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Abstract: Machine learning (ML) models have been shown to predict the presence of clinical factors
from medical imaging with remarkable accuracy. However, these complex models can be difficult
to interpret and are often criticized as “black boxes”. Prediction models that provide no insight
into how their predictions are obtained are difficult to trust for making important clinical decisions,
such as medical diagnoses or treatment. Explainable machine learning (XML) methods, such as
Shapley values, have made it possible to explain the behavior of ML algorithms and to identify which
predictors contribute most to a prediction. Incorporating XML methods into medical software tools
has the potential to increase trust in ML-powered predictions and aid physicians in making medical
decisions. Specifically, in the field of medical imaging analysis the most used methods for explaining
deep learning-based model predictions are saliency maps that highlight important areas of an image.
However, they do not provide a straightforward interpretation of which qualities of an image area
are important. Here, we describe a novel pipeline for XML imaging that uses radiomics data and
Shapley values as tools to explain outcome predictions from complex prediction models built with
medical imaging with well-defined predictors. We present a visualization of XML imaging results
in a clinician-focused dashboard that can be generalized to various settings. We demonstrate the
use of this workflow for developing and explaining a prediction model using MRI data from glioma
patients to predict a genetic mutation.

Keywords: explainable machine learning; medical imaging; information visualization; radiomics

1. Introduction

Machine learning (ML) models have been shown to predict the presence of clinical
factors from medical imaging with remarkable accuracy [1,2]. ML models can achieve
superior predictive performance with the use of algorithms that capture complex rela-
tionships between features, which can result in “black box” models that are difficult to
interpret [3]. These methods use patient MR images as inputs and output a patient’s
predicted probability of an outcome, without providing insight into how this prediction
was derived. Thus, while these methods can outperform traditional prediction models, a
potential barrier to use in clinical decision-making is a lack of transparency of how these
predictions are arrived at.

To gain insight into these machine learning “black box” models and understand what
factors contribute to a model’s prediction, there is tremendous interest in the use of explainable
machine learning (XML) methods. This area was developed based on initial proposals by
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Ribeiro et al. [4] and Lundberg and Lee [5]. A recent overview of explainable machine learning
methods was given in Covert et al. [6], demonstrating how various explanation approaches
are related to each other. Some authors have criticized the fundamental premise of explainable
machine learning methods that make post-hoc explanations rather than developing inter-
pretable models [3,7]. However, many have taken advantage of the flexibility of XML methods
and have applied them in various settings [8–11].

Explainable machine learning (XML) methods provide a way to obtain explanations
from machine learning models that allow us to understand the relationships and impor-
tance of variables that are used in arriving at a particular prediction [5,12]. Model-agnostic
explainer methods are independent of the ML algorithm used to develop the prediction
model. Thus, once a best-fitting ML prediction model is identified, these explainer methods
can be used to approximate and quantify the importance of each variable included in
the predictive model. Some common model-agnostic explanation methods include Local
Interpretable Model-agnostic Explanations (LIME) [4] and SHapley Additive exPlanations
(SHAP) [5]. While the details of how each of these methods work differ, they generally
behave by perturbing the input features to the model and observing the changes in the
prediction. These explainers estimate the contribution of each feature included in the predic-
tion model for a particular prediction. Use of an explainer method provides interpretability
of black-box prediction models, which can reveal whether and how the algorithm uses clini-
cally relevant information in its prediction. Thus, XML methods can increase clinician trust
in how a model arrived at a particular prediction, and are increasingly being implemented
when developing clinical prediction models using ML.

In recent years, analysis of medical images has become more quantitative through use
of technologies such as radiomics, a method for automated high-throughput extraction of
hundreds of quantitative features from medical images [13]. This process has the capability
of uncovering anatomies that are difficult to see with the human eye and has the added
benefit of creating a more reproducible analysis. Combined with ML methods, radiomics
can be used to construct prediction models that are able to accurately predict clinical
outcomes in biomedical research [14–17].

Prediction models using imaging data are commonly built using deep learning ap-
proaches that learn to recognize certain patterns within images based on their association
with an outcome of interest, often through model architectures such as convolutional neural
networks [18]. While these learned patterns contribute to a flexible approach to building
predictive models from images, they are much harder to interpret due to their complexity [19].
Recent works on explainable deep learning-based imaging models commonly use methods
such as integrated gradients and saliency maps to highlight areas of an image which are
influential to a given model’s prediction [20–24]. Similarly, SHAP has been used to explain
deep-learning imaging models [5,25] to the extent of highlighting the important areas of an
image. While these methods can be useful for ensuring that the model is using information
from sensible regions of the image (e.g., a tumor in cancer imaging) and not from random
artifacts, it can be difficult to interpret what it is about that region that is important.

