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ABSTRACT Low-light image enhancement is an important challenge in computer vision. Most of the

low-light images taken in low-light conditions usually look noisy and dark, which makes it more difficult for

subsequent computer vision tasks. In this paper, inspired by multi-scale retinex, we present a low-light image

enhancement pipeline network based on an end-to-end fully convolutional networks and discrete wavelet

transformation (DWT). First, we show that multiscale retinex (MSR) can be considered as a convolutional

neural network with Gaussian convolution kernel, and blending the result of DWT can improve the image

produced byMSR. Second, we propose our pipeline neural network, consisting of denoising net and low-light

image enhancement net, which learns a function from a pair of dark and bright images. Finally, we evaluate

our method both in the synthetic dataset and public dataset. The experiments reveal that in comparison with

other state-of-the-art methods, our methods achieve a better performance in the perspective of qualitative

and quantitative analyses.

INDEX TERMS Convolutional neural network, low-light image enhancement, LLIE-Net.

I. INTRODUCTION

In reality, when we capture an image in a low light envi-

ronment, the image quality would be strongly influenced

by noise and low contrast, which makes it more difficult to

deal with the following tasks such as image segmentation,

object detection etc. At the present, digital video technology

has been widely used in various fields, for example, safety

monitoring of important places, traffic management, driving

assistance and so on. Under the condition of good daytime

illumination, the image quality can meet the application

requirements, but when it comes to night, the image quality

of low light image worsens, which brings a big challenge in

digital image process.

Sorts of enhancement methods were proposed and they

can be divided into three categories: methods based on his-

togram equalization algorithms (HE), Retinex theory, and

using dehazing model. In this paper, we present a new

method different from existing methods. The contribution of

our work can be summed up as three aspects: First of all,

we describe the relationship between theMSR andCNN. Sec-

ondly, we elaborate a pipeline network, which learn a function

for denoising and low light enhancement. And finally, the per-

formance evaluated on a number of low light natural images

reveal that our method achieves better performance in com-

parison with other state-of-the-art approaches. Figure 1 gives

some examples of our results with inputting the low light

noise images.

Overall, the contribution of our work can be generalized to

three aspects:(1) We explain the relationship between CNN

and MSR and we find out blending the low-low component

of the image DWT with the output of MSR can improve

the result. (2) We consider the low light image enhancement

as a machine learning problem and we elaborate our neural

network (LLIE-net) for this task, furthermore, we present a

pipeline neural network including denoising and enhance-

ment. (3) And we measure our results quantitatively and

qualitatively. The performance of our LLIE-net is better than

the existing methods in both the synthetic low light images

and real-world low light images.

II. RELATED WORK

Based on retinex theory [1], several methods were pro-

posed. Single scale retinex (SSR) [2], multiscale scale

retinex (MSR) [3] and multiscale retinex with color

restoration (MSRCR) [4] enhance images in frequency

domains. HE algorithms [5], [6] mainly focus on enhancing
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FIGURE 1. Some example results of our pipeline network.

image contrast. However, the details in dark regions are not

enhanced appropriately [7]. Recently, some methods achieve

state of-the-art enhancement performance, which are based

on dehazing model. Dong et al. [8] found that low-light

images are similar to hazy images after inverting. Similarly,

Li et al. [9] and Zhang et al. [10] make use of dark channel

prior [11] to enhance low light image. Nevertheless, these

methods are lack of theoretical basis. Recently, somemethods

based on deep learning have been proposed. Chen et al. [34]

build datasets of raw short-exposure low-light images, with

corresponding long-exposure reference images and develop

a network to learn the enhancement function. But the results

perform well only on the constructed datasets.

III. THE PROPOSED MODEL

We elaborate that the multi-scale retinex as an image

enhancement method can be regarded as a forward propa-

gation in convolutional neural network [33] with different

Gaussian convolution kernels. And we find that this method

will lead to an effect of overexposure. In order to get more

natural result, we fuse the image produced by convolution

with the low-low component of the image DWT (LL), which

represents the main content of the image, produced by dis-

crete wavelet transform. Finally, we propose a full convolu-

tion network which can learn end-to-end function to enhance

the low light image.

