cardiovas-
cular, and metabolic disease88). We identified a total of 5902 single-
copy orthologous PCGs with significant species-specific transcrip-
tional shifts in seven mammalian tissues (transcriptional changes
after correcting for evolutionary nucleotide divergence between
mammals) (Supplementary Fig. 41). These extensive PCG lists reflect
biologically relevant differences in transcription in the indicated
mammals (see Supplementary Data 7 for functional enrichment
analysis), which should be considered when using these PCGs as
targets in animal models. Literature searches provide insights into the
potential functional implications of some of the significant tran-
scriptional shifts. For example, CMYA5, which is associated with
Duchenne muscular dystrophy89, was specifically upregulated in
SMTs of pigs (TPM=~493.79) compared to those of other species
(TPM= ~97.15), and nucleotide substitution in this PCG has been
potentially associated in previous reports with carcass and meat
quality traits in pigs90. ACE2, the SARS-CoV-2 receptor required for
cell entry in humans91 and a target of diabetes therapy, was speci-
fically upregulated in the SATs of pigs (TPM= ~184.31) compared
to those of other species (TPM= ~0.49); knockout of this PCG can
worsen inflammation of ATs and exacerbate high-calorie diet-
induced insulin resistance in mice92.

Detailed analysis of the transcriptional landscape of pigs can
thus provide a highly informative resource on transcript char-
acteristics and offers system-wide insights into tissue-specific
physiological activities. These results therefore serve as a prelude
to advances in pig biology, as well as the use of pigs as model
organisms for human biological and biomedical studies.

Methods
Animals and samples. All research involving animals was conducted according to
Regulations for the Administration of Affairs Concerning Experimental Animals
(Ministry of Science and Technology, China, revised in March 2017), and approved
by the animal ethical and welfare committee (AEWC) of Sichuan Agricultural
University under permit No. DKY-B20171902. The animals were allowed access to
feed and water ad libitum and were humanely killed as necessary to ameliorate
suffering and were not fed the night before they were slaughtered. Collection and
sequencing of human clinical samples were approved by the Ethics Committee of
Sichuan Provincial People’s Hospital (No. 2018–212), and informed consent was
obtained before the study.

Pig transcriptome reconstruction. To comprehensively survey the pig tran-
scriptome, a total of 194 samples from 70 tissues (1–3 biological replicates for each
of 17 solid tissues, as well as 47 skeletal muscles and 6 adipose depots from
different body sites) and two immortalized cell lines (PK15 and PIECs) were used
in this study. Two cell lines, PK15 (catalogue no. KCB201002YJ) and PIEC
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(catalogue no. GNO15), were obtained from the China Infrastructure of Cell Line
Resources and Stem Cell Bank of the Chinese Academy of Sciences, respectively.

We constructed rRNA-depleted and random priming RNA-seq libraries and
sequenced them on the Illumina HiSeq X Ten platform to produce an average of
~49 million 150-bp paired-end raw reads and ~48 million high-quality reads for
each library. Sequenced reads were aligned to the pig reference genome (Sscrofa
11.1, GCA_000003025.6) by the STAR alignment tool (version 2.5.3a)93, with on
average ~96% (~85.76 million) of aligned reads for each individual library.

For unbiased representative construction of the pig transcriptome, 33 tissues/cell
lines (87 samples) comprising the core atlas dataset were chosen for de novo
transcriptome assembly. The aligned reads of these samples were assembled with
Cufflinks (version 2.1.1)94. We employed a previously reported computational method
to filter out library-specific background noise and predict the most likely isoforms from
the assemblies of transcript fragments (transfrags). We obtained high-quality assemblies
containing reliable transcripts which were further submitted to construct transcriptome
maps by TACO95 (a meta-assembly method with a robust solution for leveraging the
vast RNA-seq data landscape for transcript structure prediction).

To facilitate further analysis of the pig transcriptome, we estimated the coding
potential of putative non-coding transcripts that were not annotated as PCGs in the

pig reference genome using a stringent filtering pipeline and classified them into
long noncoding RNAs (lncRNAs) and transcripts of unknown coding potential
(TUCPs). For circRNA prediction, we retrieved RNA-seq reads that were mapped
to back-splicing junction sites using CIRCExplorer2 (version 2.3.2)96, with putative
circRNAs required to have more than two independent junction-spanning reads.
Correspondingly, we also performed small RNA sequencing. We used pig miRNAs
annotated in the miRbase19 database, as well as putative miRNAs annotated using
other mammalian and avian miRNA sequences as references that were not present
in the current pig genome.