Radiomics allows for the extraction of quantitative radiomics features, which fall into
one of three categories: First-order features, which include summary measures (e.g., mean
and median) of voxel intensities, second-order features which describe the distribution of
voxel intensities in space (e.g., textures), and third-order features, which summarize the
shape of a region of interest (ROI) [26]. After extraction, these features can be analyzed
for association with some outcome of interest or included as features in prediction models.
Previous literature has demonstrated that the extracted radiomic features and not just
the image can be important in clinical decision-making [13,27]. In contrast to the image
data utilized in deep learning approaches, radiomics features are well-defined, thus when
included in prediction models allow for greater interpretability. The application of XML
methods, e.g., LIME [28] and SHAP [29], to explain predictions from models built using
radiomics features is still sparse, but would provide a powerful tool for identifying which
features contribute to an explanation and how.
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Thus, while there are existing methods for developing prediction models with ra-
diomics [30–32] and explaining ML models with XML tools such as LIME [4] and SHAP [5],
these methods have not been commonly used in an integrated way for imaging data to
explain predictions from models built with radiomic features. In this manuscript, we
present a novel pipeline for the development of an interactive image analysis tool that can
accept unprocessed medical images and perform the necessary steps of model development
and explainer method application to make predictions and extract insight from images.

This paper contributes to the existing literature in XML methods for radiomics by
demonstrating how to build and explain black-box prediction models using quantitative
radiomics features. The presented approach supports a wide variety of ML prediction
algorithms (e.g., penalized regression, random forests, and neural networks) in building
a prediction model, and uses a model-agnostic explainer to show how the ML algorithm
is using radiomics features to arrive at a particular prediction. Instead of just identifying
areas on an image as being important, the proposed methodology can answer hypotheses
related to whether tumor shape, image intensity, and texture are contributing to a patient’s
prediction for use in clinical decision making. To our knowledge, much of the research in
explainable machine learning has focused on the computational side [6]. In practice, many
studies now report explainable machine learning outputs, whereas our goal is to suggest
that this interpretation should occur in an interactive visualization framework.

To demonstrate this tool, we use retrospective study data of patients with glioma,
a common type of cancer that develops in the glial cells of the brain and accounts for
more than 70% of all brain tumors [33]. There is interest in developing a prediction model
using MRI since mutations of the isocitrate dehydrogenase (IDH) gene have been shown
to be a marker of oncogenesis and is one of the most specific biomarkers in the diagnostic
classification of secondary glioblastoma multiforme [34]. We apply our proposed pipeline
and visualization to this data set to present an explainable prediction model for IDH
mutations using radiomics data that can be used as a tool in clinical decision-making.

2. Materials and Methods

In this proposal, we explore the implementation of machine learning interpretability
in the context of medical imaging to improve transparency of model decision-making. Our
approach, visualized in Figure 1, builds on the workflow outlined by Lambin et al. [13],
and can be generalized in the following steps:
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Figure 1. Methods Overview. Information enters the pipeline as DICOM images and then proceeds
sequentially through the “Process Data”, “Build Prediction Model”, and “Explain Prediction Model”
sub-pipelines, while select outputs are combined into a visual dashboard.

1. Imaging. Images need to be captured and processed for consistency. Details of this
step will vary by imaging modality, but common elements of post-processing include
standardizing voxel intensity and co-registering multiple imaging sequences such
that subject anatomy exists within the same volume as images from other sequences.
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2. Segmentation. It may be desirable to limit the analysis of an image to some region of
interest (ROI) within the image. Segmentation can be achieved by manually defining a
bounded volume within the image with the help of software such as 3D Slicer, or either
fully or semi-autonomously extracted using deep learning models e.g., V-nets [35].

3. Feature Extraction. Radiomics features are extracted from the ROI and outputted in
one of two formats: Tabular data, where each feature has a numeric measurement for
each image, and Feature maps, which visualize radiomics measures in the space of
the ROI.

