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 Abstract—In this paper, a scheme for the design of a 

high-speed pipeline VLSI architecture for the computation of the 

1-D discrete wavelet transform (DWT) is proposed. The main 

focus of the scheme is on reducing the number and period of the 

clock cycles for the DWT computation with little or no overhead 

on the hardware resources by maximizing the inter-stage and 

intra-stage parallelism of the pipeline. The inter-stage parallelism 

is enhanced by optimally mapping the computational load 

associated with the various DWT decomposition levels to the 

stages of the pipeline and by synchronizing their operations. The 

intra-stage parallelism is enhanced by decomposing the filtering 

operation equally into two subtasks that can be performed 

independently in parallel and by optimally organizing the bit-wise 

operations for performing each subtask so that the delay of the 

critical data path from a partial product bit to a bit of the output 

sample for the filtering operation is minimized. It is shown that an 

architecture designed based on the proposed scheme requires a 

smaller number of clock cycles compared to that of the 

architectures employing comparable hardware resources. In fact, 

the requirement on the hardware resources of the architecture 

designed by using the proposed scheme also gets improved due to 

a smaller number of registers that need to be employed. Based on 

the proposed scheme, a specific example of designing an 

architecture for the DWT computation is considered. In order to 

assess the feasibility and the efficiency of the proposed scheme, the 

architecture thus designed is simulated and implemented on an 

FPGA board. It is seen that the simulation and implementation 

results conform to the stated goals of the proposed scheme, thus 

making the scheme a viable approach for designing a practical 

and realizable architecture for real-time DWT computation. 

 
Index Terms—Discrete wavelet transform, FPGA 

implementation, parallel architecture, pipeline architecture, 

real-time processing, VLSI architecture, multi-resolution 

filtering, DWT computation, inter- and intra- stage parallelism. 

 

I. INTRODUCTION 

INCE the development of the theory for the computation of 

the discrete wavelet transform (DWT) by Mallet [1] in 

1989, the DWT has been increasingly used in many different 

areas of science and engineering mainly because of the 

multi-resolution decomposition property of the transformed 

signals. The DWT is computationally intensive because of 

multiple levels of decomposition involved in the computation 

of the DWT. It is, therefore, a challenging problem to design an 

efficient VLSI architecture to implement the DWT 
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computation for real-time applications, especially those 

requiring processing of high-frequency or broadband signals 

[2]−[4]. 

Many architectures have been proposed in order to provide 

high-speed and area-efficient implementations for the DWT 

computation [5]−[8]. In [9]−[11], the poly-phase matrix of a 

wavelet filter is decomposed into a sequence of alternating 

upper and lower triangular matrices and a diagonal matrix to 

obtain the so-called lifting-based architectures with low 

hardware complexity. However, such architectures have a long 

critical path, which results in reducing the processing rate of 

input samples. On the other hand, the problem of low 

processing rate is not acute in the architectures that use 

convolution lowpass and highpass filtering operations to 

compute the DWT [12]−[19]. These convolution-based 

architectures can be categorized as single-stage or multi-stage 

pipeline architectures. The architectures proposed in [12]−[16] 

are single-stage architectures in which the DWT computation is 

performed using a recursive pyramid algorithm (RPA) [20] that 

results in a reduced memory space requirement for the 

architectures. Lewis and Knowles [12] have designed a simple 

single-stage VLSI architecture to implement the computation 

of the DWT without multipliers. Chakrabarti and Vishwanath 

[13] have proposed a single-stage SIMD architecture that is 

aimed at reducing the computation time. Grzesczak et al. [14] 

have proposed a single-stage systolic array architecture with a 

reduced hardware resource. Cheng and Parhi [15] have 

proposed a high-speed single-stage architecture based on 

hardware-efficient parallel FIR filter structures for the DWT 

computation. The architectures proposed in [17]−[19] are 

multi-stage architectures in which the tasks of the various 

decomposition levels of the DWT computation are distributed 

to a number of pipeline stages. A high-speed multi-stage 

pipeline architecture, with one stage to carry out the 

computation of one decomposition level of the DWT, has been 

proposed by Marino et al. [17]. Park [18] has proposed a 

pipeline architecture using scalable data recorder units (DRU), 

each requiring a small amount of hardware resources. Masud 

and McCanny [19] have proposed a method for the design of an 

efficient, modular and scalable pipeline architecture by using 

reusable silicon intellectual property (IP) cores for the DWT 

computation. The pipeline architectures have the advantages of 

requiring a small memory space and a short computing time, 

and are suitable for the real-time computations. However, these 

architectures have some inherent characteristics that have not 

yet been fully exploited in the schemes for their design. The 

computational performance of such architectures could be 

further improved provided that the design of the pipeline makes 

use the inter-stage and intra-stage parallelism to the maximum 
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extent possible, synchronizes the operations of the stages 

optimally, and utilizes the available hardware resources 

judiciously. 

In this paper, a scheme for the design of a pipeline 

architecture for a fast computation of the DWT is developed. 

The goal of fast computation is achieved by minimizing the 

number and period of the clock cycles. The main idea used for 

minimizing these two parameters is to optimally distribute the 

task of the DWT computation among the stages of the pipeline 

and to maximize the inter- and intra-stage parallelisms of the 

pipeline. 

The paper is organized as follows. In Section II, a matrix 

formulation for the DWT computation is presented. In Section 

III, a study is conducted to determine the number of stages 

required to optimally map the task of the DWT computation 

onto the stages of the pipeline. Based on this study, in Section 

IV, a scheme for the design of a pipeline architecture is 

developed. In Section V, the performance of the pipeline 

architecture for the DWT computation using the proposed 

design scheme is assessed and compared with that of other 

existing architectures. A specific example of designing an 

architecture for the DWT computation is also considered and 

the resulting architecture is simulated and implemented on an 

FPGA board in order to demonstrate the realizability and 

validity of the proposed scheme. Section VI summarizes the 

work of this paper by highlighting the salient features of the 

proposed design scheme and the resulting pipeline 

architectures. 

