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Abstract

Background: The identification of disease-causing variants in autosomal dominant diseases using exome-sequencing

data remains a difficult task in small pedigrees. We combined several strategies to improve filtering and prioritizing of

heterozygous variants using exome-sequencing datasets in familial Meniere disease: an in-house Pathogenic Variant

(PAVAR) score, the Variant Annotation Analysis and Search Tool (VAAST-Phevor), Exomiser-v2, CADD, and FATHMM. We

also validated the method by a benchmarking procedure including causal mutations in synthetic exome datasets.

Results: PAVAR and VAAST were able to select the same sets of candidate variants independently of the studied disease.

In contrast, Exomiser V2 and VAAST-Phevor had a variable correlation depending on the phenotypic information

available for the disease on each family. Nevertheless, all the selected diseases ranked a limited number of concordant

variants in the top 10 ranking, using the three systems or other combined algorithm such as CADD or FATHMM.

Benchmarking analyses confirmed that the combination of systems with different approaches improves the prediction

of candidate variants compared with the use of a single method. The overall efficiency of combined tools ranges

between 68 and 71% in the top 10 ranked variants.

Conclusions: Our pipeline prioritizes a short list of heterozygous variants in exome datasets based on the top 10

concordant variants combining multiple systems.

Keywords: Exome sequencing, Variants filtering, Phenotype, Autosomal dominant diseases, Human phenotype

ontology, Hearing loss, Meniere disease

Background

Whole-exome sequencing (WES) has become the pre-

ferred tool to discover new variants for the diagnosis of

genetic diseases, since the protein-coding regions and

their boundaries represent only 1.5–2% of the human

genome and they accumulate most of the disease-causing

mutations: missense and protein-truncating variants

(frameshift, splice-acceptor, splice-donor, and nonsense

variants) [1, 2]. On average, 45,000 single-nucleotide vari-

ants (SNVs) are obtained by WES, 39% are located in cod-

ing regions, while 4% are in untranslated regions (UTR),

and 56% are in intronic regions near to UTR. In addition,

~90% of SNVs obtained by WES are described in the

dbSNP138 based in reference genome (GRCh37 hg19) [3].

However, novel and rare variants (minor allelic frequency

(MAF) ≤0.01) identified by WES cannot be interpreted as

pathogenic only with this information, and causality must

be validated by replication in different individuals with the

same phenotype and by functional studies in an appropri-

ate cellular or animal model for each disease. Neverthe-

less, WES has already shown the efficiency to identify

potential disease-causing variants in monogenic diseases

[4, 5]. Particularly, WES has been successfully used in rare

Mendelian disorders, since most of the disease-causing

variants are located in protein-coding regions [5]. Re-

cently, WES studies have been also extended for diagnosis
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in oligogenic and complex genetic disorders [6–10] and

for predicting disease progression [11, 12]. However, when

the disease is poorly characterized at the molecular level,

the filtering and prioritizing of WES datasets requires a

more elaborated search strategy based not only in single

variant effects on protein structure or evolutionary con-

servation but also upon the phenotype description and

mathematical interaction models.

The high efficiency of WES data in Mendelian disor-

ders is explained because most of the causal variants in

recessive disorders are rare homozygous variants or

compound heterozygous variants observed in familiar

cases, which are not found in healthy relatives or indi-

viduals in the same population [13]. However, the situ-

ation is more complex with autosomal dominant (AD)

disorders, where a single heterozygous de novo variant

can affect the gene function and hundreds of candidate

variants need to be filtered. So, an improved workflow to

identify potential candidate variants involved in the dis-

ease is needed. Software package as MendelScan try to

solve this providing a composite score improved with

tissue expression data [14]. However, systemic disease or

disease involving tissues with multiple cells types and

low-quality gene expression data as the cochlea are not

easy to analyze with this approach.

Hearing and vestibular disorders are the most com-

mon sensory deficits in humans. Hearing loss affect

around 5.3% of the world population according to the

World Health Organization. Non-syndromic autosomal

dominant sensorineural hearing loss (AD-SNHL) re-

mains a challenge for genetic diagnosis, and 33 genes

and 60 loci have been involved according to Hereditary

Hearing loss Homepage [15], with a considerable overlap

in the phenotype and pleiotropy [16].

