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Abstract

Background: The outstanding performance of an elite athlete might be associated with changes in their blood

metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-

power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences.

Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and

70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or

international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using

non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography.

Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in

metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models.

Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power

and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance

athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and

progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of

phospholipids and xanthine metabolites compared to moderate-power counterparts.

Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct

metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related

metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’

elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical

processes that could be utilized as biomarkers with potential therapeutic implications.
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Key points

� The emerging data provide a comprehensive

snapshot of athletes’ metabolism based on their

sports class as well as small molecule markers of

fitness, including changes in metabolites reflecting

sex steroid hormone biosynthesis and oxidative

stress substrates.

� The analysis confirmed previously reported changes

in the consumption of energy substrates in

glycolysis, lipolysis, adenine nucleotide catabolism,

and amino acid catabolism in response to exercise.

� Once replicated and validated, these metabolic

signatures could be utilized as biomarkers for

excessive trainability associated with elite athletic

performance with potential therapeutic implications.* Correspondence: nay2005@qatar-med.cornell.edu; melrayess@adlqatar.qa
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Background
Excessive training of professional athletes causes alter-

ations in their blood metabolic profile that depends

largely on the type and duration of their training regi-

men [1, 2]. Various behavioral, biochemical, hormonal,

and immunological markers are routinely used to assess

athletes’ physical status during a training program [3, 4].

Previous studies, however, have demonstrated that con-

ventional tests could not detect the physiological differ-

ences between endurance athletes and control subjects,

or differences before and after training sensitively [5, 6].

Therefore, a more comprehensive metabolic profiling

has been considered in order to identify global physio-

logical changes in response to training.

Metabolomics offers a quantitative measurement of

the metabolic profiles associated with exercise in profes-

sional athletes in order to identify biomarkers associated

with their performance, response to fatigue, and poten-

tially their respective sports-related disorders [5, 7].

Non-targeted metabolomics allows the detection of

changes in response to various physiological states such

as pre-/post-exercise and offers identification of meta-

bolic signatures with potential translational impact for

both professional athletes and general public [8]. These

changes include metabolites associated with glucose,

lipid, amino acid, and energy metabolism [1, 5], such as

those involved in adenosine triphosphate (ATP) synthe-

sis, beta-oxidation of free fatty acids, and ketone bodies

[8]. Previous studies in healthy volunteers have demon-

strated significantly reduced excretion of amino acids

with increased fitness levels and increased fat oxidation

rate during exercise [9]. Furthermore, metabolomics

profiling of athletes undergoing intensive exercise re-

vealed increase in plasma lactate [10, 11] and adenine

breakdown products [12], indicating anaerobic metabol-

ism and ATP cycling, respectively. Further studies of the

effect of exercise showed elevated tricarboxylic acid

(TCA) cycle intermediates, markers of aerobic energy

production, in skeletal muscle biopsies [13, 14]. Intensive

exercise was also shown to trigger changes in the levels

of amino acids, including a moderate uptake of glutam-

ate in skeletal muscle leading to release of alanine to

promote ammonia metabolism [11, 15, 16], with corre-

sponding changes in plasma concentrations of these me-

tabolites [17, 18]. Elevation in serum levels of sex steroid

hormones was also reported in endurance athletes only

in response to high exercise intensities [19].

Athletes who have competed in national or inter-

national sports events are considered elite athletes and

have been classified into two broad types according to

the kind and intensity of exercise: dynamic (isotonic)

and static (isometric) [20, 21]. The dynamic exercise rep-

resents changes in the muscle length due to regular con-

tractions producing a limited intramuscular power.

These changes are characteristic of high-endurance

sports such as marathon running, cycling, or long-

distance triathlons. Static exercise, on the other hand,

leads to a greater intramuscular power with little

changes in muscle length and is characteristic to power

sporting events such as sprinting, jumping, throwing,

and weightlifting. Some sports, however, require both

power and endurance such as boxing and rowing.

Dynamic exercise can also be further characterized

based on the maximal oxygen uptake percentage (VO2)

achieved with maximum cardiac output. Static exercise

can too be sub-categorized in relation to maximal volun-

tary contraction percentage (MVC) gained with increas-

ing blood pressure [21].

Despite multiple studies focusing on the impact of ex-

ercise on athletes’ metabolomics profiling, the metabolic

differences between high- and moderate-power and en-

durance athletes remain to be explored. This study aims

to identify the metabolic signature that differentiates

high- and moderate-power and endurance elite athletes

and to identify the potential metabolic pathways that

underlie these differences. Assessment of these changes

could provide valuable measures of the current physical

status of the athletes and their adaptation to training,

which may help directing future training programs, pre-

venting potential disorders associated with excessive ex-

ercise as well as improving their overall performance.

Methods
Study design

Study participants included in this study were 191 con-

sented elite athletes (171 males and 20 females) from

different sports disciplines who participated in national

or international sports events and tested negative for

doping substances at anti-doping laboratories in Qatar

and Italy. Spare serum samples collected for anti-doping

human growth hormone tests were used for metabolo-

mics studies. Briefly, samples were either collected IN or

OUT of competition. Once collected, samples were de-

livered to the anti-doping labs within 36 h under cooling

conditions. Once received, samples were immediately

centrifuged to separate the serum and then stored at −

20 °C until analysis. Only information related to type of

sport and athlete’s gender were available to researches.

All other information was not available, including age,

ethnicity, or the time of recruitment (pre- or post-

exercise), due to the strict anonymization process under-

taken by anti-doping laboratories and those dictated by

study’s ethics. This study was performed in line with the

World Medical Association Declaration of Helsinki. All

protocols were approved by the Institutional Research

Board of anti-doping lab Qatar (F2014000009). Sport

types can be dichotomized into low, moderate, and high

dynamic or static groups based on associated peak
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dynamic (VO2) and peak static (MVC) components

achieved during competition, as suggested previously

[21]. In our study, few athletes belonged to low levels of

endurance and power, therefore were merged with the

corresponding moderate class of endurance and power,

respectively (Table 1A). For statistical analysis, endur-

ance and power athletes were each represented by a cat-

egorical variable with two levels (high and moderate,

Table 1B). Table 1 further lists the number of partici-

pants per sport type in each class and their genders.

Metabolomics

Metabolomics profiling was performed using established

protocols at Metabolon, Durham, NC, USA. All methods

utilized a Waters ACQUITY ultra-performance liquid

chromatography (UPLC) and a Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer

interfaced with a heated electrospray ionization (HESI-II)

source and Orbitrap mass analyzer operated at 35,000

mass resolution. The detailed description of the liquid

chromatography-mass spectrometry (LC-MS) method-

ology was previously described [22] and is summarized in

the Additional file 1. Briefly, serum samples were metha-

nol extracted to remove the protein fraction. The resulting

extract was divided into five fractions: two for analysis by

two separate reverse phase (RP)/UPLC-MS/MS methods

with positive ion mode electrospray ionization (ESI), one

for analysis by RP/UPLC-MS/MS with negative ion mode

ESI, one for analysis by hydrophilic interaction chroma-

tography (HILIC)/UPLC-MS/MS with negative ion mode

ESI, and one sample was reserved for backup. Raw data

was extracted, peak-identified, and quality control-

processed using Metabolon’s hardware and software [23].

Compounds were identified by comparison to library en-

tries of purified standards or recurrent unknown entities

with more than 3300 commercially available purified

standard compounds. Library matches for each compound

were checked for each sample and corrected if necessary

[22]. Asterisks (*) indicated on IDs of some metabolites in

Tables 2 and 3, Additional file 2: Tables S2–S3 and S5–S8

refer to compounds that have not been officially

confirmed based on a standard, but their identities are

known with confidence.

