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ABSTRACT

The advent of a�ordable 3D capture and display hardware is making

volumetric videoconferencing feasible. This technology increases

the immersion of the participants, breaking the �at restriction of

2D screens, by allowing them to collaborate and interact in shared

virtual reality spaces. In this paper we introduce the design and

development of an architecture intended for volumetric videocon-

ferencing that provides a highly realistic 3D representation of the

participants, based on pointclouds. A pointcloud representation is

suitable for real-time applications like video conferencing, due to

its low-complexity and because it does not need a time consum-

ing reconstruction process. As transport protocol we selected low

latency DASH, due to its popularity and client-based adaptation

mechanisms for tiling. This paper presents the architectural design,

details the implementation, and provides some referential results.

The demo will showcase the system in action, enabling volumetric

videoconferencing using pointclouds.

CCS CONCEPTS

• Information systems → Multimedia streaming; • Human-

centered computing → Interaction paradigms; • Networks

→ Network protocols.
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1 INTRODUCTION

Recent advances in depth sensors, a�ordable headmounted displays

and the computational power of commodity hardware have made

it possible to create and render photorealistic reconstructions of

humans in real time. This allows a more natural representation of

participants in teleimmersive conferencing applications. Mekuria et

al [6] conducted a subjective study to compare the user experience

of photorealistic reconstruction of users and synthetic avatars in a

teleimmersive environment. The authors found that reconstructions

increase the presence as well as physical, emotional and user state

recognition compared to synthetic avatars.

In this paper we present a low-latency dash based volumetric

video conferencing system, as depicted in �gure 1. The system

allows up to four participants to meet in a shared virtual space,

depicted at the top. Participants are captured with 1–4 cameras,

and can view the experience either on a screen or through a head-

mounted display for increased immersion.

The system described here was created within the scope of VR-

together, an EU H2020 project to investigate the creation of end-to-

end immersive social VR experiences. This version of the system is

used in the second of 3 pilots within that project, with each sub-

sequent pilot enabling increased immersiveness. The system has a

number of features that fall outside the scope of this article, such as

session creation and management and synchronous shared media

playback.

We will demonstrate the volumetric and audio conferencing

abilities of the system using a single camera and either a screen or

a head mounted display.

2 CONTRIBUTIONS

The pipeline we present in this work has two main novel contribu-

tions: it uses pointclouds as the volumetric data representation and

it uses MPEG-DASH as the transport mechanism.
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Figure 1: Virtual space, studio setup, portable setup and par-

ticipant viewpoints

2.1 Pointclouds

A pointcloud represents a 3D object as an unstructured collection

of points with X, Y and Z coordinates plus additional attributes.

In our case, the additional attributes are the RGB color values of

the surface. Pointclouds are a simple representation that do not

require much preprocessing, unlike other representations such as

polygon meshes. This makes pointclouds well suited for realtime

applications. Pointclouds do have a drawback: they tend to require

a lot of storage and therefore transmission bandwidth.

We use the codec proposed by Mekuria et al [5] in an all intra

con�guration. This codec uses octree occupancy to represent ge-

ometry and projects the colors onto a 2D grid to use JPEG image

compression. This con�guration allows for low delay encoding and

decoding making it suitable for real time applications. Point cloud

compression has received signi�cant research interest in recent

years including an MPEG standardisation activity [10] we expect

a new standard to be announced later this year, but the current

state of the VPCC encoder does not seem suitable for real-time

applications. We expect future releases to allow low delay encoding

and decoding especially if hardware acceleration can be used to

code the point cloud video streams.

2.2 MPEG-DASH

Most video conferencing solutions rely on RTP-based transport

stacks such as WebRTC, but for this application we faced several

challenges which have led us to using MPEG-DASH as transport

mechanism. Based on [11] we wanted to apply chunked HTTP

transfers and fragmented ISOBMFF/MP4 as a transport stack for

live streaming.

MPEG-DASH is an adaptive bitrate streaming standard that usu-

ally leverages HTTP as a network protocol to deliver small chunks

of data, typically a few seconds long. In [1] it is shown that in such

case the inner latency of MPEG-DASH is the ISOBMFF fragment

duration and that lowering the fragment duration does not lead to

signi�cant bitrate overhead, which makes performance comparable

to WebRTC.

MPEG-DASH allows each consumer to select only the tiles it is

interested in, at an appropriate resolution (and therefore bitrate).

It also allows to easily scale the number of viewers using CDNs

(Content Delivery Network i.e. HTTP replication servers) in the

future.