Meniere’s disease (MD) is clinically defined by epi-

sodes of vertigo, tinnitus, and SNHL (MD, [MIM

156000]) [17], and it has a prevalence about 0.5–1/1000

individuals. Most of the patients are considered sporadic,

although around 8–10% are familial cases in European

descendent population [18–20]. Previous linkage studies

in familial MD (FMD) have found candidate loci at

12p12.3 in a large Swedish family [21] and 5q14-15 in

another German family [22], but the involved genes were

not identified. Recently, WES analyses have identified

DTNA, FAM136A, and PRKCB as potential causal genes

in FMD [9, 10]. MD is a clinical syndrome, and its

phenotype may overlap with different conditions includ-

ing vestibular migraine or autoimmune inner ear disease

[16]. In contrast, other AD diseases with a more precise

phenotype, such as Centro Nuclear Myopathy (CNM),

an inherited neuromuscular disorder characterized by

congenital myopathy with a histopathological diagnosis

(centrally placed nuclei on muscle biopsy), have a re-

duced number of causal variants.

The aim of this study is to develop a workflow to im-

prove the filtering and prioritizing of candidate variants

and genes in AD disorders by using WES data. We focus

mainly in AD familial MD, a complex clinical scenario

with clinical and genetic heterogeneity, few cases per

family, incomplete penetrance, and variable expressivity

[23, 24]. The pipeline proposed is based on (1) the com-

bination of several tools to score variants according to

its effect on protein structure and phylogenetic conser-

vation, (2) the ranking according to available information

on phenotype databases, (3) the comparison with two in-

tegrated systems (CADD and FATHMM), and (4) the

use of un-affected relatives as control to filter candidate

variants. The pipeline is summarized in Fig. 1.

Results
Six prioritizing systems were selected and combined in

the pipeline to filter and rank rare variants in exome se-

quencing data. Two of them were based upon protein

structure and sequence conservation across species: (a)

an in-house Pathogenic Variant (PAVAR) score and (b)

the Variant Annotation Analysis and Search Tool

(VAAST) [25], and the other two prioritize according to

the Phenotype Ontology information: (c) Exomiser v2

[26] and (d) VAAST-Phevor [27]. And finally two inte-

grated tools were compared and added to the system

CADD [28] and FATHMM [29].

Comparison of prioritizing strategies with FMD exome

datasets

Table 1 shows the number of variants obtained for each

FMD dataset with the six systems after filtering by sev-

eral control datasets. We included the number of ranked

variants with enough score to be prioritized, according

to each of the six systems (thresholds are described in

the “Material and methods” section). Mean values ob-

tained for each family dataset were highly variable for

each system, and they were dependent on the number of

cases and controls available for each family.

We selected the top 10, 20, and 50 ranked variants

from each prioritizing system and filtered them using

the different control datasets (F, T-F, and T) to analyze

the concordance between methods. Figure 2 shows the

concordance between all systems. Although PAVAR

score and VAAST use a different methodology, both sys-

tems show the highest concordance rate to filter and

prioritize the candidate variants. Between 20 and 55% of

ranked variants were matched in top 10, top 20, and top

50. However, the observed variability in the ranked vari-

ants between the different systems is caused by the con-

trol datasets (F, T-F, or T) used to filter the variants. In

contrast, Exomiser v2 and VAAST-Phevor prioritized

according to the Phenotype Ontology information (HPO

term) [30], but the maximum correlation between
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Fig. 1 Design of the study. Pipeline: overview of the methods to filter and prioritize WES datasets in autosomal dominant disorders. Datasets

were filtered by MAF and Coverage ≥30. Each dataset was analyzed and scored independently by each tool, generating a list of ranked variants

or genes. The gene lists obtained were filtered by different control datasets. Finally, the gene lists were merged and yielded a shortlist of variants

to be tested experimentally

Table 1 Number of remaining variants per family dataset according to the filtering strategy

Family dataset FMD exomes
(N)

Control dataset
(N)

PAVAR
score ≥5 (N)

Exomiser
score ≥1.46 × 10−5 (N)

VAAST
(p value ≤1)

VAAST-Phevor
(p value ≤1)

CADD
score ≥15 (N)

FATHMM
score ≤−1.5 (N)

1 3 F (1) 17 (134) 308 (1437) 40 39 15 (38) 7 (35)