4. Model Training and Evaluation. Radiomics features are used as predictors of the clinical
outcome of interest in a ML model. Any ML model for tabular data can be used here.
Common model choices include elastic nets, gradient boosting machines, or support
vector machines. Common model training workflows include testing many modeling
algorithms, tuning model parameters, and validating predictive performance on new
data.

5. Model Explanation. The behavior of the predictive model is estimated using an ex-
plainer model (i.e., LIME or SHAP).

6. Explanation Visualization. Presenting a visualization of the explanation can help sum-
marize the model behavior. Explanations can be shown at the subject-level by plotting
the variable importance for all predictors for a given subject. Alternatively, cohort-
level explanations can be explored by aggregating all subject-level explanations into a
single plot.

For the final step, we have developed an interactive dashboard which provides an intu-
itive interface with which clinicians can generate and interpret machine learning predictions.

3. Application

We demonstrate the use of our proposed framework using a publicly available data
set of MRI containing glioma. We build an ML model using radiomics features to predict
mutations of the isocitrate dehydrogenase NADP+ 1 (IDH1) gene, which has been shown
to be a marker of oncogenesis and is one of the most specific biomarkers in the diagnostic
classification of secondary glioblastoma multiforme [34]. We describe the process from
image processing to model development and finally visualization for use as a tool in clinical
decision-making.

3.1. Imaging

Retrospective patient, clinical, and imaging data was obtained using a TCGA-GBM
Dataset [36], which was obtained from The Cancer Imaging Archive [37]. This data set
contained MR images of adult diffuse gliomas (WHO grades II, III and IV) for 204 subjects
where IDH mutation was known (84 Mutant, 120 Wild Type). The available MRI sequences
for these patients were T2-weighted and fluid-attenuated inversion recovery (FLAIR).
Images were available in the DICOM format and were converted to NIfTI format and
processed for standardization as follows: T2-weighted images were resampled to 1 mm
isovoxel resolution, and FLAIR images were registered to T2 images after skull stripping,
using the FMRIB software library [38]. After image registration, image signal intensity was
normalized using the WhiteStripe R package (v2.3.1) [39].

3.2. Segmentation

Entire tumor areas (defined as areas of T2 hyper-intense tumor and edema on FLAIR
images) were segmented by using semi-automatic methods, including signal intensity
thresholding, region growing, and edge detection, with an open-source software (Medical
Image Processing, Analysis and Visualization, https://mipav.cit.nih.gov/ (accessed on
1 April 2020). When necessary, segmentations were manually corrected by a trained
neuroradiologist collaborator (YSC).

https://mipav.cit.nih.gov/
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3.3. Feature Extraction

Radiomic features were extracted from all segmented regions of interest (ROIs) using
PyRadiomics [40] and are detailed in Table 1. As two images per subject were available,
radiomics features were extracted from both images separately using the same set of features.
Images were first processed using one of two filtering steps: Wavelet filtering, which applies
high or low pass filters in each of the 3 dimensions of the image resulting in 8 unique filtering
combinations, and Laplacian of Gaussian filtering which can be conceptually understood as
an edge-enhancing filter and filtered at three different levels of detail. Radiomics features
were then extracted from each of these filtering configurations–12 in total: 1 original image,
8 wavelet filters, and 3 Laplacian of Gaussian filters. Extracted features from each of these
filtered images were consistent and belonged to one of several groups of features: first order
features which are generally summary statistics of the abundances of voxel intensities (e.g.,
mean, median, skew), second order features which can be conceptually thought of as textures
or distributions of signal intensities through space, and shape features which concern the
3-dimensional shape of the ROI. As some features were equivalent across image types and
filters (e.g., shape features), redundant features were eliminated from the feature set. In total,
1046 features were used for further analysis.

Table 1. Radiomic feature naming scheme and high-level overview.

[Image]_[Filter]_[Feature Group]_[Feature Name]

Position Abbreviation Description

Image

T2 T2-weighted MRI. The sequence weighting highlights differences in the T2 relaxation time of tissues.

FLAIR
Fluid-Attenuated Inversion Recovery is a special inversion recovery sequence with a long inversion time. This
removes signal from the cerebrospinal fluid in the resulting images 1. Brain tissue on FLAIR images appears
similar to T2 weighted images with grey matter brighter than white matter but CSF is dark instead of bright.

Filter

O Original image. No additional filters are used to extract these features.

W
Wavelet filtering yields 8 decompositions per level (all possible combinations of applying either a High (H) or
a Low (L) pass filter in each of the three dimensions. Wavelet feature names are accompanied by a 3-letter
sequence representing these filters.