II. FORMULATION OF THE DWT COMPUTATION 

A. Matrix Formulation 

The 1-D DWT of a signal is computed by performing the 

filtering operation repeatedly, first on the input data and then on 

the output data, each time after decimating it by a factor of two, 

for the successive decomposition levels. The filtering operation 

uses a quadrature mirror filter bank with lowpass and highpass 

filters to decompose the signal into lowpass and highpass 

subband signals, respectively. The transform can be expressed 

using a matrix formulation in order to provide a better insight 

into the underlining operations of the DWT as well as to 

facilitate the proposed scheme for the design of the architecture 

for its computation. 

Let the signal be denoted as S=[s1,s2,...,sN-1,sN]
T
, where N, the 

number of samples in the input signal, is chosen to be 2J, J 

being an integer. Assume that hi and gi (i=0,1,…,L−1) are the 

coefficients of the L-tap lowpass and highpass filters, 

respectively. Then, by expressing the transform matrices for the 

lowpass and highpass computations at the jth (j=1,2,…,J) level 

decomposition as 
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respectively, where both H
(j)

 and G
(j)

 have a size of (N/2
j
)× 

(N/2
j-1

), the outputs of the transform at the jth level can be 

computed from the following: 
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where C
(j)

 and D
(j)

 represent the column vectors of size N/2
j
 and 

consist of lowpass and highpass output samples, respectively, 

at the decomposition level j, with C
(0)

=S. It is clear from (1a) 

and (1b) that the lengths of the filters and the size of the input 

samples control the number of non-zero entries of the matrices 

involved, which in turn, determines the complexity of the DWT 

computation. If the decomposed signals are required to be 

reassembled into the original form without loss of information, 

the lowpass and highpass filters must satisfy the perfect 

reconstruction condition given by 

iL
i

i hg −−
+

−= 1
1)1(               (3) 

A border extension of the input signal becomes necessary for 

the processing of the samples on or near the border of a 

finite-length signal. There are generally three ways by which 

the border can be extended in a DWT computation, zero 

padding, symmetric padding and periodic padding [21]. Even 

though from the point of view of hardware cost, zero padding is 

the least expensive, the periodic padding is the most commonly 

used method for border extension, since it allows a precise 

recovery of the original signal at or near the border. This 

method extends the original sequence S by appending it with its 

first L−2 samples as 
T

231121 ],,,,,,,,[ −−−= LLNN sssssss LLpS     (4) 

Thus, in order to operate on the padded input sequence Sp, 

the transform matrices H
(j)

 and G
(j)

 have to be modified by 

appending each by additional 2−L columns. The elements of 

the appended columns in a row of a modified transform matrix 

assume a zero value, if all the filter coefficients already appear 

in the corresponding row of (1a) or (1b). Otherwise, the 

elements in the row are made to assume the missing values of 

the filter coefficients so that all the coefficients appear in that 

row of the modified transform matrix. 

B. Reformulation of (2) 

It is seen from (1a) and (1b) that due to the 

decimation-by-two requirement of the DWT, entries in the 

successive rows of matrices H
(j)

 and G
(j)

, and therefore, in their 

modified versions, are shifted to right by two positions. This 

property can be utilized to decompose the arithmetic operations 

in (2) into two parts so that the operations in one part can be 

performed simultaneously with those of the other one. For this 

purpose, we now decompose each of the modified transform 

matrices H
(j)

 and G
(j)

 by separating the even and odd numbered 

columns of each matrix into two sub-matrices. The resulting 
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sub-matrices, taking into account the perfect reconstruction 

condition specified by (3), can be expressed as 
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in which the entries in the successive rows are shifted to right 

by only one position. With this decomposition of the transform 

matrices, the DWT computation as given by (2) can be 

reformulated as 
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where )( j
evenC  and )( j

oddC  are the two sub-vectors consisting of 

even and odd numbered samples, respectively, in the padded 

vector of C
(j)

. 

It is seen from (6) that the operations in each of the two terms 

are identical, and also, they can be performed independently in 

parallel. Furthermore, in view of the structures of the 

decomposed transform matrices as given by (5a)−(5d), the 

filtering operation can be carried out by employing the 

conventional clocking mechanism used for implementing 

digital systems. 

III. CHOICE OF A PIPELINE FOR THE 1-D DWT COMPUTATION 

In a pipeline structure for the DWT computation, multiple 

stages are used to carry out the computations of the various 

decomposition levels of the transform. Thus, the computation 

corresponding to each decomposition level needs to be mapped 

to a stage or stages of the pipeline. In order to maximize the 

hardware utilization of a pipeline, the hardware resource of a 

stage should be proportional to the amount of the computation 

assigned to the stage. Since the amount of computations in 

successive decomposition levels of the transform get reduced 

by a factor of two, two scenarios can be used for the distribution 

of the computations to the stages of a pipeline. In the first 

scenario, the decomposition levels are assigned to the stages so 

as to equalize the computations carried out by each stage, that is, 

the hardware requirements of all the stages are kept the same. In 

the second scenario, the computations of the successive 

decomposition levels are assigned to the successive stages of a 

pipeline, on a one-level-to-one-stage basis. Thus, in this case, 

the hardware requirement of the stages gets reduced by a factor 

of two as they perform the computations corresponding to 

higher-level decompositions. 

Fig. 1 shows a stage-equalized pipeline structure, in which 

the computations of all the K=log2N levels are distributed 

equally among the M stages. The process of stage equalization 

can be accomplished by dividing equally the task of a given 

level of decomposition into smaller subtasks and assigning 

each such subtask to a single stage and/or by combining the 

tasks of more than one consecutive level of decomposition into 

a single task and assigning it to a single stage. Note that 

generally a division of the task would be required for low levels 

of decomposition and a combination of the tasks for high levels 

of decomposition. 
 

Input
of N=2K

samples

···Stage 1 Stage 2 Stage M

 
Fig. 1.  Stage-equalized pipeline structure. 

In a one-to-one mapped structure, the computations of K 

decomposition levels are distributed exactly among K stages, 

one level to one stage. In practical applications, a structure with 

less than K stages is used for the computation of a K-level DWT, 

as shown in Fig. 2. In this structure, the computations of the 

first I−1 levels are carried out by the stages i=1, 2, ···, I−1, 

respectively, and those of the last K−I+1 levels are performed 

recursively by the Ith stage. The amount of hardware resources 

of a stage is one-half of that of its preceding one except for the 

Ith stage that has the same size as that of the preceding stage. 
 