T-F (29) 15 (106) 78 (296) 48 44 18 (36) 7 (34)

T (30) 10 (68) 42 (175) 27 27 12 (25) 5 (23)

2 2 F (3) 4 (58) 60 (270) 53 22 9 (18) 1 (14)

T-F (27) 9 (73) 89 (369) 146 135 12 (28) 1 (25)

T (30) 2 (34) 9 (39) 19 16 5 (13) 0 (11)

3 3 F (2) 9 (68) 151 (862) 23 23 9 (20) 1 (14)

T-F (28) 13 (92) 67 (309) 38 38 17 (25) 5 (20)

T (30) 6 (32) 24 (104) 16 16 7 (10) 1 (7)

4 3 F (0) 31 (283) 394 (2198) 54 46 34 (90) 4 (86)

T (30) 4 (34) 20 (72) 19 17 5 (14) 1 (14)

5 3 F (3) 16 (83) 93 (391) 68 22 7 (20) 1 (15)

T-F (27) 14 (113) 89 (430) 52 45 14 (35) 7 (28)

T (30) 5 (36) 18 (67) 11 9 4 (9) 1 (6)

Mean (1–5) 21 F 15.4 ± 10.21 (125) 251.5 ± 143.83 (1032) 47 ± 16.95 30.4 ± 11.33 14.8 ± 9.96 2.8 ± 2.4

T-F 12.75 ± 2.63 (96) 85 ± 28.66 (351) 71 ± 50.35 65.5 ± 46.44 13.5 ± 4.38 5.0 ± 2.44

T 5.2 ± 2.97 (51) 31 ± 13.94 (155) 28.2 ± 5.81 5.81 ± 6.44 6.60 ± 2.87 1.6 ± 1.74

All variants with a MAF >0.001 were discarded. Setting for each software threshold is described in the “Material and methods” section
p values for VAAST and Phevor were not corrected since they were used as thresholds according to the user’s guide
F family controls exome dataset, T-F in-house controls exome dataset without family control dataset, T in-house and family control datasets
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systems was 28% when the largest control dataset (T) was

used to filter. Therefore, only the variants located in genes

previously associated with the phenotype were matched

by different systems. Consequently, the combinations of

PAVAR, VAAST-Phevor, and Exomiser v2 only matched

in few variants (2–26%), which were top ranked and

highly related with MD HPO terms. A similar concord-

ance was obtained between the combination of that three

and other combined systems as CADD or FATHMM.

The maximum correlation between CADD and the

merge of three systems was 24% in top 10, whereas for

FATHMM was 21% in top 20. In both cases, this correl-

ation was obtained after using the largest controls’ data-

set (T) to filter the variants.

Benchmark in exome datasets containing variants

described in AD-SNHL and CNM genes

We compared the ability of these variant prioritizing tools

to identify AD variants in small familial exome data files

by a benchmarking procedure. Since the structure of the

families as well as the number of cases and controls avail-

able for each pedigree could generate a bias in the bench-

marking analyses, multiple families were tested.

Figure 3 shows the percentage of ranked variants in

top 10, 20, and 50 by the six systems for both, hearing

loss variants (Fig. 3a) and CNM variants (Fig. 3b). In top

10 and 20, the observed percentages were highly variable

between each system, particularly depending on the con-

trol dataset used.

Next, we selected the top 10, 20, and 50 ranked vari-

ants from each prioritizing system and filtered them for

the different datasets (F, T-F, and T) to analyze the

concordance between the different methods. Figure 4

illustrates a progressive increase of concordance be-

tween systems in the top 10, 20, and 50 ranked variants

for both disorders. Exomiser v2 and VAAST-Phevor

yielded higher correlations in the top 10 and 20,

highlighting that both tools identify similar genes asso-

ciated with the HPO term for a given phenotype. This

pattern was more prominent in top 10 ranked variants

for AD-SNHL datasets in the benchmarking, reaching a

50% of concordance (Fig. 4a), whereas in CNM data-

sets, only 34% of concordance was found (Fig. 4b). In

contrast, low correlations were obtained between

PAVAR score and VAAST (9–33%), mainly in the top

10 ranked, means that few variants are considered as

candidates by both systems as real pathogenic variants.