Gene-level transcript abundance was estimated as transcripts per million (TPM)
using the high-speed transcript quantification tool Kallisto (version 0.43.0)97. For
PCGs, TUCPs, and lncRNAs, we considered a gene as detected/transcribed if it had
an expression value greater than 0.1 TPM in at least one sample. For miRNAs and
circRNAs, we used a cut-off of 1 TPM and 0.05 TPM in at least one sample,
respectively.

Reconstruction of 3D genome structures. To visualize the location dependence of
transcription within the nuclear space, we performed an in situ Hi-C experiment for a

a

Enhancers

0

1

2

3

4

5

6

0 4 8 12 16 >=20

Dog

Enhancers

0

1

2

3

4

5

6

0 4 8 12 16 >=20

Cat

Enhancers

0

1

2

3

4

5

6

7

0 4 8 12 16 >=20

Sheep

P
C

G
e
x
p

re
s
s
io

n
 (

T
P

M
)

P
C

G
e
x
p

re
s
s
io

n
 (

T
P

M
)

Enhancers

Pig

0

2

4

6

8

0 4 8 12 16 >=20

0

2

4

6

8

10

Rabbit

Enhancers
0 4 8 12 16 >=20

0

2

4

6

8

10

Rat

Enhancers
0 4 8 12 16 >=20

0

2

4

6

8

Human

Enhancers
0 4 8 12 16 >=20

60 70 80 90

0.65

0.7

0.75

0.8 With ≥ 5 enhancers
Control

P
C

G
 e

x
p

re
s
s
io

n
 c

o
rr

e
la

ti
o

n

Divergence time (MYA)

b

60 70 80 90

0.7

0.72

0.74

0.76

0.78

0.8
With ≤1 enhancer
Control

P
C

G
 e

x
p

re
s
s
io

n
 c

o
rr

e
la

ti
o

n

c

−0.1

0

0.1

0.2

0.3

0.4

0.5

Median = 0.11 0.13

P = 0.0627

Variable Stable

P
h

a
s
tC

o
n

s

−0.5

0

0.5

1

1.5

Median = 0.13 0.21

P = 0.188

Variable Stable

P
h

y
lo

P

d

Divergence time (MYA)

5
,4

1
3

3
,5

5
5

2
,7

6
6

2
,1

8
2

1
,6

3
2

1
,2

7
9

8
8
2

6
2
0

3
7
6

2
9
3

1
9
1

1
6
2

1
0
6

7
9

4
6

4
0

3
3

2
2

1
6

8
0

7
,8

3
0

3
,7

1
5

2
,7

9
0

1
,9

6
5

1
,5

2
5

1
,1

4
5

7
9
5

6
2
3

4
9
9

3
5
7

2
6
9

1
7
8

1
3
0

11
7

7
7

4
2

3
6

2
9

3
4

9
4

7
,8

3
0

3
,7

1
5

2
,7

9
0

1
,9

6
5

1
,5

2
5

1
,1

4
5

7
9
5

6
2
3

4
9
9

3
5
7

2
6
9

1
7
8

1
3
0

11
7

7
7

4
2

3
6

2
9

3
4

9
4

8
,6

9
2

3
,5

6
3

2
,6

5
0

1
,9

5
6

1
,3

8
3

9
3
2

6
1
8

4
5
2

3
1
4

2
4
3

1
3
8

8
3

5
3

5
7

3
9

2
8

1
5

11 1
8

3
5n=

5
,2

6
7

3
,6

1
9

3
,1

9
9

2
,6

1
6

1
,9

1
0

1
,3

6
1

9
8
3

6
7
3

3
9
4

2
9
9

2
0
3

11
8

9
7

5
8

3
3

2
2

2
7

5 5 3
2

3
,7

8
9

3
,0

4
9

2
,4

2
6

2
,1

2
3

1
,6

7
3

1
,2

0
2

9
1
6

6
7
1

4
9
2

3
2
5

2
4
3

1
4
7

1
3
0

1
0
3

5
7

3
7

4
1

1
4

1
3

5
8

5
,7

6
4

3
,3

5
3

2
,7

2
5

2
,0

3
8

1
,6

6
9

1
,2

4
8

9
1
4

6
2
6

4
4
3

3
2
1

2
2
1

1
3
6

1
2
3

8
4

5
6

3
3

2
4

2
2

1
3

4
3n=

Fig. 7 The number of enhancers drives the stability of PCG transcription across the mammalian phylogeny. a Box plots showing distributions of PCG

transcription associated with increasing numbers of enhancers in SAT in each mammalian species. Enhancers associated with a PCG have an additive