Input

of N=2K

samples

··· 

Level 1 Level 2
Level
I-1

Stage 1 Stage 2 Stage
I-1

Stage
I

Levels
I to K  

Fig. 2.  A one-to-one mapped pipeline structure with I (I<K) stages. 

The structures of Fig. 1 and Fig. 2 can be used to perform the 

computations of multiple levels of decomposition. The 

computation of each level is performed as an L-tap FIR filtering 

operation by summing the L products of the input samples and 

the filter coefficients, as described by (2). Generally, one MAC 

cell is used to carry out one multiplication of an input sample by 

a coefficient followed by one accumulation operation. In order 

to perform an uninterrupted L-tap filtering operation with easy 

control, one can thus use a network of L basic units of such a 

MAC cell. Since all the decomposition levels perform L-tap 

filtering operations, it would be desirable that each 

decomposition level performs its filtering operation using this 

same type of MAC-cell network. However, in the context of 

one-to-one mapped pipeline structure of Fig. 2, in which the 

requirement is that the hardware resource should get reduced by 

a factor of two from one stage to the next, the use of the same 

MAC-cell network for all the stages would not be possible 

unless the pipeline has only two stages. In other words, the first 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4

stage performs the level-1 computation and the second stage 

performs the computations corresponding to all the remaining 

levels recursively. In the context of a stage-equalized pipeline 

structure of Fig. 1, where the requirement is that all the stages 

should have the same hardware resource, the same MAC-cell 

network can be used easily for all the stages. However, in this 

case, the same amount of the computations cannot be assigned 

to all the stages that are based on the same MAC-cell network 

unless again there are only two stages in the pipeline. 

In a situation of a pipeline of more than two stages, each 

based on a network of L MAC cells, one cannot achieve a 

resource-efficient architecture. Thus, for either pipeline 

structure, i.e., the one-to-one mapped or stage-equalized, a 

two-stage pipeline would be the best choice in terms of the 

hardware efficiency as well as from the standpoint of design 

and implementation simplicity. Note that the two-stage version 

of either pipeline structure is the same and it is shown in Fig. 3. 

An additional advantage of the two-stage pipeline is in the 

design flexibility of a MAC-cell network where the 

multiplication and accumulation operations can be furnished 

together by using logic gates. These logic gates could be 

arranged into more efficient arrays yielding a shorter 

propagation delay for the MAC-cell network. Based on the 

above discussion, it seems logical to use the two-stage pipeline 

structure of Fig. 3 for the design and implementation of an 

architecture for the 1-D DWT computation. The next section is 

concerned specifically with a detailed design of the 

architecture. 

 

Stage 1 Stage 2

Levels 2 to JLevel 1  
Fig. 3.  Pipeline structure with two stages. 

IV. ARCHITECTURE DESIGN 

In the previous section, we advocated a two-stage pipeline 

structure for the computation of the 1-D DWT. The structure, 

whose development is constrained by the nature of the DWT 

computation, is capable of optimizing the use of hardware 

resources. In this two-stage structure, stage 2 performs by 

operating on the data produced by stage 1 as well as on those 

produced by itself, and therefore, the operations of the two 

stages need to be synchronized in a best possible manner [22]. 

In this section, we present the design of the proposed two-stage 

pipeline architecture focusing on data synchronization, the 

details of the various components comprising the stages, and 

inter and intra stages data flow. 

A. Synchronization of Stages 

In order to develop a suitable synchronization scheme, 

consider the timing diagram for the relative operations of the 

two stages shown in Fig. 4, where t1 and t2 are the times taken 

individually by stage 1 and stage 2, respectively, to carry out 

their operations, and ta and tc are the time spans during which 

stage 1 or stage 2 alone is operational, and tb is the overlapped 

time span for the two stages. Our objective is to minimize 

ta+tb+tc. Since the operation of stage 1 is independent of that of 

stage 2, it can continue its operation continuously until the 

computation of all the samples of decomposition level 1 are 

computed. In Fig. 4, the slots shown for stage 1 correspond to 

N/2 samples of decomposition level 1 that it has to compute. 

The presence of continuous slots indicates that stage 1 can 

continue its operation uninterruptedly without having any idle 

slot. Thus, the minimal possible value for t1 is equal to N·Tc/2, 

where Tc is the time required to compute one output sample. If 

J=log2N and we assume that the DWT operation has to be 

carried out for all the J levels, then the number of samples that 

stage 2 has to compute is N/2−1. Thus, the lowest bound for t2 is 

(N/2−1)Tc. Now, by choosing a value of tc equal to its lowest 

bound, if one can show that t2=t1−Tc 
(i.e. stage 2 does not have 

any idle slot during t2), then indeed not only ta+tb+tc will be 

minimized but one also achieves its lowest bound. Now, we 

will show that for the proposed architecture this is so possible. 

 

Stage 2

Stage 1

ta

tctb

t2

t1

·  ·  ·

 
Fig. 4.  Timing diagram for the operations of two stages. 

Let us first determine the lowest bound on tc. Since the last 

sample of level 1 as produced by stage 1 becomes available 

only at the end of tb, a sample at level j≥2 that depends on this 

last sample directly or indirectly could not possibly be 

computed during the time span tb, and therefore, has to be 

computed during tc. Assume that (i) during tc we compute nc 

samples of levels 2 and higher, which could not possibly be 

computed during tb, and (ii) other output samples necessary for 

computing those nc samples have already been computed 

during tb. The lowest bound on tc is ncTc. Therefore, in order to 

compute this bound, we need to determine the value of nc. The 

last sample of level 1, which is computed at the end of tb, 

is )1(
2/NC . There are k=L/2 output samples at level 2 that depend 

on this sample and they are given as ,
)2(

iC  

i=(2J−1
−L+2)/2,…,2

J−2
, where x and x represent the 

smallest integer larger than or equal to x and the largest integer 

less than or equal to x, respectively. Next, at level 3, there are 

(k+L−2)/2 output samples that indirectly depend on )1(
2/NC and 

they are given as ,
)3(

iC i=(2J−2
−k−L+4)/2,…,2

J−3
. Similarly, we 

can determine the numbers and samples that depend indirectly 

on )1(

2/N
C for other levels. Table I givens the listing of the 

numbers and samples of levels from j=2 to J that depend 

on )1(
2/NC . After adding the expression in the third column of this 

table and some manipulation, it can be shown that the value of 

nc can be obtained as 
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TABLE I 