As a result, potentially pathogenic variants located in

genes with HPO terms associated with the disease were

shared by PAVAR, Exomiser v2, and VAAST-Phevor

and tending to be ranked in the top 10.

A similar percentage was obtained when we add

CADD to the combined system. However, the combin-

ation of multiple systems with CADD did not reduce the

list of candidate variants in the top 10 ranking.

Next, 200 variants were randomly selected for each

disease to build synthetic datasets. So, 42% for AD-SNHL

and 25.5% CNM were previously described in HGDB as

pathogenic (Additional file 1: Table S1 and S2). So,

multiple logit regression models were performed to assess

the accuracy to predict correctly candidate variants associ-

ated with each phenotype. The area under the curve

Fig. 2 Prioritized variants in FMD datasets. Percentage of the variants ranked and shared in top 10 (blue), 20 (red), and 50 (yellow) ranked variants

by (a) PAVAR score and VAAST; (b) Exomiser v2 score and Phevor; (c) the combination of the three systems (PAVAR, Exomiser v2, VAAST, VAAST-

Phevor); (d) the combination of the three systems (PAVAR, Exomiser v2, VAAST, VAAST-Phevor) and CADD; and (e) the combination of the three

systems (PAVAR, Exomiser v2, VAAST, VAAST-Phevor) and FATHMM. F = family controls exome dataset, T-F = in-house controls exome dataset

without family control datasets, and T = in-house and family control datasets
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(AUC) for each system was calculated to assess the

precision and accuracy to identify candidate variants

for both diseases in several families (Additional file 1:

Table S3). On average, the combination of PAVAR,

Exomiser v2, VAAST-Phevor, CADD, and FATHMM

predicts potentially pathogenic variants associated with

the phenotype between 68 and 71% of times in top 10,

for both diseases (Fig. 5a, b). These results were statisti-

cally significantly better than any single method (p values

shown in Additional file 1: Table S3).

Discussion

The combination of linkage analysis and WES in large

multicase pedigrees has shown a high effectiveness to

identify disease-causing variants in rare Mendelian dis-

orders [4, 5]. However, small pedigrees with a few avail-

able cases are the most common clinical scenario and a

challenge for the genetic diagnosis of dominant disor-

ders, mainly those with overlapping phenotypes or in-

complete penetrance such as AD-SNHL [31, 32], CNM

[33], and MD [20]. Despite the increasing number of

bioinformatics tools to analyze WES data [34, 35], the

list of genes that must be experimentally validated for

these diseases is too large.

The first issue to resolve for variant identification is

the alignment of reads and variant calling algorithms.

Current approaches have developed pipelines that com-

bine tools to obtain consistent identification of variant

Fig. 4 Benchmarking analyses combining prioritizing strategies. Bar charts show the percentage of shared variants for hearing loss (a) and CNM

(b), ranked by PAVAR + VAAST (purple), Exomiser v2 + (VAAST-Phevor) (yellow), the three systems (green) the three systems and CADD (red), and

the three systems and FATHMM (blue) among the top 10, 20, or 50, after filtering by different control datasets. F = family controls exome dataset,

T-F = in-house control data exome dataset without family control dataset, and T = in-house and family control datasets

Fig. 3 Benchmarking analyses for PAVAR (blue), VAAST (red), Exomiser v2 (yellow), VAAST-Phevor (green), CADD (purple), and FATHMM (orange).

Bar charts show the percentage of hearing loss (a) and CNM (b) variants ranked by each strategy among the top 10, 20, or 50, after filtering

by each control dataset filter. F = family controls exome dataset, T-F = in-house control data exome dataset without family control datasets,

and T = in-house and family control datasets
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and facilitate the process [36, 37]. However, these pipe-

lines do not provide functional annotation. Other pipe-

lines go further, and they implement user-friendly

graphic interface and include Annovar-based functional

annotation [38]. However, our results show that the

combination of multiple bioinformatics tools is a reli-

able strategy to reduce the list of candidate variants

and to facilitate the identification of the disease-causing

variants in small pedigrees. These results are consistent

with previous studies designed to improve the yield of

several prioritizing tools [39, 40].