L
Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change, where sigma (1, 3,
or 5) defines how coarse the emphasized texture should be. A low sigma emphasis on fine textures (change over
a short distance), where a high sigma value emphasizes coarse textures (gray level change over a large distance).

Feature Group

1st First-order statistics describe the distribution of voxel intensities within the image region. (19 features)

texture1 * Gray level co-occurrence matrix (GLCM). (22 features)

texture2 * Gray level size zone matrix (GLSZM). (16 features)

texture3 * Gray level run length matrix (GLRLM). (16 features)

texture4 * Gray level dependence matrix (GLDM). (14 features)

shape 3-dimensional shapes. (10 features)

Feature Name Measured feature from feature group. See pyRadiomics documentation for feature descriptions.

* Texture featured renamed from their original name assigned by pyRadiomics for ease of interpretation. Detailed
feature explanations available from: https://pyradiomics.readthedocs.io/en/latest/features.html# (accessed on
1 April 2020).

3.4. Model Training and Evaluation

Several common ML models were trained to demonstrate the model-agnostic prop-
erties of our approach: An Elastic Net [41])–a penalized logistic regression used as an
example of a relatively low complexity model, A Random Forest [42] an ensemble of ran-
dom decision trees and an example of a model with moderate complexity, and two popular
implementations of boosted ensembles of decision trees: XGBoost [43], and LightGBM [44].
These machine learning models were used to predict the binary outcome of IDH mutation
using features extracted from T2 images alone, FLAIR images alone, and both T2 and
FLAIR images under three different features selection scenarios: 1. No feature selection
(models were trained with all extracted features), 2. Features selected prior to model
training using recurrent feature elimination [45] by least absolute shrinkage and selection

https://pyradiomics.readthedocs.io/en/latest/features.html
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operator (LASSO) [46], and 3. Features selected using recurrent feature elimination by Ran-
dom Forest. Hyperparameters for each model were tuned using Hyperopt [47], a Bayesian
optimization algorithm, which maximizes average k-fold cross-validated (where k = 5)
receiver operating characteristic area under the curve (ROC-AUC) over 1000 iterations.
Hyperparameter search spaces are provided in Appendix A. The best performing model
was identified based on ROC-AUC.

3.5. Model Explanation

Explainer models for each machine learning model were developed using SHAP to
compute feature importance rankings and prediction contributions for each subject. The
SHAP framework is model-agnostic and estimates model behavior through perturbation of
model inputs. The SHAP algorithm is derived from game theory and assigns each feature an
importance value for each individual prediction, which can be used to explain which features
most contributed to a given patient’s prediction. The Shapley value for a feature is computed
as the weighted average of the difference between the prediction from a model trained with
and without the feature over all possible feature subset combinations that do not include
the feature [5]. Due to the computational complexity when dealing with many features, the
Shapley values are approximated using a sampling procedure [5,48]. A positive (negative)
SHAP value indicates an increase (decrease) in the prediction, and a value of zero indicates no
contribution of that feature to an individual’s prediction. SHAP values are unique, consistent,
and locally accurate additive attribution values [5], where the total sum of SHAP values across
all of a patient’s features equals their prediction, in this case, the probability of IDH mutation.
Details on the SHAP algorithm and how to compute SHAP values can be found in [5]. To
assess the overall magnitude of influence of each variable on model predictions within this
cohort, SHAP values were aggregated as follows:

mean |SHAP|i =
∑n

j=1
∣∣SHAPij

∣∣
n

where i denotes a feature, j denotes a subject, and n is the number of subjects. |SHAPij|
values range from 0 to 1, where higher values indicate greater importance of predictor j to
patient i’s prediction. The mean |SHAP| provides an overall explanation of how important
the feature is in the overall cohort, with higher values indicating greater overall importance.

3.6. Explanation Visualization

A data visualization dashboard was created using the python programming lan-
guage and the Dash application framework [49]. The visualization was designed to show
subject-level explanations from out top performing predictive model. Components in the
visualization include:

1. Image. The MRI can be viewed and navigated using included controls for selecting
the sequence (T2 or FLAIR), the view (Axial, Sagittal, or Coronal), and the slice
(2D slices within a 3D image). The region of interest (ROI) can be toggled on or off
and is overlayed on the image. A button to jump to the highest cross-sectional area
slice of the ROI is also present.