Statistical analysis of metabolomics data

Multivariate analysis

Metabolomics data were log-transformed to ensure dis-

tribution normality. Batch correction was already

Table 1 Classification of study participants

(A) Distribution of elite athletes in various categories based on sport type-associated peak dynamic (maximal oxygen uptake percentage; VO2) and peak static

(maximal voluntary muscle contraction percentage; MVC) components achieved during competition as described previously [21]. The number and gender (M for

males and F for females) of participants in each group are also indicated. (B) Categorization of sport types into classes based on power alone regardless of

endurance (left) and similarly for endurance alone ignoring power (right); these classes were used in the statistical analysis
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performed by Metabolon by rescaling each metabolite so

that its median is equal to 1. Principle component ana-

lysis (PCA) was initially undertaken using multivariate

techniques to achieve a global view of the data. PCA

components express a linear combination of the

metabolites levels weighted by the component’s loading

values. Orthogonal partial least square discriminant ana-

lysis (OPLS-DA), a supervised multivariate regression

technique, was performed to identify components that best

differentiate between predefined classes of samples while

Table 2 Metabolites differentiating between moderate- and high-endurance athletes (Bonferroni significance)

Metabolite Sub-pathway Fold change Bonferroni p value

1-stearoyl-GPC (18:0) Lysolipid − 0.15595 1.72E-05

Vanillylmandelate (VMA) Phenylalanine and tyrosine metabolism 0.415133 2.29E-05

21-hydroxypregnenolone disulfate Steroid 0.365863 0.000107398

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]* Diacylglycerol − 0.46764 0.000130998

Tartronate (hydroxymalonate) 0.290077 0.000657114

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [1]* Diacylglycerol − 0.42202 0.00090176

1-palmitoleoyl-GPC (16:1)* Lysolipid − 0.22642 0.001172265

Cortisone Steroid 0.395892 0.001489996

Citrate TCA cycle 0.200056 0.001784274

Succinimide Polyamine metabolism 0.279317 0.002636335

Stearoylcarnitine (C18) Fatty acid metabolism (acyl carnitine) − 0.28394 0.002953686

Trans-4-hydroxyproline Urea cycle; arginine and proline metabolism − 0.27783 0.00295413

4-guanidinobutanoate Polyamine metabolism − 0.44969 0.003796483

Dihomo-linoleoylcarnitine (C20:2)* Fatty acid metabolism (acyl carnitine) −0.33166 0.005028391

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)* Plasmalogen 0.145176 0.005178692

1-palmitoyl-GPC (16:0) Lysolipid − 0.11595 0.005429078

Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1]* Diacylglycerol − 0.54301 0.005827373

Gamma-glutamylglutamate Gamma-glutamyl amino acid − 0.42069 0.006242208

Pregnanediol-3-glucuronide Steroid 0.44061 0.006441558

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2]* Diacylglycerol − 0.47247 0.008366458

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) Phospholipid metabolism − 0.1648 0.009358338

Cortisol Steroid 0.471022 0.009967366

Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2]* Diacylglycerol − 0.53635 0.012030273

Homoarginine Urea cycle; arginine and proline metabolism − 0.22816 0.013313047

Palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [1]* Diacylglycerol − 0.42989 0.015554355

Lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) Sphingolipid metabolism 0.131658 0.017917489

3-hydroxydecanoate Fatty acid, monohydroxy 0.346756 0.018411909

Pregnenolone sulfate Steroid 0.332031 0.01854452

Pregnenolone steroid monosulfate* Steroid 0.292548 0.024089561

Leukotriene B4 Eicosanoid − 0.84063 0.027085708

Vanillactate Phenylalanine and tyrosine metabolism 0.214757 0.028124765

12-HETE Eicosanoid − 0.63302 0.028449419

Acetylcarnitine (C2) Fatty acid metabolism (acyl carnitine) 0.337317 0.033107027

N1-methyladenosine Purine metabolism, adenine containing 0.121048 0.036870759

Isovalerate Leucine, isoleucine and valine metabolism − 0.52129 0.039358891

5-hydroxylysine Lysine metabolism − 0.39575 0.040606024

1,3,7-trimethylurate Xanthine metabolism 0.671617 0.045828468

Fructose Fructose, mannose and galactose metabolism 0.391699 0.053677595

Asterisks (*) indicated on IDs of some metabolites refer to compounds that have not been officially confirmed based on a standard, but their identities are known

with confidence
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dissecting orthogonal components which do not differenti-

ate between these classes. In this study, OPLS-DA was

used to compare moderate versus high classes of endur-

ance and power separately. Both PCA and OPLS-DA were

run using SIMCA 14 with the default metabolite-wise

metabolite missingness threshold (percentage of missing

metabolite values across the samples) of 50%.

Univariate regression and enrichment analysis

Linear models for association analysis were run using the

R statistical package (version 2.14, www.r-project.org/). A

model incorporating power and endurance as a categorical

variable with two levels (moderate and high) was used. In-

corporating both endurance and power in the same

model made it possible to examine the effect of power

Table 3 Metabolites that differentiate moderate- versus high-power athletes

Metabolite Sub-pathway Fold change Bonferroni p value

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)* Phospholipid metabolism 0.577623 5.92E-11

1-palmitoyl-2-oleoyl-GPI (16:0/18:1)* Phospholipid metabolism 0.42177 1.10E-07

Imidazole lactate Histidine metabolism 0.447699 1.88E-06

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Phospholipid metabolism 0.279019 4.51E-06

1-linolenoyl-GPC (18:3)* Lysolipid 0.414819 1.10E-05

1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)* Phospholipid metabolism 0.537975 1.11E-05

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) Phospholipid metabolism 0.447877 5.88E-05

1-palmitoyl-GPI (16:0) Lysolipid 0.438221 0.000101

Indolelactate Tryptophan metabolism 0.30948 0.000178

3-methylxanthine Xanthine metabolism 0.788924 0.00021

1,2-dilinoleoyl-GPC (18:2/18:2) Phospholipid metabolism 0.324133 0.000225

1-lignoceroyl-GPC (24:0) Lysolipid 0.321129 0.000287

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) Phospholipid metabolism 0.222855 0.000322

N-acetylcarnosine Dipeptide derivative − 0.33185 0.000873

1-stearoyl-2-oleoyl-GPI (18:0/18:1)* Phospholipid metabolism 0.346165 0.001026

N-acetylmethionine Methionine, cysteine, SAM,
and taurine metabolism

− 0.58119 0.001445

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Phospholipid metabolism 0.153562 0.002983

Argininate* Urea cycle; arginine and proline metabolism 0.422405 0.003294

7-methylxanthine Xanthine metabolism 0.648043 0.004023

Homoarginine Urea cycle; arginine and proline metabolism − 0.27429 0.006606

Gamma-glutamylvaline Gamma-glutamyl amino acid − 0.3052 0.008009

Sphingosine 1-phosphate Sphingolipid metabolism − 0.20846 0.008168

Phenyllactate (PLA) Phenylalanine and tyrosine metabolism 0.306398 0.009708

Arabitol/xylitol Pentose metabolism 0.23942 0.015147

1-palmitoleoyl-GPC (16:1)* Lysolipid 0.229408 0.017685

Methionine sulfone Methionine, cysteine, SAM,
and taurine metabolism

0.308995 0.02004

Guanidinoacetate Creatine metabolism − 0.22401 0.035446

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) Phospholipid metabolism 0.261839 0.036305