NUMBERS AND SAMPLES IN THE LOWEST BOUND 

Level Samples computed in tc, 
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In Fig. 4, ta is chosen to be (nc+1)Tc. Next, we explore the 

possibility of developing a synchronization scheme for 

computing all the output samples in the context of Fig. 4 with 

the objective that stage 2 does not create any idle slots. In 

developing such a scheme, one has to take into consideration, 

the requirement of the underlying filtering operation of the 

wavelet computation. This filtering operation imposes the 

constraint that the first output sample at level j cannot be 

computed until L samples at level j−1 have already been 

computed and each of the subsequent samples at level j cannot 

be computed unless two new samples at level j−1 have already 

been computed. Note that this requirement of the filtering 

operation imposes a constraint on the operation of stage 2 only, 

since stage 1 operates sequentially and unilaterally to compute 

the level-1 output samples only. Under this constraint, we now 

give three steps of the synchronization that govern the 

computation of the output samples at various decomposition 

levels by stage 1 and 2. 

Step 1. Stage 1 operates continuously to compute the level-1 

output samples sequentially. 

Step 2. Stage 2 starts the computation of level-2 samples 

beginning at the time slot (nc+2). 

Step 3. (a) When stage 2 is computing an output sample at the 

lowest incomplete level j≥2. 

After completing the computation of the present sample 

at this level stage 2 moves on to the computation of a 

sample at the lowest higher level, if the data required for 

the computation of this sample have become available; 

otherwise stage 2 continues with the computation of the 

next sample at the present level j. 

 (b) When stage 2 is computing an output sample at a 

level other than the lowest incomplete level. 

After completing the computation of the present sample, 

stage 2 moves its operation to the lowest incomplete 

level. 

The rationale behind Step 3(a) is that moving the operation of 

stage 2 to a higher level allows more data from level 1 as 

produced by stage 1 to become available, since the availability 

of the output samples of level 1 is crucial for the computation of 

the samples at higher levels. On the other hand, the rationale 

behind Step 3(b) is that there are always more samples to be 

computed at lower levels than that at higher levels, and 

therefore, more time needs to be spent in computing lower level 

samples.  

The nature of the filtering operation coupled with the 

decimation by a factor of 2 requires that, in order for stage 2 to 

compute a level-2 sample at slot m, stage 2 needs L level-1 

samples computed by stage 1 at slots i+1, i+2,…, i+L (i<m−L), 

of which the samples produced at the last two slots must not 

have been previously used for the computation of level-2 

samples. If stage 2 can meet this requirement during the entire 

time span tb, then it can continue its operation uninterruptedly 

without creating an idle slot. We will now show that, based on 

the steps presented above, stage 2 would indeed be able to meet 

this requirement. For this purpose, consider an algorithm, 

Algorithm 1, which synchronizes the operation of stage 2 

during the time span tb. In this algorithm, we have made use of 

two counters, namely p and q. The counters p and q represent 

the total number of samples having been computed at level 2 

and that at the levels higher than 2, respectively, at a particular 

instant of stage-2 operation. Note that at the time that stage 2 

starts its operation, stage 1 has already produced nc+1 level-1 

samples. Since a length-L filtering operation would require L 

input samples and (nc+1)>L, stage 2 not only can start the 

computation of level-2 samples, but it can continue the 

computation of the succeeding level-2 samples at least for some 

time. Since the computation of each level-2 sample makes use 

of two new level-1 samples during the time in which only one 

level-1 sample is produced by stage 1, the number of available 

level-1 samples is reduced by one after the computation of each 

level-2 sample. However, since stage 2, following Step 3 of the 

synchronization, is allowed to compute the samples at levels 

higher than 2 without making use of the samples from level 1, 

the reservoir of level-1 samples is increased by one after the 

computation of one such a higher-level sample. Therefore, at a 

particular time, there are nb=nc+1−(p−q) level-1 samples 

available to be used by stage 2 for the computation of the 

succeeding level-2 samples. Since p increases faster than q, p−q 

reaches its maximum value at the time slot just before the end 

of the time span tb. At this time slot, 
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Thus, using (7), (8a) and (8b), the lowest bound of nb during the 

time span tb is calculated as 
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Since in practice the filter length L is such that L<2
J−1

−1, the 

above inequality can be written as 
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Thus, the lowest bound on nb is greater than or equal to L. 

Therefore, during the entire course of the time span tb, there will 

always exist sufficient number of samples available to stage 2 

for it to continue its level-2 computation in the frame work of 

Algorithm 1. In other words, during the time span tb, stage 2 

would never have to cease its operation for the lack of 

availability of at least 2 new level-1 samples, that is, the block 
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in Algorithm 1 that introduces a unit delay Tc will never be used 

during the execution of the algorithm. 

 
Algorithm 1: Synchronizing the operation of stage 2 during tb 

Initialize p←0, q←0 

While p+q ≤ 2J-1-nc 

If (at least 2 new samples available from level 1) then 

Compute a new sample at level 2 

p←p+1 

If (enough data available from the lowest level k≥2) then 

Compute a new sample at level k+1 

q←q+1 

End if 

Else 

Unit delay Tc 

End if 

End while 

End algorithm 

 

We now consider an example to illustrate the 

synchronization scheme that has been presented above. For this 

purpose, we consider a 128-point (J=7) DWT computation 

using 4-tap (L=4) FIR filters. The synchronized operation of the 

two stages is shown in Fig. 5, in which each rectangle 

represents a time slot during which a lowpass output sample is 

produced. Stage 1 starts the computation of the first level-1 

output sample at slot 1 and continuous its operation until slot 64 

when the computation of the 64th
 
level-1 output sample is 

completed. Equation (7) can be used to obtain the value of nc as 

13. Thus, at the slot number (nc+2)=15, stage 2 starts the 

computation of the first level-2 output sample. At this point, the 

reservoir of level-1 available samples contains (nc+1)=14 

samples. Note that the number of samples in this reservoir 

decreases by one sample as one new level-2 sample is 

computed and it increases by one as one sample at a level 

higher than 2 is computed. However, the general trend is a 

decline in the number of available level-1 samples from 14 

samples at slot 15 to 4 samples at slot 65 when the 

computations of all level-1 samples are completed. At slot 66, 

an output sample at level 4 is computed, since the required 

samples from level-3 have become available for its 

computation. After this computation, stage 2 returns its 

operation to the computation of the last level-2 output sample. 