2. Prediction. The probability of IDH mutation from the ML model, expressed as a
percentage.

3. Feature Map. A visual map of radiomics features in the space of the ROI. A drop-down
menu of extracted features can be used to explore maps of all extracted features.

4. Subject Feature Importance. A bar plot of the feature importances for the selected subject
ordered by magnitude of importance and colored by the subject’s value relative to the
rest of the cohort. Negative SHAP values correspond with an associated decrease in
IDH mutation probability while positive SHAP values correspond with an increase in
probability. Hovering over each bar will show the precise SHAP and feature values for
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the selected subject, and clicking a given feature bar will change the feature map to that
feature and the image to the corresponding MRI sequence (e.g., T2-weighted, FLAIR).

5. Model Feature Importance. A bar plot of mean |SHAP| values for each feature in the
cohort across all subjects. This plot provides a summary of the overall most important
features within the cohort as a reference when viewing importances for a selected
subject. Similarly to the subject feature importance plot, clicking a bar will change the
displays of the feature map and image to match.

6. Model Feature Influence. A scatter plot of the SHAP values by feature value. This plot
provides a visualization of how SHAP values change with respect to the underlying
feature measure. For linear models, this will appear as a slope, but may be non-linear
for more complex models.

4. Results
4.1. ML Model Performance

Predictive performance for all models was computed and ranked by five-fold cross-
validated AUC. Figure 2 shows the best performing model from each family of pre-
diction algorithms. In general, many methods performed well, with an average AUC
of 0.88 (SD = 0.03) and many models achieving AUC values greater than 0.9. Using features
from T2 alone led to significantly better predictive performance compared to using featured
from FLAIR alone (p = 0.0002) with an average improvement in AUC of 0.042. Marginal
improvements in AUC were achieved using both T2- and FLAIR-extracted features with
an average improvement of 0.01 over T2 alone (not significant). Models with feature se-
lection by LASSO performed better than model without feature selection (p = 0.0001) or
with feature selection by Random Forest (p = 0.026). The top performing model by AUC
was an Elastic Net with features selected prior to training by LASSO, which achieved a
cross-validated AUC of 0.969 using both T2 and FLAIR images for each subject.

4.2. Model Explanations

In Figure 3, |SHAP| values are presented for individual features by model and fea-
ture selection method, where higher values indicate higher importance in the model. For
Elastic Net models, we see that most features have |SHAP| values between 0.1 and 0.6,
indicating a low to medium level of importance in the model. In these models, there is no
single feature that is highly important (|SHAP| > 0.8), rather there are many somewhat
important features. This is in contrast with both gradient boosted decision tree models
(XGBoost/LightGBM), which show a small number of highly important radiomics vari-
ables, namely first order Kurtosis and Skewness, along with many low and medium level
importance features. In Random Forest models, it appears as though all features have a
low level of importance. This issue is beyond the scope of the current manuscript and will
be explored in future research.

In Figure 4, we present the prediction explanations for the LASSO-selected Elastic
Net model, which was selected as the best model by AUC. This plot provides an expla-
nation of how the radiomics features affect individual patient predictions as well as the
cohort by demonstrating feature importance and directionality of association. The rank-
ing of the features from top to bottom indicates the most to least important features, as
measured by mean |SHAP|. The top 20 most important features include first-, second-,
and third-order features extracted from both T2-weighted and FLAIR images. The two
strongest predictors of IDH mutation are T2_O_texture_1-Imc2 and FLAIR_W-LLH_texture-
4_DependenceVariance. From previously published work, combining visual inspection of
T2-weighted and FLAIR images for developing glioma diagnostic models has performed
well in the clinic [50], and has been validated with computational quantitative analysis [51].
Our results provide indirect support of this finding and lay the foundation for further
explainability of these radiomic features and clinical translation. Additionally, several
of the top predictors are related to morphology and intensity profile, which have been
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identified to be the most reproducible radiomics features [52], again suggesting robustness
of our results.
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Forest (RF) indicate the method that was used to perform feature selection while All is used to
indicate models with no feature selection (i.e., uses all features).