Sphingomyelin (d18:2/14:0, d18:1/14:1)* Sphingolipid metabolism 0.216635 0.036711

4-cholesten-3-one Sterol 0.242711 0.037246

1-palmitoyl-GPG (16:0)* Lysolipid 0.309379 0.040079

Cholate Primary bile acid metabolism 1.182236 0.041373

1-palmitoyl-GPE (16:0) Lysolipid 0.230631 0.049265

1-stearoyl-2-linoleoyl-GPC (18:0/18:2)* Phospholipid metabolism 0.118022 0.052877

Asterisks (*) indicated on IDs of some metabolites refer to compounds that have not been officially confirmed based on a standard, but their identities are known

with confidence
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while correcting for endurance and vice versa. This is

sensible because the high-endurance class features a

mixture of high- and moderate-power sports while the

moderate-endurance class features only moderate-

power sports. An opposite pattern is observed with

power (Table 1B). With both analyses, covariates in-

cluding gender, hemolysis levels (determined visually

by Metabolon), and PCA components 1 and 2 were in-

cluded in the model. A stringent Bonferroni level of sig-

nificance of p ≤ 0.05/743 = 6.72 × 10 − 5 was used to infer

association. False discovery rate (FDR) multiple testing

correction was also performed. All p values included in

Tables 2 and 3, Additional file 2: Tables S2–S6 are re-

ported after performing the described multiple testing

correction. In order to identify metabolites that were

associated with endurance or power differently in males

versus females (endurance/power × gender), an inter-

action term was added to the model. For simplicity, when

conducting the interaction analysis, both endurance and

power were used as continuous variables (since both come

in only two levels); hence, the analysis was reduced to test-

ing differences in the beta values between males and

females (where beta expressed the slope measuring the

effect of either power or endurance).

Function enrichment analysis was performed using the

one-tailed Wilcoxon sum of the ranks test. For a given

biological function, the test assesses the probability of

observing the identified ranks of related metabolites

from the linear model analysis by chance. To gain fur-

ther insight into the biochemistry of identified metabo-

lites, the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways were utilized. For heatmap analysis,

metabolites were z-scaled by subtracting their means

followed by division by standard deviations.

Results
Multivariate analysis of athlete metabolomics data

Non-targeted metabolomics was applied to determine the

metabolic signatures of 191 elite athletes. PCA compo-

nents 1 and 2 (PC1 and PC2) captured together 25% of

the variance in the data. PC1 revealed two clusters of sam-

ples, which were not explained by gender, sport types, or

classes (Fig. 1a). Examination of the loading plot in Fig. 1b

revealed a concentration of hemoglobin and heme metab-

olites at the positive end of PC1. Furthermore, a t test

comparing the hemolysis measurement, between the two

clusters of samples revealed by PC1, was significant at the

0.01 significance level. These results led to the conclusion

that PC1 captured the extent of hemolysis in the samples.

Interestingly, there was also an enrichment of arachido-

nate phospholipid metabolites at the positive end of PC1

as oppose to an enrichment of eicosanoids at the negative

end. While the biochemical link between the two sets of

metabolites is an obvious substrate/product relationship,

the link to hemolysis was rather obscure. There were no

clusters of samples according to PC2 (Fig. 1a). A closer

look at the loading plot revealed that TCA energy metabo-

lites and amino acids that feed into TCA cycle were

mostly located at the positive end of PC2 (Fig. 1c). More-

over, a significant positive correlation between previously

identified changes in metabolites following 1 hour post-

endurance exercise [1], also listed in Additional file 2:

Table S1, and our PC2 loading values for the same metab-

olites (R = 0.6, p = 0.005) was identified. The enrichment

of dipeptides at the negative end of PC2 could indicate an

opposing anabolic effect. Although PCA did not explain

sport classes, it provided clues of possible confounders

(hemolysis and pre/post exercise) that we corrected for

subsequent analyses.

Unlike PCA, OPLS-DA can identify sets of metabolites

that best distinguish between predefined classes of samples.

An OPLS-DA analysis comparing moderate versus high

classes of endurance revealed one class-discriminatory

component accounting for 66.7% of the variation in the

data due to endurance level (R-squared-Y = 0.66, Q-

squared = 0.45) (Fig. 2a). The corresponding loading score,

shown in Fig. 2b, suggests a reduction in diacyl glycerols

and gamma-glutamyl amino acids as oppose to an increase

in steroids, GABA derivatives, and monohydroxy fatty

acids with higher endurance levels.

OPLS-DA also revealed a clear separation between

moderate versus high power. One significant predict-

ive component explaining 88% of the variation in the

power (R-squared-Y = 0.88, Q-squared = 0.52) was

identified (Fig. 3a). The loading plot on Fig. 3b sug-

gests a decrease in gamma glutamyl amino acids as

oppose to an increase in sterols, phospholipids, lysoli-

pids, and xanthine metabolites with increased power.

OPLS results were confirmed by linear model in the

following section.

Univariate association tests and function enrichment analysis

Endurance-associated metabolites

A linear model was used to assess the significance of

metabolite-associations with the athletes’ class (moderate

versus high endurance) after correcting for gender,

hemolysis levels, PC1, PC2, and power. Thirty-eight me-

tabolites associated with endurance at a Bonferroni level

of significance (p ≤ 0.05/743 = 6.72 × 10−5) were identi-

fied and their associated pathways listed (Table 2). More

metabolites associated with endurance at FDR and nom-

inal levels of significance are shown in Additional file 2:

Table S2. Similar results were obtained when analysis

was restricted to males only (Additional file 2: Table S3).

Enrichment analysis revealed an over-representation of

diacylglycerols, gamma-glutamyl amino acids, eicosanoids,

and monohydroxy fatty acids (FDR-corrected p-value

0.000122, 0.005, 0.017, and 0.04, respectively) among
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metabolites most strongly associated with endurance, irre-

spective of the direction of change. The steroid class

scored a nominal p-value of 0.05 but failed to remain sig-

nificant after FDR-based multiple testing. Interestingly,

these results are in considerable agreement with metabolic

effects identified through the OPLS-DA multivariate

approach previously discussed (Fig. 2b).

The results pertaining to steroids are certainly remark-

able if replicated and will be elaborated further in the

“Discussion” section. It is important to note that in

addition to the six Bonferroni significant steroids listed in

Table 2, seven more steroid species were FDR significant

at alpha = 0.05. These are etiocholanolone glucuronide

(FDR p value = 0.003); 5alpha-pregnane-3beta,20alpha-

diol disulfate (FDR p value = 0.01); 5alpha-pregnane-

3beta,20beta-diol monosulfate (FDR p value = 0.02);

androstenediol (3beta,17beta) disulfate (FDR p value =

0.025); 5alpha-pregnane-3beta,20alpha-diol monosulfate

Fig. 1 PCA analysis of athlete metabolomics data. a A score plot of PC1 and PC2 indicating clustering of samples into two groups according to

PC1. Neither PCs is explained by sport type or class. b, c Loading plots offering clues on what the two PCs may represent: The heme/hemoglobin

metabolites suggests a hemolysis signature for PC1 (b) while the TCA energy metabolite highlighted by PC2 indicates an energy generating

process which may be associated with exercise (c)
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(FDR p value = 0.029); pregnen-dioldisulfate (FDR p

value = 0.035); and androstenediol (3alpha, 17alpha)

monsulfate (FDR p value = 0.04). All Bonferroni and

FDR significant steroid metabolites were projected onto

KEGG Steroid Biosynthesis Pathway to highlight their

biochemical inter-relationships (Fig. 4). Significant cor-

relations among the identified steroid metabolites were

confirmed (Additional file 3: Fig. S1, Additional file 2:

Table S4), suggesting activation of sex steroid biosyn-

thesis pathway in high-endurance athletes.