MPEG-DASH makes agnostic transport easier than RTP, allow-

ing for faster experiments, and metadata handling. The fact that

MPEG-DASH is based on HTTP allows us to conduct remote ex-

periments without dealing with NAT issues.

3 RELATEDWORK

Volumetric video conferencing systems have been proposed in

previous research. Kau� et al [4] describe a shared virtual table

environment for conferencing among a small team using multi-

ple video streams from a multi camera setup that is then MPEG-4

encoded and transmitted to other participants using RTP via IP.

Mekuria et al [8][7] propose a 3-D immersive telepresence system

using UDP/TCP multi-streaming systems to transmit mesh recon-

structions in real time. Collet et al. [2] presents a system to create

high quality streamable free viewpoint video by tracking meshes

into subsequences that can then be streamed on demand. Qian et

al. [9] propose Nebula, a DASH based streaming system to deliver

volumetric video on demand to smartphones. Their system uses

an edge server to transcode volumetric objects to 2D video that

can then be e�ciently transmitted to and decoded by smartphones.

Wu et al [12] present a psychophysical approach to Color-plus-

Depth Level of Detail for polygon mesh based 3D tele immersive

video. Doumanoglou et al [3] propose a skeleton based approach

to compress human time varying meshes by modifying the MPEG4

TFAN codec. In this work we use real time photo realistic point

cloud reconstructions of users along with low latency DASH. To

our knowledge this is the �rst work in point cloud volumetric video

conferencing to use low latency DASH. Using a standards compliant

DASH transport mechanism will help with system adoption. This

will also allow us to make further optimizations in future with user

and network adaptive transmission using independently decodable

point cloud tiles.

4 ARCHITECTURE

The architecture of the pipeline is depicted in �gure 2. The archi-

tecture has been designed and implemented in a way to allow easy

replacement of modules, to allow us to experiment with di�erent

342



A Pipeline for Multiparty Volumetric Video Conferencing: Transmission of Point Clouds over Low Latency DASH MMSys’20, June 8–11, 2020, Istanbul, Turkey

Client

DASH Server

Session 
Management

Capture,
Fuse

Tile,
Compress

DASH Sender

Render Decompress
DASH 

Receiver

Sync

…

Figure 2: Architecture and data �ow

capturers, encoders and transport pipelines and measure the e�ect

of that on quality, delay and bandwidth consumption.

The architecture also allows for adaptation to di�erent use cases

and budgets (both money budgets and bandwidth budgets): 3D

video conferencing will generally be applied in an immersive ac-

tivity like a game or telepresence situation. These di�erent use

cases make it more important to allow adaptation for volumetric

videoconferencing when compared to normal videoconferencing,

which is generally used as a standalone application.

The architectural description in this section only pertains to the

pointcloud pipeline: the actual implementation also contains an

audio pipeline with a very similar overall structure and modules

for session setup and management.

In each instance of our architecture there is a single transmis-

sion section (tile, compress, sender), and an independent reception

section per other participant (receive, decompress).

The capture module interfaces to the cameras and captures RGB

and Depth images, which are transformed using the intrinsic and ex-

trinsic matrices and converted to pointcloud representation. There

is an intrinsic 4x4 matrix for each camera, and it governs the trans-

formation between RGB and D images. It is used to create a point-

cloud per camera. The extrinsic matrices convert the per-camera

pointclouds to world coordinates and therefore allow the fusing

of the pointclouds. These matrices are determined in a calibration

procedure once, after the cameras have been set up.

Pointclouds are fed to the tiling and compression module. Tiling

splits a single pointcloud into a small number (1-8) of non overlap-

ping pointclouds that together comprise the whole original point-

cloud. Through tiling we enable viewers to save bandwidth by only

downloading the relevant parts of a pointcloud, for example omit-

ting invisible tiles. Subsequently each tile is downsampled into a

small number (1-3) of resolutions. This downsampling is gener-

ally done through voxelization: overlaying a 3D cubic grid over

the pointcloud space and replacing all points within each cube

by a single voxel with the average position and color. The result-

ing pointclouds are fed into a lossy compressor which creates a

linearized compressed data block for each tile at each resolution.

The DASH sender is instantiated with a description of the num-

ber of tiles and resolutions and creates a manifest �le based on this

information, which is uploaded to the DASH server. Subsequently,

as compressed data blocks become available they are uploaded as

DASH segments and the manifest �le is periodically updated.