Note that for the computation of this last level-2 sample, two 

padded samples would be required, since at this time no level-1 

output sample is unused. Beyond this point, all the remaining 

samples from level 3 to level 7 are computed using Step 3 of the 

synchronization. 

B. Design of Stages 

Since in the stage-equalized architectures, the two stages 

together perform the DWT computation with amount and the 

type of computations of the individual stages being the same, 

each of the two stages can use identical processing units. 

However, the control units to be employed by the stages have to 

be different, since, as seen from Algorithm 1 of the previous 

subsection, the operation of stage 1 is autonomous, whereas 

stage 2 must always synchronize its operation with that of stage 

1. Based on this algorithm, the design of the control unit used 

by stage 2 would have to be a bit more involved than that of the 

control unit used by stage 1. Obviously, in order to synchronize 

the operation of stage 2 with that of stage 1, a buffer has to be 

used to store the lowpass output samples from the two stages. 

Fig. 6 gives a block diagram incorporating all these 

requirements for the design of the proposed architecture. The 

two processing units are referred as PU1 in stage 1 and PU2 in 

stage 2. Note that in this architecture, the highpass samples 

from PU1 and PU2 are outputted directly. 

 

C(1)

Stage 2

Buffer
In

Stage 1

Control
Unit 1

PU2PU1

Out

Control
Unit 2

D( j )C(0)

D(1)

C( j )

 
Fig. 6.  Block diagram of the two-stage architecture. 

In each stage, the processing unit by employing L 

multiplication-and-accumulation (MAC) cells network 

performs an L-tap filtering operation and at each clock cycle 

generates a total of L product terms and their sum. Since, 

normally, the interval between the two consecutive input 

samples must not be smaller than the delay of a MAC cell, the 

maximal allowable data rate of the input to the processing unit 

would be determined by this delay. However, if the 

L-MAC-cell network is organized into m sub-networks 

operating in parallel, the input samples can be applied to these 

sub-networks in an interleaved manner. The interval of the two 

consecutive input samples can thus be shortened by a factor m. 

To this end, considering the problem at hand in which a 

two-subband filtering operation is performed and for each 

consecutive decomposition level the input data is decimated by 

a factor of 2, the L MAC cells can be conveniently organized 

into a pair of even and odd filter blocks. These even and odd 

filter blocks, which receive the even and odd numbered input 

Stage 2

Stage 1

Level 7
Level 6
Level 5
Level 4
Level 3
Level 2

ta tctb  
Fig. 5.  Synchronization scheme for a 128-point (J=7) DWT computation using length-4 (L=4) FIR filter. 
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samples, respectively, employ L/2-MAC-cell networks, and 

each produces only L/2 product terms and their sums. The 

partial sums from the two networks are required to be added in 

an accumulation block by using a carry propagation adder 

(CPA), as shown in Fig. 7. Since the delay of the accumulate 

block is comparable to that of the L/2-MAC-cell network, it is 

useful to pipeline them for parallel computation. Since the 

high-pass operation differs from that of the low-pass operation 

only in reversing the sign of the even-numbered coefficients, 

the proposed organization of the processing unit would allow 

the filter block to use the same filter coefficients simply by 

introducing a sign inversion block into the even filter block, as 

shown in Fig. 7. 
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Fig. 7.  Block diagram of the processing unit for L-tap filtering computation 

assuming L to be an even number. 

As discussed earlier and seen from Fig. 6, all the output data 

must be synchronized in accordance with Algorithm 1. This 

synchronization process is facilitated by introducing in stage 2 

a buffer, which stores output data from the two stages and 

provides input data to stage 2. According to Step 2 of the 

synchronization scheme, during the time span ta, the number of 

samples that need to be stored for the operation of stage 2 

increases until nc+1. However, this number will not exceed 

nc+1 during the time spans tb and tc, since the number of 

samples newly produced by stage 1 and 2 is equal to or less than 

that consumed by stage 2. Thus, the minimum capacity of the 

buffer for the operation of stage 2 is nc+1 registers. Since the 

number of output samples at a level that would be needed to 

compute an output sample at the next higher level will not 

exceed the filter length L, the buffer, therefore, is divided into 

k=(nc+1)/L channels, as shown in Fig. 8. Each channel 

consists of L shift registers except channel k that only has (nc+1 

mod L) registers, where (a mod b) is the remainder on division 

of a by b. Channel 1 is used for storing only the level-1 samples 

produced by PU1, whereas channel j=2,...,k for the level-j 

samples during tb and tc, and would also be used for storing the 

level-1 samples during ta. Note that channel 2 is also chosen to 

store the samples of the remaining levels j≥k since the time slot 

that all the level-2 samples have been consumed. 

L

(nc+1 mod L)

Channel 1

Channel k

· · ·

· · ·

Channel 2

Shift 
register

To 
PU2

Mux

Mux

. . . 

From 
PU2

From 
PU1

... 

· · ·

Demux

... 

L

L

 
Fig. 8.  Structure of the buffer. 

C. Design of L/2-MAC-cell Network 

In the processing unit shown in Fig. 7, each physical link 

from a given input bit to an output bit of an L/2-MAC-cell 

network gives rise to a channel or data path having a delay that 

depends on the number and the types of operations being 

carried out along that path [23]. Thus, it is crucial to aim at 

achieving the shortest critical data path when designing an 

L/2-MAC-cell network for our architecture. In order to have a 

better appreciation of the operations of an L/2-MAC-cell 

network, let us consider an example of the filtering operation of 

one such network with L/2=2. Let us assume that the input 

samples and the filter coefficients have the wordlengths of 6 

and 3, respectively. Each MAC-cell network has 6 partial 

products, with a total of 36 bits, which can be produced in 

parallel, as shown in Fig. 9(a). Our objective is to design a 

MAC-cell network, in which the bits of the partial products are 

accumulated in such a way as to optimize the delays of the data 

paths from the individual bits of the partial products to the 

output bits of the MAC-cell network. 