A part of enrichments of functionally related sets of

metabolites, endurance association analysis also revealed

individual metabolic effects which are noteworthy.

Among these are derivatives of GABA cyclic lactam 2-

pyrrolidinone including succinimide (Bonferroni p value

= 0.00263), acisoga or N-(3-acetamidopropyl)pyrrolidin-

2-one (FDR p value = 0.004), and 2-pyrrolidinone itself

(FDR p value = 0.03) as well as GABA derivative 4-

guanidinobutanoate (Bonferroni p value = 0.004). There

were significant correlations between 2-pyrrolidinone and

its derivatives including succinimide (R = 0.15, p = 0.04),

4-guanidinobutanoate (R = − 0.146, p = 0.04), and guanidi-

nosuccinate (R = − 0.186, p = 0.01), suggesting presence of

this drug and its derivatives in high-endurance athletes,

also seen in OPL-DA analysis (Fig. 2b).

Other interesting effects include a Bonferroni signifi-

cant increase in citrate together with an FDR significant

increase in 2-methylcitrate (FDR = 0.012). Other associa-

tions include acyl carnitines, phospholipids, and sphin-

golipids among others (Table 2).

Power associated metabolites

When considering power, the categorical variable

“power” becomes the explanatory variable of interest in

the previous model and “endurance” becomes a con-

founder that is corrected for. Thirty-three metabolites

were significantly associated with power according to

this model; these are listed in (Table 3). Enrichment

analysis revealed an over-representation of phospholipids

(p = 0.00042), lysolipids (p = 0.00042), gamma-glutamyl

amino acids (p = 0.000846), and sterols (p = 0.005)

amongst metabolites most strongly associated with

power. Other significantly changed metabolites in mod-

erate- versus high-power classes included guanidinoace-

tate, N-acetylcarnosine, cholate, imidazole lactate,

indolelactate, and 3-methylxanthine (Table 3).

Among FDR significant changes, an increase in

creatine (estimate = 0.6, p = 0.001) and a decrease in

creatinine (estimate = − 0.1, p = 0.002) were also

Fig. 2 OPLS-DA model comparing moderate- versus high-endurance classes of elite athletes. a A score plot showing the class-discriminatory

component (x-axis) versus orthogonal component (y-axis). b The corresponding loading plot showing a clustering of steroids and monohydroxy-

fatty acids at the high end of endurance opposed by a clustering of diacyl-glycerols and gamma-glutamyl amino acids at the negative end
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detected in the high-power group although did not

reach Bonferroni significance. More metabolites asso-

ciated with power at FDR level of significance are

shown in Additional file 2: Table S5. Similar results

were obtained when analysis was restricted to males

only (Additional file 2: Table S6).

Metabolites with FDR corrected p values of less than

0.01 from the endurance and power models were

projected on the heatmap in Figs. 5 and 6, respectively.

The heatmaps give a snapshot summary of the actual

intensities of these metabolites after correcting for con-

founders in the linear model described earlier. Samples

were ordered by sports type within their respective sport

groups (moderate power/moderate endurance, moderate

power/high endurance and high power/high endurance).

Gender-sports class interaction

Gender-endurance interaction analysis identified 60 sig-

nificant metabolites with a nominal p value (less than

0.05) amongst which none remained significant after

Fig. 4 A schematic diagram summarizing the biochemical relationships between steroid metabolites found significantly associated with high

endurance (shaded boxes). This is based on the steroid hormone biosynthesis reference pathway (map00140) from the Kyoto Encyclopedia of

Genes and Genomes (KEGG)

Fig. 3 OPLS-DA model of moderate- versus high-power classes of elite athletes. a A score plot showing the class-discriminatory component on

the x-axis versus the first orthogonal component on the y-axis. b The corresponding loading plot showing a clustering of sterols, lipids, and

xanthine metabolites at the high end of power as opposed to enrichment of gamma-glutamyl amino acids at the low end of power
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FDR correction (Additional file 2: Table S7). As for

power, 144 metabolites were differently associated with

power between males and females, among which 35 me-

tabolites remained significant after FDR correction

(Additional file 2: Table S8).

Discussion
Metabolic profiling of athletes’ blood in response to ex-

ercise has recently revealed unique metabolic signatures

associated with various types and durations of exercise

[1, 8]. However, metabolomics of elite athletes from

Fig. 5 Heatmap of metabolites significantly associated with high endurance from the linear model association analysis (y-axis). Samples on x-axis

were ordered by sports type and group. The color code denotes z-scaled values of metabolites after correction of confounders

Fig. 6 Heatmap of metabolites significantly associated with high power from the linear model association analysis (y-axis). Samples on x-axis were

ordered by sports type and group. The color code denotes z-scaled values of metabolites after correction of confounders
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different sport disciplines remains to be investigated. In

particular, the metabolic pathways of endurance and

power athletes should shed light on the molecular mech-

anisms underlying variations with functional relevance

or those that can be used as potential biomarkers for

their respective sport class. In this study, metabolomics

analysis was utilized to characterize the unique serum

metabolic signature of elite athletes who participated in

national or international sports events following the suc-

cessful completion of anti-doping tests. Despite limited in-

formation about the participants and possible

confounding factors influencing their metabolic profiling,

the emerging data revealed significant differences in me-

tabolite levels between high- versus moderate-power and

endurance sport types. Inclusion of PC1 and PC2 in the

linear model has likely corrected for expected confounders

including hemolysis and pre-post exercise effects to reveal

common as well as distinctive metabolic mechanisms

underlying endurance and power. These include a clear

signature of oxidative stress common to both high-power

and high-endurance sports alike, yet steroids and poly-

amine pathways appeared more prominent in endurance,

while sterols, adenine-containing purines, and energy me-

tabolites were most evident with power.

Metabolites associated with endurance

Exercise can cause changes in sex steroid hormone

concentrations in the serum of non-athletes as well as ath-

letes [19, 24], including levels of testosterone and cortisol

[25, 26]. One interesting finding in this study is the ele-

vated levels of various metabolites involved in sex steroid

hormone biosynthesis in the high-endurance athletes.

Some of these metabolites were conjugated with one or

more sulfate group(s) which renders them inactive. How-

ever, these can be reactivated through the activity of

enzyme steroid sulfatase [27]. The list of elevated steroids

included pregnenolone that mediates biosynthesis of corti-

costeroids and progesterone and 21-hydroxypregnenolone

disulfate that mediates biosynthesis of corticosteroids,

corticoids (cortisol and cortisone), various metabolites

of progesterone (pregnanediol, 5alpha-pregnane-

3beta,20alpha-diol, 5alpha-pregnane-3beta,20beta-diol),

testosterone precursor (androstenediol (3beta,17beta)),

and testosterone metabolites (etiocholanoloneglucuro-

nide, androstenediol (3alpha, 17alpha)) (Fig. 4).