A. MULTI SCALE RETINEX IS CNN

As we all know, the dominant assumption of Retinex theory

is that the image can be decomposed into reflection and illu-

mination. Based on this theory, SSR [2] has been proposed,

of which the general mathematical form is:

R (x, y) = log (I (x, y))− log(I (x, y) ∗ G(x, y)) (1)

where the G(x, y) represents the Gaussian kernel function,

I (x, y) is the input RGB image, ∗ is the convolution oper-

ation, and the R (x, y) is the reflectance image. The G (x, y)

is given by:

G (x, y) = Kexp[−(x2 + y2)/2σ 2] (2)

where σ , the filter standard deviation, controls the amount

of spatial detail which is retained, and K is a normalization

factor.

We can represent the Equation (1) with following form:

R (x, y) = φ (I (x, y))+ ψ(I (x, y)) (3)

where the φ(·) represents a logarithmic transformation for

image I (x, y) and ψ(·) is a non-linear transformation for

image I (x, y).

Further, multi-scale retinex (MSR) [3] is a weighted aver-

age of these different SSR outputs, which is given as:

RMSR =

N
∑

i=1

wiRi =

N
∑

i=1

wi[φi (I (x, y))+ ψi(I (x, y))] (4)

where Ri denotes the i
th component of the ith scale, N repre-

sents the number of scales, wi is the weight of the ith scale,

RMSR represents the result of MSR. The Equation (3) can

be extended to all spectral channels of the input image.

(Generally, the number of spectral channels is 3 for RGB

color space.)

We can use convolutional neural network to transform

the image to a logarithmic domain and a higher mathematic

space, which given as:

Lk+1 (x) = hk (
(

W k ∗ x
)

+ bk ) (5)

where hk is the k th layer activation function and the W k , bk

are the parameters of k th convolution layer. The Lk+1 (x) is

the output of k th layer.

So, we can set the φ(·) and ψ (·) as following:

φ(·) = LNφ

(

LN−1
φ

(

· · · L1φ(I ))
))

(6)

ψ(·) = LMψ

(

LM−1
ψ

(

· · · L1ψ (I ))
))

(7)

where the N and M represent the number of layers in φ

network and ψ network. The Figure 2 shows the structure

of MSR. We split the three channels of input image to

forward respectively pass a series of Gaussian convolution
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FIGURE 2. The structure of multi-scale retinex(MSR) regarded as a
convolution neural network.

layers with different standard deviation. At last, the concate-

nation and 1x1 convolution layer represent the weighted wi
in Equation (4). And, finally, we add together the output

of 1x1 convolution layer and the result of forwarding pass

a non-linear layer.

B. WAVELET FOR LOW LIGHT IMAGE ENHANCEMENT

There are some problems in MSR method, for example,

we find that an inappropriate scale would lead to the ‘halo’

effect near edges [4]. And except this, because of the dif-

ficulty of estimation for the illumination, the enhancement

for the highlight and dark area is not good. So, we introduce

wavelet transformation into MSR for reducing above adverse

effect.

FIGURE 3. Left: Original Image. Middle: Low Light Image. Right: Results
of DWT.

Fourier transform is a good tool for analyzing images in

the domain of frequency, however, the spectrum of an image

loses lots of information, which makes it difficult to apply

convolutional neural network and restored well. Another fre-

quently used method called wavelet transformation can make

it easier to solve the problem, which can split the frequency of

an image. As we all know, the low frequency part consists the

majority of information of an image. And there are mainly

noise and drastic brightness changes in the high frequency

part. We can retain the low frequency part to get an enhanced

image. As shown in Figure 3, the image can be transformed

into four sub-images by discrete wavelet transformation [12]

using Haar basis function. The four sub-images correspond

to the approximation sub-band LL, horizontal detail LH,

vertical detail HL and diagonal detail HH, respectively.

We find that the LL image has been brighten a little and

the noise mainly exist in high frequency area. So, inspired

with this, we use MSR in LL image and then resize the

result to the original shape. There is still a problem existing,

which lead to a color distortion using MSR. To solve this

problem, Jobson et al. [4] proposedMSRCR to complete the

algorithm with a color restoration step. Their first move is to

compute the chromaticity coordinates:

I ′i (x, y) =
Ii(x, y)

∑S
j=1 Ij(x, y)

(8)

For the ith color channel, where S is the number of spectral

channels, and the restored color MSR is given by:

RMSRCRi = Ci(x, y)RMSRi (x, y) (9)

Ci (x, y) = f
(

I ′i (x, y)
)

= βlog[αI ′i (x, y)] (10)