The DASH server stores the manifest �le and the segments, and

serves these to the receivers over HTTP or HTTPS. We have opted

for a simple DASH server, not an MCU with mixing and fusing

capabilities because this will give us a baseline against which to

compare if we later want to investigate cloud-based composition

of pointclouds.

The DASH receiver downloads the manifest �le and makes the

information on available tiles and compression levels available to

the renderer. Based on view point, gaze direction and distance

between viewer and subject the renderer selects the tiles it wants

to receive and the quality level for each of those, and the DASH

receiver starts requesting the segments for these tiles in parallel.

This is done in an eager fashion: the DASH receiver will attempt to

request segments as soon as they are expected to be available.

The per-tile compressed data blocks are fed to the decompressor

which converts them back to pointclouds.

The synchronization module is responsible for synchronizing

the tile streams and the audio, but it has not been implemented

yet because in practice it has not been needed yet: in our current

experimental setup the network delays turn out to be fairly stable

so the synchronization between individual tiles is good enough. For

audio adding a simple �xed delay is applied. We are aware of the

fact that this is not generally true, so our architecture does cater

for a synchronization module.

The renderer receives the self-view pointcloud from the capturer

and a number of tiles per other participant and renders these in

3D space based on viewpoint and position of the participants. The

mechanism for determining these positions as well as what other

3D content that may be rendered in the scene is out of scope for

this paper.

5 IMPLEMENTATION

The client-side modules (with the exception of the renderer) have

all been implemented in a portable language-agnostic way, so they

are usable from C, C++, C#, Python and probably others. They

use a memory model with clear ownership of memory areas and

explicit freeing via the same module that allocated the memory.

The renderer module is in reality not so modular as depicted in

�gure 2 because it is an integral part of the Unity application that

implements the whole VR experience.

The client side modules are:

• Point Cloud Capture (cwipc_realsense2) implements the cap-

turer. It uses the open source Intel librealsense2 to capture

RGBD data from one or more cameras and reconstructs a

point cloud frame.

• Codec (cwipc_codec) implements the encoder and decoder.

It is based on the codec proposed by Mekuria et al. [5]
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• Utilities (cwipc_util) is an auxiliary module to handle opaque

pointcloud objects, so they can be passed e�ciently between

modules without copying or knowing the internal represen-

tation

• Transmission (bin2dash) handles the DASH transmission

and is based on the GPAC toolset

• Reception (Signals Unity Bridge) handles DASH reception

and is based on the GPAC toolset

The �rst three will be made available as open source. A distribution

scheme for the latter two is still under consideration.

6 INITIAL MEASUREMENTS

We have done some initial measurements of the system using the

setup depicted in �gure 1. The studio setup consisted of an 8-core

4.2GHz i7, 32GBmemory, with a NVIDIA GTX 1080Ti graphics card

running Windows 10, 4 Realsense D415 cameras and an Oculus

Rift. The portable setup consisted of a 12-core 2.6GHz i7, 16GB

memory, with an NVIDIA GeForce RTX 2070 graphics card running

Windows 10 and one Realsense D435. The two systems were co-

located in Amsterdam, but the central services such as the DASH

server were o�-site in Paris, France. The network connection had a

round-trip time of approximately 25ms and a bandwidth well over

100Mbps.

The studio setup captured 8–10 fused pointclouds per second of

approximately 50Kpoints. These were compressed to 50–70Kbyte

packets per pointcloud. Latency from studio system to the portable

system (not including capture and display) was between 330ms and

450ms.

The portable setup captured 13–15 pointclouds per second of

approximately 18Kpoints. These were compressed to 20–25Kbyte

packets per pointcloud. Latency from portable system to the studio

system (not including capture and display) was between 130ms and

160ms.

DASH segment used duration was 4 seconds, but as we outlined

in section 2.2 the segment duration had very little impact on the

average latency.

While not a rigid measurement these numbers suggest that the

number of points per pointcloud is an important factor in deter-

mining the latency and frame rate of the system. Based on this, we

expect to make further performance improvements.

7 FUTURE WORK

In the current implementationwe have not used tiling, nor encoding

in multiple quality levels. The infrastructure is in place, the client

application will be adapted in the near future. This will allow us

to experiment with di�erent tiling strategies. In addition this will

allow us to evaluate the quality of experience o�ered by various

network and user adaptation strategies, as well as providing a more

rigorous performance analysis.

We plan to implement other capturers, with higher quality and

for di�erent cameras and depth sensors such as the Azure Kinect.

We will also experiment with other codecs such as the upcoming

MPEG standard for pointcloud compression [10].
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