Elevated cortisol-related metabolites in response to sus-

tained aerobic exercise were shown to correlate

positively with intensity of exercise as measured by oxy-

gen uptake [28]. However, exercise-induced alterations

in sex steroid hormone levels are usually short lived

(1–3 h) [19]. The habitual exercise regiments of the

elite endurance athletes may have accounted for this

maintained systemic increase. Sex steroid hormones

play a crucial role in glucose metabolism and protein

synthesis in the muscle as well as in the regulation of

redox homeostasis [29–31]. Some act as neurosteroids

that alter neuronal excitability such as pregnen-

dioldisulfate that works as a potent negative allosteric

modulator of the GABAA receptor [32] and pregneno-

lone sulfate that acts as a potent negative allosteric

modulator of the GABAA receptor and a weak positive

allosteric modulator of the NMDA receptor [33]. The

stimulatory effects of steroids on muscle mass, energy

generation, and neuronal excitability may have

accounted for the higher endurance ability of the high-

endurance group compared to their lower endurance

counterparts. Given that athletes included in this study

have successfully passed anti-doping tests, changes in

steroids levels may reflect either enhancement in en-

dogenous anabolic steroids biosynthesis, physiological

adaptation to exercise, and/or increased dietary intake.

A genetic association study is needed to reveal the po-

tential genetic variants underlying increased activity of

enzymes involved in steroid biosynthesis. Interestingly,

in addition to elevation in a number of neurosteroids,

our data suggested increased elevated levels of a number

of GABA derivatives including 2-pyrrolidinone, the cyclic

lactate form of GABA [34], its derivatives succinimide,

acisoga (N-(3-acetamidopropyl)pyrrolidin-2-one), and 4-

guanidinobutanoate, perhaps contributing to GABA-

mediated muscle growth in response to exercise [35].

Other metabolic changes associated with high endur-

ance included reduced diacylglycerols (DAGs) and fatty

acid (FA)-carnitine and increased acylated carnitine. Al-

terations in these lipids may suggest enhanced hydrolysis

of DAGs, shuttling of FA intracellularly, followed by

fatty acid oxidation and energy generation [36]. Fatty

acids and lipids are preferred substrates for exercising

the muscle, and the emerging data suggest a greater beta

oxidation of fatty acids in athletes belonging to higher

endurance sports. Hence, those athletes are perhaps more

capable of activating lipolysis during physical activity than

moderate-endurance athletes. Furthermore, accumulation

of acylated carnitine may provide a favorable effect on the

recovery from exercise stress since carnitine can reduce

post-exercise plasma lactate and prevent cellular damage

[37]. Citrate and isocitrate were also significantly increased

in high-endurance elite athletes, indicating enhanced aer-

obic energy generation through TCA.

Metabolites associated with power athletes

Changes in creatine, creatinine, and guanidinoacetate

were significant between high- and moderate-power ath-

letes. Whereas creatine increased in the high-power

group, its breakdown product (creatinine) and precursor

(guanidinoacetate) were both significantly reduced, thus

maintaining the previously reported balance of creatine

metabolism [38]. Creatine (Cr) and creatine phosphate
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(CrP) play essential roles in the storage and transmission

of phosphate-bound energy. Changes in creatine homeo-

stasis in high-power athletes may suggest more adapt-

able muscular storage of CrP that during exercise can

constitute an essential source for high energy to replen-

ish ATP in the first few seconds of intense activity.

Other energy-related metabolites elevated in high-power

athletes were 3-methylxanthine and 7-methylxanthine

(adenine breakdown products), perhaps reflecting

heightened utilization of fuel substrates in several meta-

bolic pathways [39]. Xanthine supplementation allows

athletes to exercise at a greater power output for longer

times [40]. Additionally, N-acetylcarnosine was signifi-

cantly reduced in high-power athletes. This metabolite

acts as oxidative stress scavenger in muscles especially

against lipid peroxidation through its imidazolium group

that stabilizes adducts formed at the primary amino

group [41]. Various derivatives of phosphatidates were

increased with increased power, perhaps reflecting

changes in cellular membrane dynamics in response to

oxidative stress [42]. Among those, inositol phospho-

lipids were previously shown to accumulate in response

to muscle contraction during hypoxia [43]. Another me-

tabolite likely to be a result from stress-induced mem-

brane dynamics is 12,13-DHOME. This long-chain fatty

acid enhances adipogenesis and inhibits asteogenesis due

to its role as a proliferator-activated receptor (PPAR)

gamma 2 ligand [44].

Global stress response in both high-power and

high-endurance athletes

Intensive exercise has been implicated in the promo-

tion of free radical generation in active skeletal

muscle resulting in the formation of oxidized lipids

[42]. Overall in both power and endurance athletes,

there was a clear stress metabolic response. Changes

in gamma-gultamyl amino acids, associated with ele-

vated cysteine-glutathione disulfide (change 0.24,

nominal p value of 0.03), between high- and moderate-

performance athletes may indicate active gamma-glutamyl

cycle that plays an important role in the glutathione-

mediated radical detoxification during oxidative stress

[45]. The cycle involves synthesis and degradation of

glutathione by transferring gamma-glutamyl functional

groups from glutathione to an amino acid, leaving the

cysteine products intact, which leads to the preservation

of intracellular homeostasis in case of oxidative stress

[46, 47]. Reduction in serum levels of gamma-glutamyl-

amino acids in high-performance athletes (both high

power and high endurance) may indicate increased

glutathione synthesis. The accumulation of glutathione

in the blood stream marks increased oxidative stress

and reactive oxygen species scavenging activity.

Gender-related differences

Despite lack of FDR significant differences in metabolites

associated with endurance in males versus females,

differences in a number of metabolites were nominally

significant, including a number of gamma-glutamyl

amino acids and steroid metabolites among others.

Differences in these metabolites between high and mod-

erate levels of endurance were mostly going in the same

direction in males and females but were more

pronounced in females. As per power-associated metab-

olites, there were FDR significant differences between

males and females in a number of metabolites including

TCA-mediators such as malate, fumarate, succinate, and

alpha keto glutarate as well as lactate where in females

there was increase with higher power with no FDR sig-

nificant effects in males. These gender-related differ-

ences need to be further investigated, especially in light

of low number of studied females (n = 20).

Study limitations

One main limitation of this study is the relatively low

number of participants, especially the females; therefore, a

replication study is essential for confirmation of these

findings. Furthermore, since athletes’ blood samples were

collected at multiple sites, a batch effect was inevitable,

likely attenuating correlations between metabolite concen-

trations and sports class. This batch effect may have in-

cluded various crucial pre-analytical features that can

significantly influence the metabolic profiling of samples

such as the blood collection process and time (IN or OUT

of competition) and transportation conditions, including

time to reach anti-doping laboratories, sample processing,

and sample storage [48]. Despite these factors, clear signa-

tures were identified after correcting for potential con-

founders. Additionally, the lack of information about

participants including their age, ethnicity, and body mass

index was another major limitation of this study. However,

the young age of elite athletes in general and the wide

range of sports included in this study may have diluted

out other potential confounders. Ambiguity in the exact

description of the subcategories of athletes’ sports was an

additional issue this study has faced due to the limited in-

formation provided by the anti-doping laboratories follow-

ing the strict anonymization process. This has prompted

the adoption of the general sports class grouping based on

previously published work [21] despite the differences

among different members of the same team such as such

as breast-stroke and freestyle swimming or football mid-

fielders and goal keepers. Another limitation of this study

is the group number bias as some sports were overrepre-

sented and others underrepresented. Finally, differences in

dietary intake between high- and moderate-power and en-

durance elite athletes, including various supplements,

medications, and other ergogenics, may have influenced
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their metabolic profile [49]. Such differences are difficult to

account for as they vary among different sports and ath-

letes and are not usually publicized. Taken all these limita-

tions into account, it is critical to stress that this is a pilot

study that needs further replication and validation as

finding biomarkers from the identified differentiating sig-

nificant compounds still requires optimization of target-

specific analytical methods and validation of these methods

with their reference materials and proficiency tests [50].