The directionality of how a feature is associated with the prediction is assessed by
the horizontal location (SHAP value) and the coloring of the dots, which identifies the
feature value (red high, blue low). For example, for T2_O_texture_1-Imc2 we can see that
high values of this feature (red dots) are associated with a higher predicted probability
of IDH mutation (positive SHAP value). By plotting the SHAP values of a feature for
all the individuals in the cohort, we can identify outlier effects. For example, FLAIR_W-
LHL_1st_Kurtosis is not the most important feature globally in the cohort, but it is the most
important feature for some individuals. This plot also shows that there are many distinct
SHAP values for some features, such as shape_Sphericity, indicating that the importance of
the feature varies for different individuals.
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Figure 4. The top 20 radiomics features identified by SHAP for the top Elastic Net model ordered
from most to least important. Positive SHAP values are associated with an increase in probability
of mutation while negative values with a decrease in probability. Features with higher magnitudes
of SHAP values have a greater effect on the model prediction. Each point represents a subject-level
SHAP value. Points are colored by their relative value to the overall cohort with high values being
shown in red and low values in blue.

4.3. Interactive Visualization

To demonstrate a patient-specific explanation of our model, we developed a web-
based interactive visualization tool, guided by feedback from trained neuroradiologists (RJ,
YSC). A demo with 5 example subjects is available from https://bit.ly/3pDcn5F (accessed
on 1 April 2020). It allows users to view prediction explanations and images for individual
patients in the cohort. Figure 5 shows a screenshot of the tool where the MRI are displayed
along with the predicted probability of IDH mutation and plots which display information
about the importance of features in the prediction. The SHAP values for the top 10 features
for a given subject are displayed as a bar plot which can be clicked to display a feature
map of the selected feature within the ROI. While average values for each feature are used
in the model predictions, the feature map provides an intuitive way to understand what
the feature represents in a medium familiar to visually inclined neuroradiologists. A plot
displaying the top 10 features for the entire cohort is also shown for reference and can be
clicked to show a feature map for the selected patient and feature. After using the tool, our
radiologist collaborators provided the feedback that interacting with model explanations

https://bit.ly/3pDcn5F
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and seeing a visual representation of radiomics features helped to conceptualize how the
predictive model was working.
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Figure 5. Screenshot of an interactive visualization tool for individual patient model prediction
explanations. (A) The T2 MRI is shown of the axial slice with the highest cross-sectional area of
the ROI (denoted by red boundary). (B) Image control options allow navigating through slices
via a slide bar, toggling images type between T2 and FLAIR, changing view angle between Axial,
Sagittal, and Coronal views, and toggling the ROI display. (C) Voxel-wise measurements of this
feature are displayed in the space of the ROI. Here, FLAIR_W-LLH_texture-4_DependenceVariance
is shown with a gradient color scale where high values are displayed in red, and low values in
blue. (D) Bar plot of top 10 SHAP values for this patient’s model prediction. Features are ranked
by |SHAP| and are colored by the average value of that feature as it relates to the entire cohort;
colors on this scale are linked to colors in (C). SHAP values can be either positive -corresponding
to a higher probability of IDH mutation–or negative–corresponding to a lower probability. The
magnitude of the SHAP value denotes the overall importance of that variable to the prediction.
(E) The predicted probability of IDH mutation for this patient was 11.6%. (F) A reference plot for how
values of the selected feature (FLAIR_W-LLH_texture-4_DependenceVariance) affect the probability
of IDH mutation. High values of FLAIR_W-LLH_texture-4_DependenceVariance are associated with
lower SHAP values, indicating the patient is less likely to be IDH mutated with higher levels of
FLAIR_W-LLH_texture-4_DependenceVariance. (G) Mean |SHAP| for all subjects in the cohort.

5. Discussion

We have presented and demonstrated a novel pipeline for how machine learning can
use radiomic features along with a combination of explainable machine learning (XML) and
data visualization methods to predict outcomes from medical images in a way that gives
insight into the model’s prediction process. Explanations as to which features contributed
most to a patient-specific prediction can be measured and aggregated to understand the
feature’s importance in a patient cohort. Together, these techniques improve interpretability of
black-box algorithms without sacrificing the predictive performance and could help improve
and expedite their acceptance in clinical practice for use in medical decision-making.

One strength of our proposed pipeline is the use of a model-agnostic explainer ap-
proach. Due to the independence of the predictive and explainer models, XML can be
applied to any model of any level of complexity to produce model explanations. The
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best-performing predictive model in our application was an Elastic Net model, which could
be explained without the use of XML methods since it is conceptually similar to a linear
regression model. However, if a less interpretable ML model (e.g., XGBoost) was identified
as best-performing during the model development stage in the pipeline, the process is
generalizable such that it can still be explained using the same metric (i.e., SHAP values
as in Figure 3). Additionally, while we have demonstrated the application of our pipeline
using SHAP values that we chose based on their increasing popularity for explaining
clinical prediction models, alternative implementation can use other explanation methods
(e.g., LIME) and associated visualizations within the same framework as indicated by the
field of research or user preference.