Even though all the bits of the partial products as given by 

the array shown in Fig. 9(a) are available simultaneously, they 

cannot be used in parallel to produce simultaneously all the bits 

of an output sample. The reason for this is that the processes of 

accumulation of the bits in each column of the array of the 

partial products have to be carried out bit-wise and at the same 

time one has to take care of the propagations of the carry bits. In 

other words, the accumulation of the partial products has to be 

carried out in a certain sequence. Thus, the task of 

accumulation can be divided into a sequence of layers such that 

the operations of the first layer depend only on the partial 

products bits and those of the succeeding layers depend on the 

partial product bits not yet used as well as on the bits of the 

results of the preceding layers. In order to meet our goal of 

minimizing the critical path from a partial product bit to a bit of 

the output sample, we can organize the layers of the MAC-cell 

network that would carry out the accumulation of the partial 

products based on the following guiding principle. Minimize 

the number of layers while minimizing the delay of each layer. 

The number of layers can be minimized by assigning to each 

layer the maximum number of such tasks that can be performed 

independent of each other in parallel. The accumulation task in 

each layer can be performed by using full-adder (3:2) and 

double-adder (2×2:3) modules, as shown in Fig. 9(b). The two 

types of module are chosen, since (i) their delays are about the 

same so that the delay of any layer can be made to be equal to 
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this delay irrespective of whether the layer uses one type or two 

types of modules, and (ii) the two modules can be used together 

in such a way so that they produces of a smaller number of the 

propagating carry bits, and therefore, their combined use helps 

in reducing the number of layers. 

 

Two 6-bit 
samples

Two 3-bit 
coefficients

Array of partia l product 
bits

××
Carry  Sum1 Sum2

Double-adder 
(2×2:3)

Full-adder (3:2)

Carry   Sum

Partial 
product bit

Sum bit

Carry bit

Output bits to next stage

Layer2

Layer3

Layer1

Array of partia l 

product bits

(a)

(b)

(c)  
Fig. 9.  (a) Formation of an array of partial products. (b) Two types of bit-wise 

adders. (c) A layered organization of bit-wise addition using the two modules 

in (b). 

With the choice of the combination of the full-adders and 

double-adders, the first layer can be formed by using as many 

modules as necessary with the maximum number of partial 

product bits being utilized as 3-bit or 4-bit inputs to the 

respective modules. Scanning the partial product array from 

right to left, a maximum number of bits of this array are first 

used as inputs to as many full-adder modules as necessary, 

since in comparison to a double-adder this module is more 

efficient in consuming the bits of the input array. In this process, 

whenever in a column (i) only two bits of the partial product 

array are left unused, these two bits along with a pair of bits 

from the neighbouring left column of the array are used as 

inputs to a double-adder modules, and (ii) only one bit of the 

partial product array is left unused, then this bit is used in the 

next layer for accumulation. Note that the case of using a 

double-adder also helps in propagating two carry bits, one 

internal and the other external to the adder, to the left within the 

same time delay as that of the full-adder. The next layer can 

then be formed again by using as many modules as necessary 

with inputs from the partial product bits, still unused, and the 

sum and carry output bits from the previous layers being 

utilized in a carry-save manner. This process can be continued 

until after the last layer when all the bits of an output sample are 

produced. 

Based on the principles and the procedure enunciated above, 

we can now give formally an algorithm, Algorithm 2, which 

carries out the organization of a MAC-cell network, given L/2 

input samples and L/2 filter coefficients. Fig. 9(c) gives an 

illustration of the organization of the adder modules into three 

layers of a MAC-cell network for the example considered 

earlier. It is seen from this figure that the delay of the critical 

path is equal to that of three full-adders for this particular 

example. 

 
Algorithm 2: Organizing the bit-wise modules of the MAC-cell network 

Initialize an NI(k)×MI array AI of partial product bits from the L/2 X-bit 

samples and L/2 Y-bit filter coefficients, where MI=X+Y−1 and 
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While NI(k)≥3 for any 1≤k≤MI  

Initialize the elements of an NO(k)×(MI+1) array AO by NO(k)←zeros for 

k=1,…,MI+1 

 For every column i=MI ,…,2,1 

  While NI(i)≥3 

Assign 3 bits, AI[NI(i)− −,i], AI[NI(i)− −,i], AI[NI(i)− −,i], as inputs 

to a full-adder 

Append one sum bit to AO[++NO(i),i], and one carry bit to 

AO[++NO(i−1),i−1] in AO 

  End while 

  If NI(i)=2 and NI(i−1)≥2 then 

Assign 2×2 bits, AI[NI(i−1)− −,i−1], AI[NI(i−1)− −,i−1], AI[NI(i)− 

−,i], AI[NI(i)− −,i], as inputs to a double-adder 

Append two sum bits to AO[++NO(i),i], AO[++NO(i−1),i−1], and 

one carry bit  to AO[++NO(i−2),i−2]  in AO 

  Else 

Carry forward unused bits AI[NI(i)− −,i] to AO[++NO(i),i] in AO 

  End if 

 End for 

AI←←←←AO 

End while 

End algorithm 

 

Using Algorithm 2, a generalized structure for the MAC-cell 

network, as shown in Fig. 10, can be generated with L/2 X-bit 

samples and L/2 Y-bit filter coefficients as inputs to the network. 

Layer0 produces a total of 2/LYX ⋅⋅ partial product bits. The 

accumulations of these partial product bits are carried out 

successively by a set of layers of adder modules. A variable size 

array is used as input to each layer. This array initially contains 

only the partial product bits, and for successive layers, it 

contains the sum and carry bits from the previous layers and the 

partial product bits still unused. An input to a layer that consists 

of a partial product bit or a sum bit is shown in the figure by an 

arrow going down vertically into the layer, whereas an input 

that consists of a carry bit is shown by an arrow going down 

leftward. The MAC-cell network has a total of 

Z=log3/2[min(X,Y)·L/4] layers, which is the minimum number 

of layers with the choice of using the maximum number of 

full-adders followed by, if necessary, the double-adders in each 

layer. The number of adder modules used for each layer 

progressively decreases from Layer0 to LayerZ. The output bits 

of the MAC-cell network are then used by the accumulation 

block of the processing unit to produce the final sum. In above 

design of the MAC-cell network, optimization of its critical 

path is carried out by incorporating and arranging the multiply 

and accumulate operations into multiple layers. This leads to a 

network that has a critical path with a smaller delay than the 

delay of the MAC cell used in DSP processors, in which the 

delay of the critical path is simply the sum of the delays 

associated with a multiplier and an accumulator. The critical 
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path of the MAC-cell network could be shortened further by 

encoding the input data to the MAC-cell network using booth 

encoders. Thus, the delay of the MAC-cell network is reduced 

by making a smaller number of carry bits to propagate through 

the MAC-cell network. However, such an improvement can be 

achieved with an expense of additional hardware resources to 

be used for encoders. 