Conclusion
The emerging data provide a comprehensive snapshot of

athletes metabolism based on their sports class as well as

small molecule markers of fitness, which requires further

validation. Metabolomics of elite athletes classified according

to their sports class into endurance or power revealed for

the first time changes in metabolites reflecting sex steroid

hormones biosynthesis and oxidative stress substrates

(glutathione metabolism). The analysis confirmed previously

reported changes in the consumption of energy substrates

in glycolysis [51], lipolysis [52, 53], adenine nucleotide catab-

olism [54], and amino acid catabolism [15] in response to

exercise [1, 55, 56]. These metabolic signatures could be uti-

lized as pilot indicators of excessive trainability associated

with elite athletic performance with potential applications in

directing future training programs, preventing potential dis-

orders associated with excessive exercise as well as improv-

ing their overall performance. Changes in these metabolic

signatures may also provide valuable clues for anti-doping

research related to Athlete Biological Passport.

Additional files

Additional file 1: Materials and Methods. (DOCX 16 kb)

Additional file 2: Table S1. Comparison of previously published

metabolite changes in plasma at 60 min after completion of exercise [1]

and their corresponding PC2 loading values obtained in this study.

Table S2. Metabolites differentiating between moderate- and

high-endurance athletes (p≤ 0.05). Table S3. Metabolites differentiating

between moderate- and high-endurance athletes (p≤ 0.05) in males only.

Table S4. Pearson’s Correlations between various sex steroid metabolites.

Significant p values are highlighted (* < 0.05, ** < 0.01, *** < 0.001).

Table S5. Metabolites differentiating between moderate- and high-

power athletes (p ≤ 0.05). Table S6. Metabolites differentiating between

moderate- and high-power athletes (p≤ 0.05) in males only. Table S7.

Gender-endurance interaction metabolites. Columns A–F show the effect

of endurance on gender-interaction metabolites in males only. Columns

H to L show the different effect in females. Table S8. Gender-power

interaction metabolites. Columns A–F show the effect of power on

gender-interaction metabolites in males only. Columns H to L show the

different effect in females. (XLSX 1377 kb)

Additional file 3: Figure S1. Heatmap (left) and hierarchical clustering

(right) of steroid metabolites featured in this study. The significant

metabolites from the linear model associated with endurance are

highlighted in red (right). (PPTX 73 kb)

Abbreviations

ATP: Adenosine triphosphate; DAGs: Diacylglycerols; ESI: Electrospray

ionization; FA: Fatty acid; HESI-II: Heated electrospray ionization;

HILIC: Hydrophilic interaction chromatography; LC-MS: Liquid

chromatography-mass spectrometry; MVC: Maximal voluntary contraction

percentage; OPLS-DA: Orthogonal partial least square discriminant analysis;

PCA: Principle component analysis; RP: Reverse phase; TCA: Tricarboxylic acid;

UPLC: Ultra-performance liquid chromatography; VO2: Maximal oxygen uptake

percentage

Acknowledgments

We would like to thank Qatar National Research Fund (QNRF) for funding this

project (Grant number NPRP7-272-1-041). We would like to thank Dr. Edward D.

Karoly from Metabolon, Inc. for his detailed description of the metabolomics

analysis adopted by Metabolon used in the methods section.

Funding

This research was sponsored by Qatar National Research Fund (QNRF), Grant

number NPRP7-272-1-041 (MAE, KS, CG, and FB).

Availability of data and materials

All datasets on which the conclusions of the manuscript rely are presented

in the additional supporting file in excel format and will be made available

at Metabolomics Workbench.

Authors’ contributions

FK, ID, FD, FB, MA, CG, KS, NY, and MAE collected samples, carried out

analysis, wrote the paper, and reviewed and accepted its final version. MAE

(corresponding) is responsible for the integrity of the work as a whole. All

authors read and approved the final manuscript.

Authors’ information

CG and FB are directors of anti-doping labs in Qatar and Italy, respectively.

ID, KS, and NY are the bioinformatics/biostatistics team. MAE is the lead PI.

Ethics approval and consent to participate

This study was performed in line with the World Medical Association

Declaration of Helsinki. Only consented participants were included in the

study. All protocols were approved by the Institutional Research Board of

anti-doping lab Qatar (F2014000009).

Consent for publication

Not applicable

Competing interests

Fatima Al-Khelaifi, Ilhame Diboun, Francesco Donati, Francesco Botrè,

Mohammed Alsayrafi, Costas Georgakopoulos, Karsten Suhre, Noha A. Yousri,

and Mohamed A Elrayess declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Anti Doping Laboratory Qatar, Sports City, P.O Box 27775, Doha, Qatar.
2University College London-Medical School, Royal Free Campus, London

NW3 2PF, UK. 3Department of Economics, Mathematics and Statistics,

Birkbeck, University of London, London WC1E 7HX, UK. 4Laboratorio

Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1,

00197 Rome, Italy. 5Department of Physiology and Biophysics, Weill Cornell

Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar.
6Department of Genetic Medicine, Weill Cornell Medical College in Qatar,

Education City, Qatar-Foundation, P.O. Box 24144, Doha, Qatar. 7Department

of Computer and System Engineering, Alexandria University, Alexandria,

Egypt.

Received: 13 June 2017 Accepted: 4 December 2017

References

1. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, et al.

Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;

2(33):33ra7. https://doi.org/10.1126/scitranslmed.3001006.

Al-Khelaifi et al. Sports Medicine - Open  (2018) 4:2 Page 13 of 15

dx.doi.org/10.1186/s40798-017-0114-z
dx.doi.org/10.1186/s40798-017-0114-z
dx.doi.org/10.1186/s40798-017-0114-z
http://dx.doi.org/10.1126/scitranslmed.3001006


2. Pitsiladis YP, Maughan RJ. The effects of exercise and diet manipulation on

the capacity to perform prolonged exercise in the heat and in the cold in

trained humans. J Physiol. 1999;517(Pt 3):919–30.

3. Lac G, Maso F. Biological markers for the follow-up of athletes throughout

the training season. Pathologie-biologie. 2004;52(1):43–9.

https://doi.org/10.1016/S0369-8114(03)00049-X.

4. Rietjens GJ, Kuipers H, Adam JJ, Saris WH, van Breda E, van Hamont D, et al.

Physiological, biochemical and psychological markers of strenuous training-

induced fatigue. Int J Sports Med. 2005;26(1):16–26.

https://doi.org/10.1055/s-2004-817914.

5. Yan B, A J, Wang G, Lu H, Huang X, Liu Y et al. Metabolomic investigation

into variation of endogenous metabolites in professional athletes subject to

strength-endurance training. J Appl Physiol 2009;106(2):531-538. doi:

https://doi.org/10.1152/japplphysiol.90816.2008.

6. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue.

Front Physiol. 2012;3:142. https://doi.org/10.3389/fphys.2012.00142.

7. Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform

for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;

1(2):153–61. https://doi.org/10.1038/nrd728.

8. Heaney LM, Deighton K, Suzuki T. Non-targeted metabolomics in sport and

exercise science. J Sports Sci. 2017:1–9. https://doi.org/10.1080/02640414.

2017.1305122.

9. Morris C, Grada CO, Ryan M, Roche HM, De Vito G, Gibney MJ, et al. The

relationship between aerobic fitness level and metabolic profiles in healthy

adults. Mol Nutr Food Res. 2013;57(7):1246–54. https://doi.org/10.1002/mnfr.