The list of candidate variants generated by each system

is usually too large to be validated experimentally

(Table 1). So, the most common strategy is to filter by

familiar controls to eliminate private familial variants

and by controls’ dataset from the same population to

eliminate population-specific variants. However, the clin-

ical evidence of incomplete penetrance or late age of on-

set of the disease should exclude the use of familial

control datasets. Our results show that by combining

five tools (PAVAR, Exomiser v2, VAAST-Phevor, CADD,

FATHMM), the list of candidate variants is reduced and

this facilitates the identification of potential disease-

causing variants (Fig. 5).

Discrepancies between all the prioritization systems

evaluated (PAVAR, VAAST, Exomiser v2, VAAST-

Phevor, CADD, FATHMM) were found in the ranked

results for all the diseases tested (Table 1 and Fig. 3).

Consequently, systems based on the same criteria, pro-

tein structure, and sequence conservation or Phenotype

Ontology information, were clustered to analyze the

concordance between them in the top 10, 20, and 50

ranked variants. Although PAVAR and VAAST use a

different methodology, both prioritize variants according

to the intrinsic effect on the protein of the variants. Of

note, MD, AD-SNHL, and CNM showed similar correl-

ation scores between PAVAR and VAAST for top 10 and

20 ranked variants. Both systems were more concordant

when in-house control datasets or the merge of in-house

and family control datasets were used to filter. Although

familial controls are important to filter private variants,

a large control dataset of the same population is more

effective to reduce the list of candidate variants list.

In contrast, the concordance between VAAST-Phevor

and Exomiser v2 varies depending on the disease stud-

ied. Although both systems are based on phenotype,

VAAST-Phevor has a balanced score between potential

pathogenicity and the association with the phenotype

whereas Exomiser v2 assigns more weight to the

phenotype than the potential pathogenicity. Diseases

with a well-characterized phenotype by several HPO

terms or diseases with known involved genes show a

high correlation between VAAST-Phevor and Exomiser

v2, as our results confirm for AD-SNHL and CNM.

However, since MD only has few HPO terms and no

gene associated in public databases, our data show a

reduced concordance. In particular, our results show

that the correlation between both systems in well dis-

eases with many HPO terms is twice than in disorders

with limited phenotypic information such as diseases of

the ear for all top 10, 20, and 50 ranked variants.

Nevertheless, a high concordance between both systems

does not indicate that those variants selected are really

disease-causing variants. The degree of concordance

Fig. 5 Precision and accuracy of the different systems was estimated by calculating the AUC. Top 10 (blue), top 20 (red), top 50 (yellow). Bar charts

show AUC percentages to identify real pathogenic variants for hearing loss (a) and CNM (b) among the top 10, 20, or 50 ranked variants and

according to control dataset filter. F = family controls exome dataset, T-F = in-house control data exome dataset without family control datasets,

and T = in-house and family control datasets
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between both systems only demonstrates that the can-

didate genes are associated with the phenotype, but not

necessarily its pathogenicity.

Initially, our pipeline joins both approaches by the iden-

tification of variants ranked as potentially pathogenic by

the PAVAR score and associated them with the phenotype

by both Exomiser v2 and VAAST-Phevor. The combin-

ation of the three strategies gives few variants ranked in

the top 10 or 20 and produces a short list of candidate

variants to be validated experimentally [9, 10, 41]. In

addition, other combined systems were added and the list

was reduced. Logit regression models and benchmarking

analyses show that the combination of PAVAR, Exomiser

v2, VAAST-Phevor CADD, and FATHMM not only re-

duced the list of candidate variants to be validated; this

combined approach is more efficient to predict potential

diseases-causing variants than each system separately.

This enhanced efficiency is observed independently of the

type of control datasets used. Our results confirm previ-

ous studies showing that prioritizing tools have less ability

to rank variants in disorders with no previously known

candidate gene [42]. In addition, we demonstrate that the

addition of more HPO terms improves the ranking of can-

didate genes. So, our pipeline allows to obtain a reduced

list of variants when incomplete penetrance is found and

familial control datasets cannot be used.

This combined strategy has a major limitation: a

reduced phenotypic characterization of AD disorders

(such as AD-SNHL or MD) will decrease the precision of

the pipeline. So, a deep phenotyping and updating of HPO

terms in major databases will improve the yield of the

system. Although HPO project has been updated in 2017,

ear diseases and, particularly, vestibular disorders still have

a limited phenotype vocabulary and disease-phenotype

annotations [43]. In addition, further improvements in the

pipeline should be needed to include structural variants

such as frameshift (insertions and deletions), synonymous

variants, and copy number variants.