To simplify, we change the Equation (10):

RMSRCRi = T(Ii(x, y))RMSRi (x, y) (11)

where T(·) is a serial of transformations for original image

I (x, y), however, we find Equation (9) can be approximately

equal to the Equation (12) (simply shown in Figure 4 (a)):

RMSRCRi = λ · resize(DWT LL(Ii(x, y))) + (1 − λ)RMSRi (x, y)

(12)

FIGURE 4. (a): Sketch map for Equation (12). (b): The results of different λ.

where theDWT is discrete wavelet transformation using Haar

basis function, and the resize operation is to reshape the LL

image into the original I (x, y)’s shape because of the DWT

cause the image to be shrunken twice the size. Absolutely,

the Equation (9) and Equation (12) are not equivalent in

mathematical form. But we can get results with more natural

color than MSR. As shown in Figure 4 (b), we show the

enhanced images using different blending parameters λ. The

blending results can reduce the color distortion. However,

with the λ increasing, the result will be dark and blurred

because of the effect of LL image produced by biquadratic

interpolation. We should choose an appropriate parameter to

get a natural image.
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FIGURE 5. Left: The training and test process of our pipeline network. Right: The detail of LLIE-net.

C. OUR LOW LIGHT IMAGE ENHANCEMENT MODEL

In the previous section, we present the fact that MSR can

be considered as a forward network and the wavelet trans-

formation can improve the result of MSR. Inspired by the

experiment combining the two approaches, we proposed an

end-to-end fully convolution network to enhance a low light

image. Our method differs entirely from existing approaches,

which takes low light image enhancement as a supervised

learning problem. Profiting from the fitting ability of CNN,

we have nomore need to adjust some parameters in traditional

methods and the all needed parameters would be learnt in

training phase. More detail about training dataset will be

shown in Sec. IV.

Our mode consists of two tasks: denoising and low light

image enhancement. We cascade the two network in test

phase and fix one to train another one in training phase.

As shown in the left of Figure 5, for the first part, we train a

denoising network using the method of Noise2Noise presents

by Lehtinen et al. [15]. For simplicity, we only train a denois-

ing network using Gaussian noise, which is commonest noise

in the simulation. The structure of denoising network is

SRRes-Net [14]. We express the empirical risk minimization

task mathematically:

argmax
θ

∑

i

L(fθ
(

x̂i
)

, ŷi) (13)

where both the inputs x̂i and the targets ŷi are drawn from

a corrupted distribution (not necessarily the same), condi-

tioned on the underlying, unobserved clean target yi such that

E
{

ŷi|x̂i
}

= yi. For the second part, we elaborate a structure

for the low light image enhancement, whichwe call LLIE-net.

The detail about LLIE-net can be seen in right of Figure 5 and

our model consists of four components: DWT and SRCNN,

Multi-scale Logarithmic Transformation, Auto-Encoder

net, andBlending Function. In Sec III.B, we find that fusing

the result of MSR with LL image produced by DWT will

achieve a better performance in practice. Compared to MSR,

our model attempt to use multi-scale logarithmic transforma-

tion, because we want to blend more diverse priori images

and it’s similar to non-linear transformation in MSR. The

Auto-Encoder net plays an analogical role with Gaussian

convolution inMSR and the Blending Function can learn best

parameters blending with the results of another component to

get an image with more natural color.

1) DWT AND SRCNN

We suppose this sub-function H1. The input of this function

is the low-light image denoised X and the output is a the

same size image XH1
. Firstly, we acquire the LL image by

using DWT, which is XLL = DWT LL(X ). This operation can

reduce the noise of image and bright the image a little. On the

account of the shape of XLL is half as X ’s shape, we should

upsampling the image. But if we use bicubic interpolation,

the result would become blur. It’s difficult for the network

to learn the task of super-resolution reconstruction and low

image enhancement at the same time in training. We separate

the task of super-resolution reconstruction out, and build a

small network SRCNN [13] to get a clearer image for next

function. Our SRCNN is the basic structure including only

three convolution layers: 128,64, and 1 kernels respectively.

2) MULTI-SCALE LOGARITHMIC TRANSFORMATION

Multi-scale logarithmic transformationH2 takes the original

low-light image X as input and computes the same size

outputXH2
. The dark image is enhanced by several difference

logarithmic transformation. The formula is as follows:

Sj = c · logvj+1(1 + vj · r) (14)

where r ∈ [0, 1], c usually is 1, and j = [1, 2, . . . , n], Sj rep-

resents the output of jth scale on the logarithmic base vj + 1,

and the number of logarithmic transformation function n.