201200629.

10. Goodwin ML, Harris JE, Hernandez A, Gladden LB. Blood lactate

measurements and analysis during exercise: a guide for clinicians. J

Diabetes Sci Technol. 2007;1(4):558–69.

11. Berton R, Conceicao MS, Libardi CA, Canevarolo RR, Gaspari AF, Chacon-

Mikahil MP, et al. Metabolic time-course response after resistance exercise: a

metabolomics approach. J Sports Sci. 2017;35(12):1211–8. https://doi.org/10.

1080/02640414.2016.1218035.

12. Dudzinska W, Lubkowska A, Dolegowska B, Safranow K, Jakubowska K.

Adenine, guanine and pyridine nucleotides in blood during physical

exercise and restitution in healthy subjects. Eur J Appl Physiol. 2010;110(6):

1155–62. https://doi.org/10.1007/s00421-010-1611-7.

13. Howarth KR, LeBlanc PJ, Heigenhauser GJ, Gibala MJ. Effect of endurance

training on muscle TCA cycle metabolism during exercise in humans. J Appl

Physiol. 2004;97(2):579–84. https://doi.org/10.1152/japplphysiol.01344.2003.

14. Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith

D. Metabolic and hormonal responses to isoenergetic high-intensity interval

exercise and continuous moderate-intensity exercise. Am J Physiol

Endocrinol Metab. 2014;307(7):E539–52. https://doi.org/10.1152/ajpendo.

00276.2014.

15. Henriksson J. Effect of exercise on amino acid concentrations in skeletal

muscle and plasma. J Exp Biol. 1991;160:149–65.

16. Leibowitz A, Klin Y, Gruenbaum BF, Gruenbaum SE, Kuts R, Dubilet M, et al.

Effects of strong physical exercise on blood glutamate and its metabolite 2-

ketoglutarate levels in healthy volunteers. Acta Neurobiol Exp. 2012;72(4):

385–96.

17. Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human

muscle during prolonged exercise. Am J Phys. 1990;259(5 Pt 1):C834–41.

18. Eriksson LS, Broberg S, Bjorkman O, Wahren J. Ammonia metabolism during

exercise in man. Clin Physiol. 1985;5(4):325–36.

19. Sato K, Iemitsu M, Katayama K, Ishida K, Kanao Y, Saito M. Responses of sex

steroid hormones to different intensities of exercise in endurance athletes.

Exp Physiol. 2016;101(1):168–75. https://doi.org/10.1113/EP085361.

20. Asmussen E. Similarities and dissimilarities between static and dynamic

exercise. Circ Res. 1981;48(6 Pt 2):I3–10.

21. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: classification of

sports. J Am Coll Cardiol. 2005;45(8):1364–7. https://doi.org/10.1016/j.jacc.

2005.02.015.

22. Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, Dai H, et al.

High resolution mass spectrometry improves data quantity and quality as

compared to unit mass resolution mass spectrometry in high-throughput

profiling metabolomics. Metabolomics. 2014;4(132) https://doi.org/10.4172/

2153-0769.1000132.

23. DeHaven CD, Evans JM, Dai H, Lawton KA. Software techniques for enabling

high-throughput analysis of metabolomic datasets. Metabolomics, Dr Ute

Roessner (Ed), InTech. 2012;Chapter 7. doi:https://doi.org/10.5772/31277.

24. Smith AA, Toone R, Peacock O, Drawer S, Stokes KA, Cook CJ.

Dihydrotestosterone is elevated following sprint exercise in healthy young

men. J Appl Physiol. 2013;114(10):1435–40. https://doi.org/10.1152/

japplphysiol.01419.2012.

25. Budde H, Machado S, Ribeiro P, Wegner M. The cortisol response to

exercise in young adults. Front Behav Neurosci. 2015;9:13. https://doi.org/10.

3389/fnbeh.2015.00013.

26. Budde H, Pietrassyk-Kendziorra S, Bohm S, Voelcker-Rehage C. Hormonal

responses to physical and cognitive stress in a school setting. Neurosci Lett.

2010;474(3):131–4. https://doi.org/10.1016/j.neulet.2010.03.015.

27. Fietz D, Bakhaus K, Wapelhorst B, Grosser G, Gunther S, Alber J, et al.

Membrane transporters for sulfated steroids in the human testis—cellular

localization, expression pattern and functional analysis. PLoS One. 2013;8(5):

e62638. https://doi.org/10.1371/journal.pone.0062638.

28. Fuqua JS, Rogol AD. Neuroendocrine alterations in the exercising human:

implications for energy homeostasis. Metab Clin Exp. 2013;62(7):911–21.

https://doi.org/10.1016/j.metabol.2013.01.016.

29. Jacob MH, RJD d, Jahn MP, Kucharski LC, Bello-Klein A, Ribeiro MF. Age-

related effects of DHEA on peripheral markers of oxidative stress. Cell

Biochem Funct. 2010;28(1):52–7. https://doi.org/10.1002/cbf.1619.

30. Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A,

et al. Testosterone administration to older men improves muscle function:

molecular and physiological mechanisms. Am J Physiol Endocrinol Metab.

2002;282(3):E601–7. https://doi.org/10.1152/ajpendo.00362.2001.

31. Sato K, Iemitsu M, Aizawa K, Ajisaka R. Testosterone and DHEA activate the

glucose metabolism-related signaling pathway in skeletal muscle. Am J

Physiol Endocrinol Metab. 2008;294(5):E961–8. https://doi.org/10.1152/

ajpendo.00678.2007.

32. Belelli D, Gee KW. 5 alpha-pregnan-3 alpha,20 alpha-diol behaves like a

partial agonist in the modulation of GABA-stimulated chloride ion uptake

by synaptoneurosomes. Eur J Pharmacol. 1989;167(1):173–6.

33. Harteneck C. Pregnenolone sulfate: from steroid metabolite to TRP channel

ligand. Molecules. 2013;18(10):12012–28. https://doi.org/10.3390/

molecules181012012.

34. Fasolato C, Bertazzon A, Previero A, Galzigna L. Effect of 2-pyrrolidone

on the concentration of GABA in rat tissues. Pharmacology. 1988;36(4):

258–64.

35. Powers ME, Yarrow JF, McCoy SC, Borst SE. Growth hormone isoform

responses to GABA ingestion at rest and after exercise. Med Sci Sports

Exerc. 2008;40(1):104–10. https://doi.org/10.1249/mss.0b013e318158b518.

36. Hoppel CL. Carnitine and carnitine palmitoyltransferase in fatty acid

oxidation and ketosis. Fed Proc. 1982;41(12):2853–7.

37. Karlic H, Lohninger A. Supplementation of L-carnitine in athletes: does it

make sense? Nutrition. 2004;20(7-8):709–15. https://doi.org/10.1016/j.nut.

2004.04.003.

38. Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol

Relat Areas Mol Biol. 1979;50:177–242.

39. Tullson PC, Terjung RL. Adenine nucleotide metabolism in contracting

skeletal muscle. Exerc Sport Sci Rev. 1991;19:507–37.

40. Graham TE. Caffeine and exercise: metabolism, endurance and performance.

Sports Med. 2001;31(11):785–807.

41. Boldyrev A, Abe H. Metabolic transformation of neuropeptide carnosine

modifies its biological activity. Cell Mol Neurobiol. 1999;19(1):163–75.

42. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular

mechanisms and impact on muscle force production. Physiol Rev. 2008;

88(4):1243–76. https://doi.org/10.1152/physrev.00031.2007.