Another advantage of this approach is the development of ML models using well-
defined radiomics predictors, instead of using deep-learning methods to merely identify
image areas that are of high importance. Some of the radiomic features identified as
important predictors of IDH mutation may not be familiar to the clinical radiologists
because these features are usually not part of the standard clinical radiology lexicon.
However, implementation of XML can help expedite ML use in clinical practice by allowing
a more visual and explainable correlation with standard imaging features seen on MRI.
Having knowledge that these patterns are important predictors could also inspire further
studies into the biological basis for these patterns, leading to greater understanding of
glioma biology.

The visualization dashboard serves as a proof-of-concept for an automated MRI analy-
sis tool based on radiomic features. The compilation of images, prediction probabilities,
and important features into a cohesive patient prediction report provides a comprehensive
view of a patient’s medical prognosis. In future work, we will improve the dashboard
utility to radiologists and evaluate its effectiveness applying current methods in the field
of Human-Computer Interaction [53]. While we demonstrated how such a tool could
work, we plan to continue development to be able to handle the end-to-end process of
performing this analysis with any dataset including features such as image preprocessing
and automated tumor segmentation. Such a comprehensive tool would reduce the technical
barriers for radiomics analyses experienced by many medical practitioners.

Use of the methodology in this paper may be appropriate in any setting when there
is a need to understand the image features which influence a predictive model. While
we focused on MRI in this paper, radiomics features can be extracted from many other
imaging modalities such as computed tomography (CT) and positron emission tomography
(PET). This pipeline can be used in a variety of settings to obtain explanations from models
that use a set of features to predict a clinical outcome of interest. It is important to note
however that the quality of a model explanation is dependent on the quality of the model
itself. The explainer model can only explain the prediction model, not the true generative
process that the predictive model attempts to estimate. An explanation of a model with
poor predictive accuracy should logically produce a poor-quality explanation. Similarly, the
generalizability of the predictive model influences the generalizability of the explanations.
Care should be taken to ensure that predictive models are properly validated before model
explanations are given credence.

Limitations of this work include the difficulty in empirically comparing this method-
ology to existing methods, as there are not established metrics for what constitutes a good
explanation when the underlying generative process that the prediction model is estimat-
ing is unknown. Future work in establishing relevant metrics for explanation quality is
desirable. As the goal of this work is to improve trust in predictive models, feedback from
clinicians will be essential to establishing sensible metrics. A qualitative study assessing the
clinician’s trust and usability of saliency maps compared to or combined with SHAP feature
importances of radiomic features may identify the direction in which future explainability
research for medical imaging should be directed.
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6. Conclusions

In conclusion, we have proposed a data processing pipeline to create an automated image
analysis tool which uses methods of explainable machine learning to produce a patient-specific
explanation for a model prediction. In contrast to methods for explainability of deep learning
imaging models, such as integrated gradients that highlight areas of importance in an image,
our method allows one to discern what it is about that area that was important. Our approach
seeks to provide physicians with state-of-the-art predictive tools while giving them methods
for validating model behavior to improve trust in predictive models.
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Appendix A

Table A1. Hyperparameter Search Space for Prediction Model Training.

Algorithm Parameter Search Space

XGBoost

eta Uniform (0.001–0.2)

gamma Uniform (0, 1)

max_depth Integers (3, 10)

min_child_weight Uniform (1, 10)

subsample Uniform (0.5, 1)

colsample_by_tree Uniform (0.5, 1)

lambda Uniform (0, 0.2)

alpha Uniform (0, 2)

LightGBM

num_leaves Integers (30, 1000)

learning_rate Uniform (0.01, 0.2)

min_child_samples Integers (1, 10)

reg_alpha Uniform (0.1, 0.2)

reg_lambda Uniform (0.1, 0.9)

subsample Uniform (0.5, 1)

Random Forest
max_depth Integers (3, 20)

n_estimators Integers (100, 1000)

Elastic Net l1_ratio Uniform (0, 1)

https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
https://www.cancer.gov/tcga
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