V. PERFORMANCE EVALUATION AND FPGA IMPLEMENTATION 

In order to evaluate the performance of the architecture 

resulting from the proposed scheme, we need to make use of 

certain metrics that characterize the architecture in terms of the 

hardware resources used and the computation time. The 

hardware resources used for the filtering operation are 

measured by the number of multipliers (NMUL) and the number 

of adders (NADD), and that used for the memory space and 

pipeline latches is measured by the number of registers (NREG). 

The computation time, in general, is technology dependent. 

However, a metric, that is independent of the technology used 

but can be utilized to determine the computation time T, is the 

number of clock cycles (NCLK) consumed from the instant the 

first sample is inputted to the last sample outputted assuming a 

given clock cycle period, say unity, as the latency of a MAC 

cell. 

For a J-level DWT computation of an N-sample sequence 

using L-tap filters, the expressions for the metrics mentioned 

above for various architectures are summarized in Table II. 

Assuming that the number of samples N is much larger than J·L, 

it is seen from the table that compared to the architecture of [17], 

all the other architectures, including the proposed one, require 

approximately twice the number of clock cycles, except the 

architecture of [14], which requires four times as many clock 

cycles. This performance of [17] is achieved by utilizing the 

hardware resources of adders and multipliers that is four times 

that required by the architecture of [14] and twice that required 

by any of the other architectures. However, if the value of J·L 

cannot be neglected in comparison to that of N, the values of N, 

J and L should be taken into consideration while comparing the 

architectures in terms of NCLK. In this regard, only for the 

proposed architecture and the architecture of [18], NCLK is 

independent of the filter length with the proposed architecture 

giving the lowest value of NCLK for a given N. The proposed 

architecture requires the number of registers that is at least 20% 

less than that required by any of the other architectures when 

the filter length L is large. It should be noted that approximately 

20% of the hardware resource comprises registers. 
 

TABLE II 

COMPARISON OF VARIOUS ARCHITECTURES 

Architecture NMUL NADD NREG NCLK 

Parallel [13] 2L 2L−2 JL+4L N+JL 

Systolic [14] L L−1 2JL+L+2 2N+2JL 

Pipelined 
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IP core [19]  4/LJ ⋅   2/LJ ⋅  2JL+2J N+JL 

Proposed 2L 2L−2 4L+nc+1 N+J 
 

Since the area of the circuit for the DWT computation 

depends on the filter length L and the total number of samples 

N, it would be useful to have a measure of the area of the circuit 

as functions of L and N. Only the proposed architecture and 

those of [13] and [18] are used for this study, since the numbers 

of multipliers and the numbers of adders for these architectures 

are the same. Thus, any difference in the areas of the three 

architectures could be accounted for due mainly to the 

difference in the number of the registers used by each of the 

architectures. As seen from Table II, the number of registers for 

the architecture of [13] is (J+4)L and that for the architecture of 

[18] is approximately JL+2J+2L=(J+2)L+2J. However, the 

number of registers for the proposed architecture not only 

depends directly on the filter length L but also indirectly on L 

and N through the parameter nc. These dependencies are 

intuitively obvious from the fact that as the filter length or the 

number of samples increases, the starting point of stage 2 gets 

more delayed. In other words, nc is increased. However, it is 

seen from this figure that the dependence of nc on N is relatively 

much more non-linear than its dependence on L. The results of 

Fig. 11 can be used to obtain a measure of the area of the 

proposed architecture as functions of L and N. We estimate the 

areas of the proposed architecture along with that of the other 

two architectures under the assumption that the ratio of areas of 

one multiplier, one adder and one register is 12:3:1. The plots of 

the estimates of the areas as functions of L and N are shown in 

Fig. 12. It is obvious from this figure that area of the proposed 

architecture is, in general, lower than those of the other two 

architectures. The lower area of the proposed architecture can 

be attributed due mainly to the presence of the parameter nc in 

its expression for the NREG. Recall that nc is a parameter that we 

minimized in the design of the proposed architecture in order to 

maximize the parallelism between the two stages, and a lower 

value of nc, in turn, results in smaller number of registers 

required to store the results of the operations of stage 1 before 

the operation of stage 2 starts. 

Considering the clock cycle period Tc as the delay of the 

MAC cell used by an architecture, the computation time can be 

obtained as T=NCLKTc. Note that the reciprocal of Tc is simply 

the throughput of the architecture assuming that one sample is 

Ci+L-2
(j)      .   .   .       Ci+2

(j) Ci
(j)

...

…

.   .   . h0/hL-1
h2/hL-3

L/2 input samples

Output bits

.   .   .

Layer0
Partial products generator

.   .   .

Layer2

LayerZ

hL-2/h1

.  .  .

Layer1

 

Fig. 10.  Structure of the L/2-MAC-cell network. 
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inputted during each clock cycle. Using T, one can determine 

the area-time complexity, AT, where the area, A, mainly 

comprises the areas of the multipliers, adders and registers. In 

order to evaluate the performance of the architectures in terms 

of Tc and AT, we consider an example of designing a circuit for 

the DWT computation where the sample size N=128 and the 

number of the decomposition levels J=7. We use Daubechies 

6-tap filter (L=6) as analysis filters and the sample and filter 

coefficient wordlengths are taken as 8 bits. The carry 

propagation adder of the processing unit utilizes the structure of 

a combination of carry-skip and carry-select adders [24]. The 

registers are designed using D-type flip-flops (DFF). All the 

modules, such as partial products generator, DFF, full-adder, 

double-adder, multiplexer and demultiplexer, used in the 

proposed architecture are designed by using 0.35-micron 

CMOS technology and simulated by using HSpice to obtain the 

delays. Note that these same modules are also used to evaluate 

the performance of all the other architectures. Table III shows 

the values of the clock cycle period and the area-time 

complexity for the various architectures. It is seen from this 

table that the proposed architecture has significantly smaller 

value of the clock cycle period compared to that of all the other 

architectures. The proposed architecture has the highest 

throughput of 138 MBPS (megabytes per second) and the 

lowest area-time complexity, among all the architectures 

considered. 