43. Coburn RF, Baron C, Papadopoulos MT. Phosphoinositide metabolism and

metabolism-contraction coupling in rabbit aorta. Am J Phys. 1988;255(6 Pt

2):H1476–83.

44. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL.

Divergent effects of selective peroxisome proliferator-activated receptor-

gamma 2 ligands on adipocyte versus osteoblast differentiation.

Endocrinology. 2002;143(6):2376–84. https://doi.org/10.1210/endo.143.6.8834.

45. Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim

Biophys Acta. 2012;1823(10):1767–77. https://doi.org/10.1016/j.bbamcr.2012.

06.019.

46. Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30(1-2):42–

59. https://doi.org/10.1016/j.mam.2008.05.005.

47. Yokoyama H. Gamma glutamyl transpeptidase (gammaGTP) in the era of

metabolic syndrome. Nihon Arukoru Yakubutsu Igakkai zasshi = Jpn J

Alcohol Studies Drug Depend. 2007;42(3):110–24.

Al-Khelaifi et al. Sports Medicine - Open  (2018) 4:2 Page 14 of 15

http://dx.doi.org/10.1016/S0369-8114(03)00049-X
http://dx.doi.org/10.1055/s-2004-817914
http://dx.doi.org/10.1152/japplphysiol.90816.2008.
http://dx.doi.org/10.3389/fphys.2012.00142
http://dx.doi.org/10.1038/nrd728.
http://dx.doi.org/10.1080/02640414.2017.1305122
http://dx.doi.org/10.1080/02640414.2017.1305122
http://dx.doi.org/10.1002/mnfr.201200629
http://dx.doi.org/10.1002/mnfr.201200629
http://dx.doi.org/10.1080/02640414.2016.1218035
http://dx.doi.org/10.1080/02640414.2016.1218035
http://dx.doi.org/10.1007/s00421-010-1611-7
http://dx.doi.org/10.1152/japplphysiol.01344.2003
http://dx.doi.org/10.1152/ajpendo.00276.2014
http://dx.doi.org/10.1152/ajpendo.00276.2014
http://dx.doi.org/10.1113/EP085361
http://dx.doi.org/10.1016/j.jacc.2005.02.015
http://dx.doi.org/10.1016/j.jacc.2005.02.015
http://dx.doi.org/10.4172/2153-0769.1000132.
http://dx.doi.org/10.4172/2153-0769.1000132.
http://dx.doi.org/10.5772/31277
http://dx.doi.org/10.1152/japplphysiol.01419.2012
http://dx.doi.org/10.1152/japplphysiol.01419.2012
http://dx.doi.org/10.3389/fnbeh.2015.00013
http://dx.doi.org/10.3389/fnbeh.2015.00013
http://dx.doi.org/10.1016/j.neulet.2010.03.015
http://dx.doi.org/10.1371/journal.pone.0062638
http://dx.doi.org/10.1016/j.metabol.2013.01.016.
http://dx.doi.org/10.1002/cbf.1619
http://dx.doi.org/10.1152/ajpendo.00362.2001
http://dx.doi.org/10.1152/ajpendo.00678.2007
http://dx.doi.org/10.1152/ajpendo.00678.2007
http://dx.doi.org/10.3390/molecules181012012
http://dx.doi.org/10.3390/molecules181012012
http://dx.doi.org/10.1249/mss.0b013e318158b518
http://dx.doi.org/10.1016/j.nut.2004.04.003
http://dx.doi.org/10.1016/j.nut.2004.04.003
http://dx.doi.org/10.1152/physrev.00031.2007
http://dx.doi.org/10.1210/endo.143.6.8834
http://dx.doi.org/10.1016/j.bbamcr.2012.06.019
http://dx.doi.org/10.1016/j.bbamcr.2012.06.019
http://dx.doi.org/10.1016/j.mam.2008.05.005.


48. Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood

samples used in metabolomics studies. Anal Bioanal Chem. 2015;407(17):

4879–92. https://doi.org/10.1007/s00216-015-8565-x.

49. Williams MH. Dietary supplements and sports performance: introduction

and vitamins. J Int Soc Sports Nutr. 2004;1:1–6.

https://doi.org/10.1186/1550-2783-1-2-1.

50. Naz S, Vallejo M, Garcia A, Barbas C. Method validation strategies involved in

non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105. https://doi.

org/10.1016/j.chroma.2014.04.071.

51. Van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JA.

Leg and arm lactate and substrate kinetics during exercise. Am J Physiol

Endocrinol Metab. 2003;284(1):E193–205. https://doi.org/10.1152/ajpendo.

00273.2002.

52. Ormsbee MJ, Thyfault JP, Johnson EA, Kraus RM, Choi MD, Hickner RC. Fat

metabolism and acute resistance exercise in trained men. J Appl Physiol.

2007;102(5):1767–72. https://doi.org/10.1152/japplphysiol.00704.2006.

53. Goto K, Ishii N, Sugihara S, Yoshioka T, Takamatsu K. Effects of resistance

exercise on lipolysis during subsequent submaximal exercise. Med Sci

Sports Exerc. 2007;39(2):308–15. https://doi.org/10.1249/01.mss.0000246992.

33482.cb.

54. Sahlin K, Gorski J, Edstrom L. Influence of ATP turnover and metabolite

changes on IMP formation and glycolysis in rat skeletal muscle. Am J Phys.

1990;259(3 Pt 1):C409–12.

55. Chorell E, Moritz T, Branth S, Antti H, Svensson MB. Predictive metabolomics

evaluation of nutrition-modulated metabolic stress responses in human

blood serum during the early recovery phase of strenuous physical exercise.

J Proteome Res. 2009;8(6):2966–77. https://doi.org/10.1021/pr900081q.

56. Pohjanen E, Thysell E, Jonsson P, Eklund C, Silfver A, Carlsson IB, et al. A

multivariate screening strategy for investigating metabolic effects of

strenuous physical exercise in human serum. J Proteome Res. 2007;6(6):

2113–20. https://doi.org/10.1021/pr070007g.

Al-Khelaifi et al. Sports Medicine - Open  (2018) 4:2 Page 15 of 15

http://dx.doi.org/10.1007/s00216-015-8565-x
http://dx.doi.org/10.1186/1550-2783-1-2-1
http://dx.doi.org/10.1016/j.chroma.2014.04.071
http://dx.doi.org/10.1016/j.chroma.2014.04.071
http://dx.doi.org/10.1152/ajpendo.00273.2002
http://dx.doi.org/10.1152/ajpendo.00273.2002
http://dx.doi.org/10.1152/japplphysiol.00704.2006
http://dx.doi.org/10.1249/01.mss.0000246992.33482.cb
http://dx.doi.org/10.1249/01.mss.0000246992.33482.cb
http://dx.doi.org/10.1021/pr900081q
http://dx.doi.org/10.1021/pr070007g

	Abstract
	Background
	Methods
	Results
	Conclusions

	Key points
	Background
	Methods
	Study design
	Metabolomics
	Statistical analysis of metabolomics data
	Multivariate analysis
	Univariate regression and enrichment analysis


	Results
	Multivariate analysis of athlete metabolomics data
	Univariate association tests and function enrichment analysis
	Endurance-associated metabolites

	Power associated metabolites
	Gender-sports class interaction

	Discussion
	Metabolites associated with endurance
	Metabolites associated with power athletes
	Global stress response in both high-power and �high-endurance athletes
	Gender-related differences
	Study limitations

	Conclusion
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