effect on transcript levels. In the boxplot, the internal line indicates the median, the box limits indicate the upper and lower quartiles and the whiskers

extend to 1.5 IQR from the quartiles. The numerical value above each bar indicates the number (n) of genes. b, c The number of associated/interacting

enhancers contributes to the evolutionary stability (b) or viability (c) of PCG transcription. Pairwise Spearman’s correlation coefficients of transcription

levels between species were plotted against the evolutionary distance of PCGs associated with multiple (≥5) enhancers (1557 PCGs) and compared with

control PCG sets that have only one or fewer enhancers (enhancers ≤1) but a matched transcription level (b). For contrast, plots using the same analysis

but showing PCGs associated with only one or fewer enhancers (1552 PCGs) compared with control PCG sets with multiple enhancers (c). The number of

associated/interacting enhancers corresponds to the median number across species. The lines correspond to linear regression trends (after log

transformation of the time axis). MYA: million years ago. d PCGs with either stable or variable transcription are largely similar in nucleotide sequence

conservation (phastCons value [left panel] and phyloP value [right panel]). Stable PCGs: n= 245; variable PCGs: n= 245. (two-sided Wilcoxon rank sum

test, Bonferroni-corrected P). In the boxplot, the internal line indicates the median, the box limits indicate the upper and lower quartiles and the whiskers

extend to 1.5 IQR from the quartiles. Source data are provided as a Source Data file.
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subcutaneous AT (ULB, upper layer of backfat) of six individuals. Hi-C
data were processed using a custom pipeline implemented in Juicer software
(version 1.8.9)98.

We reconstructed three-dimensional (3D) genome structures with both intra-
and interchromosomal interactions at a 100 kb resolution using miniMDS99

(version 2018-09-27). We also visualized the 3D genome using 3D modeling.
To investigate the correlation between transcription and 3D genome folding, we

generated the landscape of chromatin organization including compartment A/B100

(at 20 kb resolution and 100 kb resolution for visualization) and topologically
associating domains (TADs)101 (at 20 kb resolution) for the pig transcriptome.

Genomic properties, including GC content and gene density, were estimated
using 100 kb windows and further integrated with the 3D genome structures.

See Supplementary Methods for more details.

Gene transcriptional profiling across tissues. We calculated the tissue specificity
of gene abundance reflected by the tau score (τ)102 (ranging from 0 to 1, with 1 for
highly tissue-specific genes and 0 for ubiquitously transcribed genes) for each gene
with scaled TPM values. For each tissue, we averaged all replicates and then cal-
culated τ to account for unequal numbers of replicates among tissues. We used τ ≥

0.75 as the cut-off for tissue-specific genes.
We calculated the abundance distribution (i.e., transcriptome complexity) of

distinct transcripts across tissues, reflected as the fraction of total RNAs
contributed by the most highly expressed genes.

Differential gene expression analysis was performed using edgeR (version
3.22.5)103, with a false discovery rate (FDR) ≤0.05 and log2(fold change) ≥1 as cut-
offs for statistical significance.

Data collection for the functional gene categories. To further characterize the
specialized functions of different tissues in this study, we collected multiple a priori
functional candidate PCGs and examined their expression patterns. PCGs involved
in the core functions of SMTs (i.e., ‘HOX genes’, ‘homeobox family genes’, ‘myo-
kines’, and ‘NMJs’), ATs (‘inflammatory response’, ‘extracellular matrix’, ‘HOX
genes’, ‘homeobox family genes’, and ‘glucose and lipid metabolism genes’) were
retrieved from public databases (Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology) and/or collected from the literature.

The entries of PCGs that encode mitochondrially localized proteins were
extracted from the MitoCarta (version 2.0) database75. The gene inventories of two
central metabolic pathways, OXPHOS and FAO, were retrieved from the Gene
Ontology database.

Spatial transcriptomics (ST) of SMTs and myofiber composition estimation.
We performed ST using the representative psoas major muscle (PM) in two
replicates. Tissue sections on Visium Spatial slides were permeabilized according to
the protocol provided by 10X Genomics. ST cDNA libraries were sequenced on the
Illumina NovaSeq 6000 platform using paired-end sequencing, producing a mean
depth of 50 million paired-end reads, which resulted in an average library
saturation above 90%. After normalization, we performed dimensionality reduction
and visualized spot clusters in a reduced 2D space using UMAP104. We determined
the type I and II muscle fiber clusters and then discriminated types IIA and IIB
within the type II cluster. We visualized the spatial distribution of each cluster
using the SpatialPlot function and compared it with the ATPase staining myofiber
(type I) pattern. With ST data, we estimated the myofiber proportion using bulk
RNA-seq data for different types of SMTs derived from distinct body parts using
CIBERSORTx (in silico deconvolution, https://cibersortx.stanford.edu/)57.