Conclusion
These results demonstrate that our pipeline combining

multiple variant-prioritization algorithms is useful in

small family-based analyses. We also showed that the

model can reduce the number of variants in synthetic

exome datasets with incomplete phenotypes without

using familial controls. This approach will be useful

when controls are not available or when incomplete

penetrance is observed.

Material and methods

Patients

Four Spanish AD families with at least two patients with

definite MD and a fifth family with monozygotic twins

with MD, according to the diagnostic criteria of the

Barany Society for familial MD [17], were selected for

this study. The clinical phenotype and the pattern of

inheritance in these families and their pedigrees were

previously reported [10, 20, 41]. The number of asymp-

tomatic relatives selected for WES in each family

depended upon two criteria: (a) size and structure of the

family, since some families showed patients with incom-

plete phenotype (i.e., SNHL without episodic vertigo),

and (b) the availability to obtain samples from older

asymptomatic relatives, which could be used as controls.

All the procedures described were performed in accord-

ance with the highest ethical standards on human ex-

perimentation, the Helsinki Declaration of 1975 and the

EU regulations on biomedical research. In addition, this

study was approved by the Review Board for Clinical Re-

search of Instituto Biosanitario de Granada, and a writ-

ten informed consent to donor biological samples was

obtained from all subjects.

Whole exome sequencing (WES)

DNA was isolated from peripheral blood samples as pre-

viously described [9, 10] Exons and flanking intron

regions were captured according to the methods previ-

ously described [9, 10]. Library products were sequenced

with SOLiD 5500xl platform with Exact Call Chemistry

and 200× of sequencing depth. A mean of 50–60 million

of reads were obtained per sample. The quality of the

reads was analyzed with SAMtools [44], MAQtools [45],

and FastQC software (Babraham Bioinformatics), and

shorter reads (<25) as well as all duplicate reads were

deleted. The reads were aligned with the reference gen-

ome (GRCh37 hg19) with Bioscope™ (Applied Biosys-

tems, Foster City, CA, USA) using the default settings.

Results from Bioscope™ were filtered by depth >30 reads

[46] and quality of the assigned genotype ≥100. This

analysis identified SNVs, copy number variants, and

frameshift variants (insertion and deletions). However,

we only considered SNVs for this study.

Bioinformatics analysis

For each family, heterozygous SNVs found in all the af-

fected cases with complete phenotype of the family

were selected. The 1000 genome project [47], ExaAC

database [48], and Exome Variant Server (EVS) were

used to annotate the MAF and function for each variant

(Additional file 1: Table S4). All SNVs were filtered by

MAF. For MD and AD-SNHL, variants with MAF

≥0.001 were discarded, since MD has a prevalence of

10–225 cases/100,000 individuals [49, 50] and the low

prevalence described for AD-SNHL [51]. For CNM,

variants with MAF ≥0.0001 were also discarded, since

CNM is considered as a rare disease with a very low

prevalence (1/25,000 males).
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The pipeline was designed using different strategies to

filter and prioritize SNVs: (a) the calculation of a patho-

genic variant (PAVAR) risk composite score; (b) Exomiser

v2 software [26]; (c) VAAST annotation tool [25]; and (d)

a combination of VAAST and Phevor tools [27]. However,

Phevor returns the same results than VAAST, but ranked

by phenotype. In addition, other composite algorithms

were used CADD [28] and FATHMM [29]. So, the shared

candidate variants were selected. All variants were consid-

ered as potentially pathogenic according to the ACMG

Standards and Guidelines [52], and all digital resources

used are listed in Additional file 1: Table S5.