In our model, we set n = 4. and v = {10, 50, 100, 200}.

Next, we concatenate these 3D tensorsMj (width × height ×

3 channels) to a larger 3D tensor M (width × height × 3n

13740 VOLUME 7, 2019



Y. Guo et al.: Pipeline Neural Network for Low-Light Image Enhancement

channels). We make the tensor M go through a Relu layers,

the output of which is shown in Figure 6.

XH2
= max(0, [M1,M2,M3,M4] ∗W log + blog) (15)

FIGURE 6. The detail of our blending function.

where the ∗ is a convolution operator, Wlog is convolution

kernel that shrinks 3n channels to 3 channels, which plays

a role in computing a weighted enhancement image by using

logarithmic transformation.

3) AUTO-ENCODER NET

Auto-Encoder

net takes the input XH1
, and we suppose this network H3.

We design the structure referring to the MSR, and we estab-

lish an Auto-Encoder model [16], [31], [32], which is sim-

ilar to the mu1lti-convolutional layers of MSR combing the

shallow features with deep features. We denotes the output of

H3 as XH3
.

4) BLENDING FUNCTION

As previously mentioned, the blending parameters can be

learned in CNN network. Using 1x1 convolution kernel,

we can compute the outputs weighted the value of input

channels. As shown in Figure 6, we get an output of Auto-

Encoder net and another one of 1x1 CONV. And we concate-

nate them to pass through the next 1x1 CONV. After that,

we acquire features with 32 channels. Finally, we blend the

features weighted to correct the color of image, the method

of which is similar to MSRCR. Formally, we suppose this

functionH4, and the output is XH4
:

Xo
H4

= max(0,
[

XH2
,XH3

]

∗W o
blending + b′

blending) (16)

XH4
= sigmoid(Xo

H4
∗Wblending + bblending) (17)

where the Xo
H4

is the result of weighted image computed

by XH2
and XH3

, which is a tensor with 32 channels.

Next, Wblending is formed from three kernel parameters,

which are used to compute the R, G and B channel respec-

tively for final output from the tensor Xo
H4

. And finally,

we map the output into [0,1] using the activation function of

sigmoid (x) = 1
1+e−x

.

5) LOSS FUNCTION

The goal of our model is to learn a deep network to make

the outputH(p) and the label Y (p) as close as possible using

ℓ1 loss, which is proved to be better than ℓ2 loss for image

restoration with neural networks [17]:

L
ℓ1
loss =

1

N

∑

p∈P

|H (p)− Y (p)| (18)

where p is the pixel of P, which is the patch cropped from

the image. H (p) and Y (p) are the values of the pixels in the

processed patch and the ground truth respectively.

IV. EXPERIMENTS

We elaborately establish dataset an image dataset and train a

pipeline network for denoising and enhancing the low light

images by using Keras [24].

In order to evaluate our method, we compare our method

with six recent state-of-the-art image enhancement methods

in our synthetic test data and public dataset. Finally, we dis-

play the results of our pipeline network with the input of low

light noise images in reality.

A. IMAGE DATASET GENERATION

In order to learn the parameters of LLIE-net, we construct

a new image dataset, which contains a number of nor-

mal light (NL) and low-light (LL) natural images. The all

images selected are real-world scenes. We have collected

the normal light images, some of which are from Google

search, UCID [18] and BSD [19] dataset. And many of

these images are strong motion blur, out of focus blur, low

contrast, underexposure or overexposure and substantial sen-

sor noise are deleted. Finally, we acquire 800 images. For

every images, we generate 10 low-light images by two steps.

Firstly, we scale the V (Value) component with a random

factor between 0.5 and 1, by transforming the image to HSV

space. And then we use gamma transform with parameters

ranging between 1 and 3 to darken the image further [33].

Then, we obtain a dataset with 8,000 pairs of NL/LL images,

some examples of which are shown in Figure 7. We ran-

domly select 7,000 images in the dataset to generate one

million 64 × 64 NL/LL patches for training. The remaining

1000 images are used to evaluate our network in test phase.