See Supplementary Methods for more details.

Estimation of relative cell-type proportions in adipose tissues. We applied
CIBERSORTx57 and the adipose tissue signature matrix to estimate the relative
cell-type proportions in adipose tissues. The CIBERSORTx adipose tissue signature
matrix was obtained from a previously published study in humans65, which
included purified cells that are known to be present in adipose tissue, including
adipocytes, macrophages, CD4+ T cells, and microvascular endothelial cells
(MVECs). A total of 571 genes in this signature matrix with pig orthologs were
used for subsequent analysis.

Comparative transcriptomic analysis across species. We also sequenced 142
rRNA-depleted RNA-seq libraries of seven homologous organs/tissues (adipose,
heart, kidney, liver, lung, skeletal muscle, and spleen) from eight major mammalian
models (macaque, mouse, rat, guinea pig, rabbit, cat, dog, and sheep) and chicken
using similar library construction procedures and the same sequencing platform
used for pig samples. Sequenced reads were aligned to corresponding reference
genomes (macaque: Mmul_8.0.1, rabbit: OryCun2.0, mouse: GRCm38.p5, rat:
Rnor_6.0, guinea pig: Cavpor3.0, sheep: Oar_v3.1, dog: CanFam3.1, cat: Felis_ca-
tus_6.2, and chicken: Gallus_gallus-5.0) by the STAR alignment tool (version
2.5.3a). Quantification of PCG expression in each species was performed similarly
to that used in the pig analyses.

We performed comparative analyses of gene transcription and alternative
splicing across pigs and 9 other species based on single-copy orthologous PCGs
and orthologous exons. Single-copy orthologous PCG families were identified

following the protocol recommended by Ensembl (http://asia.ensembl.org/info/
genome/compara/homology_method.html). Cross-species comparative analyses of
alternative splicing were performed based on the “percent-spliced in” (PSI) values
of orthologous exons.

We performed selection analysis on transcriptional abundance for individual
PCGs based on Ornstein-Uhlenbeck (OU) and Brownian motion (BM) models, as
in previous reports105.

Additional details for the process are provided in the Supplementary Methods.

Transcription divergence and PEIs across species. We obtained 13 Hi-C
datasets of SAT from six mammals, including human, rat, rabbit, cat, dog, and
sheep, following the experimental and analytical procedures described in ‘Hi-C
experiment and data analysis’ in the Supplementary Methods.

PSYCHIC106 (version 2018-01-05) was applied to identify overrepresented
promoter-enhancer interactions (PEIs) at a resolution of 20 kb using interaction
intensity normalized according to the background model.

Evolutionary divergence of transcription was measured by Spearman’s
correlation coefficients for the transcription levels of orthologous PCGs between
pairs of species.

When estimating the relative divergence of PCGs with different numbers of
interacting enhancers, confounding effects due to differences in transcription level
distributions were controlled for by matching PCGs one-to-one to control PCGs
with similar expression using the MatchIt library in R.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Raw and processed RNA, and miRNA sequencing data of pigs have been deposited in the

NCBI Gene Expression Omnibus (GEO) under accession codes “GSE162145” and

“GSE162147”, respectively. Spatial transcriptomic data have been deposited in GEO

under accession code “GSE161882”. The raw and processed RNA sequencing data of

nine other species for comparative transcriptomic analysis have been deposited in GEO

under accession code “GSE162142”. RNA-sequencing and Hi-C data of non-human

species for analysis of gene transcription divergence and PEIs across species have been

deposited in GEO under accession codes “GSE162146” and “GSE162140”, respectively.

Human RNA sequencing and Hi-C data have been deposited in GEO under accession

codes “GSE162143” and “GSE162139”, respectively. The nuclear PCG entries with

mitochondrial localization were downloaded from MitoCarta2.0 database (http://www.

broadinstitute.org/pubs/MitoCarta). All other data supporting the findings of this study

are available within the article and its Supplementary Information files or from the

corresponding author upon reasonable request. A reporting summary for this Article is

available as a Supplementary Information file. Source data are provided with this paper.

Code availability
Each use of software programs has been clearly indicated and information on the options

that were used is provided in the Methods and the Supplementary methods section. All

software, codes, and scripts used for data processing and analyses are available on

GitHub through the following link, https://github.com/QianZiTang/, or at https://doi.

org/10.5281/zenodo.4724411.
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