In some AD diseases, incomplete penetrance was found;

subsequently, familial controls could not be used to filter

variants. Different control datasets collected for previous

projects were used to evaluate the efficiency of our pipe-

line despite of the observed incomplete penetrance. F =

family controls exome dataset, T-F = in-house control

data exome dataset without familial control datasets, and

T = in-house and family control datasets.

a) Pathogenic variant risk composite score (PAVAR score)

Functional annotation was used to prioritize SNVs,

according to the effect on protein structure and

phylogenetic conservation. Sequence conservation

across species is a major criterium to assess the

variant, and the number of compared species

varies according to the tool. To estimate the risk of

a SNV to become a pathogenic variant, we used a

seven-point scoring system based upon open-

access prediction bioinformatics tools. ANNOVAR

and SeattleSeq Annotation tools were used to achieve

the score of SIFT (Sort Intolerant fromTolerant)

[53], PolyPhen2 (Polymorphism Phenotyping v2)

[54], Grantham’s Matrix [55], GERP++ (Genomic

Evolutionary Rate Profiling) [56], Mutation taster

[57], PhastCons, and PhyloP [58]. The threshold to

consider each variant as pathogenic is described in

Additional file 1: Table S6, according to the de-

fault settings suggested for each software devel-

oper. PAVAR score is calculated as the sum of

the score obtained by seven systems. Each system

adds one point if the variant is considered as

potentially damaging and zero if it is benign. So,

the higher the score is, the high the risk of

pathogenicity for a given variant. PAVAR score

cannot be calculated for nonsense variants, since

protein structure tools cannot assign any value.

Since nonsense variants can modify dramatically

the sequence of the protein, they were consid-

ered directly as the maximum PAVAR score = 7.

All the variants with a score ≥5 were not filtered,

and they were considered as candidate variants.

b) Exomiser v2 software

Exomiser v2 prioritizes SNVs by comparing the

phenotype across species, according to the inheritance

pattern, using the mouse and fish as a model

organism phenotype [26]. Variant Call Format

(VCF) files were analyzed with the following

parameters: (a) HPO terms, Vertigo (HP:0002321),

Tinnitus (HP:0000360), and Hearing Impairment

(HP:0000365), were selected for Clinical Phenotype

and (b) AD inheritance model. Since there are only

three HPO terms associated with MD according to

the public Human Phenotype Ontology database, but

no gene is still included on it, the “Exomiser

Gene Combined Score” generated very low

values. So, variants with a threshold ≥1.46 × 10−5

were considered as candidate variants. Exomiser

v2 allows the use of several HPO terms, but

Phevor only allows five HPO terms. To compare

both systems, only five HPO terms were selected

for the benchmarking analyses. The five HPO terms

most commonly associated with each disease were

selected (Additional file 1: Table S7 and S8).

c) VAAST annotation tool

The third approach was to annotate and filter SNVs,

according to the dominant inheritance pattern by

VAAST software [25]. All case and control VCF files

were processed according to the manual provided in

the official website. Case files from the same pedigree

were combined by the VAAST selection tool (VST)

into a single condenser file; SNVs found in all the

affected cases were selected. The quality of the

resulting files was measured using the background

provided: 1KGv3_CG_Div_NHLBI_dbSNP_RefSeq.

cdr. A p value >0.05 indicates that there is no

significant difference between the files (Additional

file 1: Table S9). The next step was to search for

candidate genes and their potential disease-causing

variants. Each family dataset was filtered with the

following parameters: (a) dominant inheritance, (b)

incomplete penetrance, (c) maximum combined

population frequency for the disease-causing alleles

>0.0005 [51], and (d) 1 × 106 permutations per

analysis to achieve a significant p value after

Bonferroni correction. Variants with an alpha error

≤1 were considered as possibly pathogenic.

d) Phevor tool

In the fourth approach, the list of the resulting

genes generated by VAAST tool was uploaded to

the Phevor Webtool (phenotype driven variant

ontological re-ranking tool) to prioritize candidate

genes, according to phenotype and HPO terms [30].

To run the analyses for MD, AD-SNHL, and CNM,

the phenotypes were generated in Phevor using

HPO term described in Additional file 1: Tables S7

and S8. Exomiser v2 only admits HPO term so to
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compare with Phevor; Disease Ontology Terms

and Gene Ontology Terms were not used. No

threshold value was applied in these analyses since

the list of variants is generated from pre-filtered

variants from VAAST.

e) Combined Annotation-Dependent Depletion (CADD)

CADD v1.3 [28, 59] is pre-computed score

database that is based on classifier algorithms. The

major goal of CADD is to predict the deleterious,

functionally significant and pathogenic variants

from diversified class of variants by integrative

annotations. For each variant, CADD generates the

combined annotation score (c-score) as an output

and all scores were referenced against the pre-

computed c-scores of 8.6 billion possible human

SNPs. In CADD scoring criteria, functional variants

should possess c-score greater than or equal to 10,

whereas damaging variants show the c-score

greater than or equal to 20 and the most lethal

human variants show the c-score of greater than

or equal to 30. To identify causal variants, a score

≥15 was considered as potentially pathogenic.