In order to estimate the power consumption of the proposed 

architecture, an example of the proposed architecture is 

constructed for a 7-level DWT computation of 8-bit samples 

using 6-tap filters and simulated at a clock frequency of 138 

MHz using Synopsys Power Compiler. The resulting power 

consumption values are 154.2 mW and 67.6 mW using 

0.35-micron (VDD = 3.3 V) and 0.18-micron (VDD = 1.8 V) 

technologies, respectively. 

In order to have a fair comparison of the power consumption 

performance of different architectures, the circuit complexities 

and the technologies used for the circuit design of the 

architectures under consideration must be the same. In this 

regard, estimates of the power consumption for the 

architectures listed in Table III are either unavailable or, if 

available, the underlying architectures have been designed with 

substantial differences in the circuit complexities and process 

technologies. Despite this difficulty in carrying out a fair 

comparison of power consumption of architectures, we 

compare the estimated power consumption of the proposed 

architecture with that given in [25]. The architecture of [25] is 

also a pipeline architecture that uses the same filter core as that 

used in [19] of Table III. In [25], an example of the architecture 

using 9/3 filters and 9-bit samples has been constructed, and 

simulated for an operation at 100 MHz clock frequency using a 

0.35-micron technology. The resulting power consumption 

figure is 325 mW. This value of power consumption is more 

than twice the value of 154.2 mW obtained from the example of 

the proposed architecture in 0.35-micron technology, which is 

constructed by employing 6-tap filters operating on 8-bit 

samples at 138 MHz clock frequency. 

 In order to verify the estimated results for the example of the 

DWT computation considered above, an implementation of the 

circuit is carried out in FPGA. Verilog is used for the hardware 

description and Xilinx ISE 8.2i for the synthesis of the circuit 

on Virtex-II Pro XC2VP7-7 board. The FPGA chip consists of 

36×36 arrays with 11,088 logic cells and it is capable of 

operating with a clock frequency of up to 400 MHz. The 

implementation is evaluated with respect to the clock period 

(throughput) measured as the delay of the critical path of the 

MAC-cell network, and the resource utilization (area) 

measured as the numbers of configuration logic block (CLB) 

slices, DFFs, look-up tables (LUTs) and input/output blocks 

(IOBs). The resources used by the implementation are listed in 

Table IV. The circuit is found to perform well with a clock 

period as short as 8.7 ns, a value that is reasonably close to the 

estimated value of 7.2 ns. The power consumption of the FPGA 

chip on which the designed circuit implemented is measured to 

be 105 mW (VDD=1.5 V). Thus, the simulated value of 67.6 

mW is reasonably realistic for power consumption for the 

circuit realizing the proposed architecture, considering the 

measured value of the power consumption also includes the 

power dissipated by the unused slices in FPGA. 

TABLE IV 

RESOURCES USED IN FPGA DEVICE 

Resource Number 

used 

Total number 

available 

Percentage 

used 

CLB Slices 1532 4928 31% 

Flip Flop Slices 858 9856 8% 

4-input LUTs 2888 9856 29% 

Bonded IOBs 38 248 15% 
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TABLE III 

EVALUATION OF VARIOUS ARCHITECTURES 

Architecture Tc (ns) A·T 

Parallel [13] 17.8 243 

Systolic [14] 11.8 141 

Pipelined [17] 11.8 183 

DRU [18] 10.2 117 

IP core [19] 11.8 159 

Proposed 7.2 62 
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VI.  CONCLUSION 

In this paper, a scheme for the design of a pipeline 

architecture for a real-time computation of the 1-D DWT has 

been presented. The objective has been to achieve a low 

computation time by maximizing the operational frequency 

(1/Tc) and minimizing the number of clock cycles (NCLK) 

required for the DWT computation, which in turn, have been 

realized by developing a scheme for an enhanced inter-stage 

and intra-stage parallelisms for the pipeline architecture. 

A study has been undertaken that suggests that, in view of the 

nature of the DWT computation, it is most efficient to map the 

overall task of the DWT computation to only two pipeline 

stages, one for performing the task of the level-1 DWT 

computation and the other for performing that of all the 

remaining decomposition levels. In view of the fact that the 

amount and nature of the computation performed by the two 

stages are the same, their internal designs ought to be the same. 

There are two main ideas that have been employed for the 

internal design of each stage in order to enhance the intra-stage 

parallelism. The first idea is to decompose the filtering 

operation into two subtasks that operate independently on the 

even and odd numbered input samples, respectively. This idea 

stems from the fact that the DWT computation is a 

two-subband filtering operation, and for each consecutive 

decomposition level, the input data are decimated by a factor of 

two. Each subtask of the filtering operation is performed by a 

MAC-cell network, which is essentially a two-dimensional 

array of bit-wise adders. The second idea employed for 

enhancing the intra-stage parallelism is to organize this array in 

a way so as to minimize the delay of the critical path from a 

partial product input bit to a bit of an output sample through this 

array. In this paper, this has been accomplished by minimizing 

the number of layers of the array while minimizing the delay of 

each layer. 

In order to assess the effectiveness of the proposed scheme, a 

pipeline architecture has been designed using this scheme and 

simulated. The simulation results have shown that the 

architecture designed based on the proposed scheme would 

require the smallest number of clock cycles (NCLK) to compute 

N output samples and a reduction of at least 30% in the period 

of the clock cycle Tc in comparison to those required by the 

other architectures with a comparable hardware requirement. 

An FPGA implementation of the designed architecture has 

been carried out demonstrating the effectiveness of the 

proposed scheme for designing efficient and realizable 

architectures for the DWT computation. Finally, it should be 

pointed out that the principle of maximizing the inter-stage and 

intra-stage parallelisms presented in this paper for the design of 

architecture for the 1-D DWT computation is extendable to that 

for the 2-D DWT computation. 
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