In addition, to guarantee evaluating our approach objectively

and impartially, we test our model using the real-world low-

light images form the public MEF dataset [20], [21], DICM

dataset [22] and LIME dataset [23].

FIGURE 7. NL/LL example on the dataset. The left is NL image and the
right are LL images.
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TABLE 1. Quantitative results using SSIM/PSNR (dB)/ILNIQE on synthetic images.

FIGURE 8. Results using different methods on synthetic test images generated by Ground Truth. (a) GT. (b) Input. (c) LIME. (d) MSRCR. (e) Dong.
(f) MF. (g) NPE. (h) SRIE. (i) Ours.

B. TRAINING STEP

The left of Figure 5 shows the step in training phase.

We should train two sub-networks: denoising-net and

LLIE-net. We would fix one and train another one, finally

connecting them in series. In LLIE-net, we should train

SRCNN firstly, and train Auto-Encoder net later. We set the

depth of Auto-Encoder net to D = 8 and use Adam with a

learning rate 10−3. We train about 10K iterations with batch

size 64.

C. EXPERIMENTS ON SYNTHETIC DATA

In Figure 8, we show visual compassion for four syn-

thetic low light images. For the sake of fairness, we only

use LLIE-net in our pipeline network without denoising.

As we can see, the color of images produced by LIME [23]

and MSRCR [25] is not natural. The method proposed by

Dong et al. [8] always generates unexpected black edge.

Multi-scale fusion model (MF) [26], naturalness preserved

enhancement algorithm (NPE) [27] and SRIE [28] all tend

to be dark in some areas of images. Visually, ours achieves

the best performance.

To measure the results quantitatively, we use structural

similarity index (SSIM) [7] and peak signal to noise

ratio (PSNR) for evaluation, because the ground truth is

known for the synthetic test image. And we use integrated

local natural image quality evaluator (ILNIQE) [29] to

assess the natural preservation, which is a state-of-the-art

no-reference image quality assessment. As shown in Table 1,

higher SSIM and PSNR mean that the enhanced image is

closer to the ground truth, while a lower ILNIQE usually

means a higher image quality. We have bolded the best

results. Our method achieves the higher SSIM and PSNR,

and lower ILNIQE average than other methods for 1000 test

images.

D. EXPERIMENTS ON REAL DATA

Figure 9 gives the results of three real-world low light images.

As shown in every red rectangle, ourmethod LLIE-net always

achieves better performance in dark regions. Besides the

ILNIQE to evaluate the image quality, we evaluate the detail

enhancement by using the statistical naturalness measure

(SNM) [30]. A higher SNM score indicates that the enhanced

image appears more natural. As shown in Table 2, for the

real-world low light images from public datasets, LLIE-net

can also obtain lower ILNIQE and higher SNM.

To our knowledge, we are the first to come up with this

pipeline network jointing denoising and low light enhance-

ment. As shown in Figure 10, we display the results of our

pipeline network, with inputting the noise low-light images.
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FIGURE 9. The results of real-world images using different methods and zoomed in region. (a) Input. (b) LIME. (c) MSRCR. (d) Dong. (e) MF.
(f) NPE. (g) SRIE. (h) Ours.

TABLE 2. Quantitative results using ILNIQE/SNM on real-world low light images.

FIGURE 10. First row: the low light image with noise. Second row: the results of our pipeline network.

V. CONCLUTION

In this paper, we present a novel pipeline network for

low-light image enhancement. We illustrate that multi-scale

Retinex is equivalent to a CNN with different Gaussian con-

volution kernels. Furthermore, we find blending the low-low

component of the image DWT with MSR can improve the

results produced only by MSR. Inspired with this experi-

ment, we propose LLIE-net, which is an end-to-end neural

network without any artificial parameters in prediction phase.

We compare our LLIE-net with existing state-of-the-art

approaches from the qualitative and quantitative perspective

respectively. Experiments reveal that our method achieves the

better performance. Considering the fact that dealing with

real-world low light images sometimes causes noise, we add a

denoising-net and construct a pipeline network. Our method

not only performs well in synthetic images but also in the

real-world image sets. In Table 2, the performance of our

method is not better than MSR in some images in Figure 9.

It is because that the measure methods are subjective eval-

uation indexes, which would bring experimental error, and

we test our method in a bigger image set consisting of the

public real-world low light images. There are some methods

to improve our model, such as training in a bigger dataset,

adding hidden layers and so on, which can reduce the variance

of our model.
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