f ) Functional Analysis through Hidden Markov Models

(FATHMM)

FATHMM [29] predict the functional effects of

protein missense mutations by combining sequence

conservation within hidden Markov models

(HMMs), representing the alignment of homologous

sequences and conserved protein domains, with

“pathogenicity weights”, representing the overall

tolerance of the protein/domain to mutations. The

prediction outputs are scored, and the majority of

disease-associated AASs fell below −3 and −1.5

threshold. To identify potential causal variants, a

score ≤−1.5 was considered as potentially pathogenic.

Benchmarking procedures

The efficiency of the workflow was tested by bench-

marking procedures in different synthetic family datasets

with MD. In addition, a group of no familial healthy

controls was tested to identify any bias caused for MD

that could influence in the analysis. Moreover, two AD

disorders were selected: (a) autosomal dominant sensori-

neural hearing loss (AD-SNHL) and (b) Central nuclear

myopathy (CNM). AD-SNHL has 33 genes diseases, but

the phenotype could overlap with MD. To avoid the bias

of analyzing AD-SNHL and MD, we selected another

disease (CNM) with no overlap in the phenotype with

MD. CNM was selected because it has five different

genes to perform the benchmarking analysis. The best

characterized genes available for AD-SNHL included in

the Hereditary Hearing Loss Homepage and CNM genes

described in Orphanet were selected (Additional file 1:

Table S5). For these genes, exome sequencing data of all

exonic variants, in VCF format, were obtained from the

public ESP database. Next, 200 variants for each disease

were randomly selected to perform benchmarking ana-

lyses, but we also checked that at least part of them were

described as pathogenic or associated with the disease in

human mutation database (HGMD) (Additional file 1:

Table S1 and S2). To perform the analyses, the synthetic

files were built inserting two random variants into real

cases VCF files of each family. These synthetic family

files for both diseases were analyzed with the six sys-

tems. The top 10, 20, and 50 ranked variants for AD-

SNHL and CNM were analyzed by each separate system

and by all combined strategies.

Statistical analysis

Logit regression model was built to assess the accuracy to

predict correctly pathogenic variants associated with the

phenotype. Firstly, variants selected for benchmarking

analysis were classified as pathogenic or benign according

to HGMD. The ranks conferred by each system were con-

verted into ranks predictor-wise and normalized in [0, 1],

according to top 10, 20, or 50. ROC curves were generated

to determine the ability to predict real causal variants

based on models consisting of the combination of the five

systems (PAVAR, Exomiser v2, VAAST-Phevor, CADD,

and FATHMM) and each individual system. In all the

cases, the analyses were performed for the top 10, 20, and

50 ranked variants and using different control datasets to

filter for private variants. AUCs were calculated for each

ROC curves (Additional file 1: Table S3). The statistical

differences between AUCs were calculated by analysis of

variance. The logit regression models obtained, according

to the different combinations and ROC curves, were ana-

lyzed with R version 3.0.3 and RStudio version 0.98.1102.

Additional file

Additional file 1: Additional Tables for Requena et al., “A pipeline

combining multiple strategies for prioritizing heterozygous variants for

the identification of candidate genes in exome datasets”. Table S1

Two hundred randomly selected SNV located in genes causing autosomal

dominant sensorineural hearing loss. Table S2 Two hundred randomly

selected SNV located in genes causing Centro Nuclear Myopathy. Table S3

Logit regression model to predict pathogenic variants is based on models

consisting of single or multiple prediction tools for the top 10, 20, and

50 ranked variants for each tool, respectively. Table S4 Number of SNV

obtained in 21 exome datasets according to its effect on protein sequence

and position on the reference genome (GRCh37 hg19). Table S5 Web

Resources, the URLs for software presented. Table S6 Pathogenic Variants

Scoring System (PAVAR). Table S7 HPO terms used to describe the AD-

SNHLs. Table S8 HPO terms used to describe the CNMs. Table S9 VAAST

files. p value of quality, no significant differences were found between WES

data and the background. (DOCX 180 kb)
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