
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Copyright (c) 2008 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email

to pubs-permissions@ieee.org.

1

 Abstract—In this paper, a scheme for the design of a

high-speed pipeline VLSI architecture for the computation of the

1-D discrete wavelet transform (DWT) is proposed. The main

focus of the scheme is on reducing the number and period of the

clock cycles for the DWT computation with little or no overhead

on the hardware resources by maximizing the inter-stage and

intra-stage parallelism of the pipeline. The inter-stage parallelism

is enhanced by optimally mapping the computational load

associated with the various DWT decomposition levels to the

stages of the pipeline and by synchronizing their operations. The

intra-stage parallelism is enhanced by decomposing the filtering

operation equally into two subtasks that can be performed

independently in parallel and by optimally organizing the bit-wise

operations for performing each subtask so that the delay of the

critical data path from a partial product bit to a bit of the output

sample for the filtering operation is minimized. It is shown that an

architecture designed based on the proposed scheme requires a

smaller number of clock cycles compared to that of the

architectures employing comparable hardware resources. In fact,

the requirement on the hardware resources of the architecture

designed by using the proposed scheme also gets improved due to

a smaller number of registers that need to be employed. Based on

the proposed scheme, a specific example of designing an

architecture for the DWT computation is considered. In order to

assess the feasibility and the efficiency of the proposed scheme, the

architecture thus designed is simulated and implemented on an

FPGA board. It is seen that the simulation and implementation

results conform to the stated goals of the proposed scheme, thus

making the scheme a viable approach for designing a practical

and realizable architecture for real-time DWT computation.

Index Terms—Discrete wavelet transform, FPGA

implementation, parallel architecture, pipeline architecture,

real-time processing, VLSI architecture, multi-resolution

filtering, DWT computation, inter- and intra- stage parallelism.

I. INTRODUCTION

INCE the development of the theory for the computation of

the discrete wavelet transform (DWT) by Mallet [1] in

1989, the DWT has been increasingly used in many different

areas of science and engineering mainly because of the

multi-resolution decomposition property of the transformed

signals. The DWT is computationally intensive because of

multiple levels of decomposition involved in the computation

of the DWT. It is, therefore, a challenging problem to design an

efficient VLSI architecture to implement the DWT

Manuscript received December 15, 2008. This work was supported in part

by the Natural Sciences and Engineering Research Council (NSERC) of

Canada and in part by the Regroupement Stratégique en Microélectronique du

Québec (ReSMiQ).

The authors are with the Center for Signal Processing and Communications,

Department of Electrical and Computer Engineering, Concordia University,

Montréal, QC, H3G 1M8 Canada (e-mail: z_chengj@ece.concordia.ca;

chunyan@ece.concordia.ca; omair@ece.concordia.ca).

computation for real-time applications, especially those

requiring processing of high-frequency or broadband signals

[2]−[4].

Many architectures have been proposed in order to provide

high-speed and area-efficient implementations for the DWT

computation [5]−[8]. In [9]−[11], the poly-phase matrix of a

wavelet filter is decomposed into a sequence of alternating

upper and lower triangular matrices and a diagonal matrix to

obtain the so-called lifting-based architectures with low

hardware complexity. However, such architectures have a long

critical path, which results in reducing the processing rate of

input samples. On the other hand, the problem of low

processing rate is not acute in the architectures that use

convolution lowpass and highpass filtering operations to

compute the DWT [12]−[19]. These convolution-based

architectures can be categorized as single-stage or multi-stage

pipeline architectures. The architectures proposed in [12]−[16]

are single-stage architectures in which the DWT computation is

performed using a recursive pyramid algorithm (RPA) [20] that

results in a reduced memory space requirement for the

architectures. Lewis and Knowles [12] have designed a simple

single-stage VLSI architecture to implement the computation

of the DWT without multipliers. Chakrabarti and Vishwanath

[13] have proposed a single-stage SIMD architecture that is

aimed at reducing the computation time. Grzesczak et al. [14]

have proposed a single-stage systolic array architecture with a

reduced hardware resource. Cheng and Parhi [15] have

proposed a high-speed single-stage architecture based on

hardware-efficient parallel FIR filter structures for the DWT

computation. The architectures proposed in [17]−[19] are

multi-stage architectures in which the tasks of the various

decomposition levels of the DWT computation are distributed

to a number of pipeline stages. A high-speed multi-stage

pipeline architecture, with one stage to carry out the

computation of one decomposition level of the DWT, has been

proposed by Marino et al. [17]. Park [18] has proposed a

pipeline architecture using scalable data recorder units (DRU),

each requiring a small amount of hardware resources. Masud

and McCanny [19] have proposed a method for the design of an

efficient, modular and scalable pipeline architecture by using

reusable silicon intellectual property (IP) cores for the DWT

computation. The pipeline architectures have the advantages of

requiring a small memory space and a short computing time,

and are suitable for the real-time computations. However, these

architectures have some inherent characteristics that have not

yet been fully exploited in the schemes for their design. The

computational performance of such architectures could be

further improved provided that the design of the pipeline makes

use the inter-stage and intra-stage parallelism to the maximum

Chengjun Zhang, Chunyan Wang, Senior Member, IEEE, and M. Omair Ahmad, Fellow, IEEE

A Pipeline VLSI Architecture for High-Speed Computation

of the 1-D Discrete Wavelet Transform

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

extent possible, synchronizes the operations of the stages

optimally, and utilizes the available hardware resources

judiciously.

In this paper, a scheme for the design of a pipeline

architecture for a fast computation of the DWT is developed.

The goal of fast computation is achieved by minimizing the

number and period of the clock cycles. The main idea used for

minimizing these two parameters is to optimally distribute the

task of the DWT computation among the stages of the pipeline

and to maximize the inter- and intra-stage parallelisms of the

pipeline.

The paper is organized as follows. In Section II, a matrix

formulation for the DWT computation is presented. In Section

III, a study is conducted to determine the number of stages

required to optimally map the task of the DWT computation

onto the stages of the pipeline. Based on this study, in Section

IV, a scheme for the design of a pipeline architecture is

developed. In Section V, the performance of the pipeline

architecture for the DWT computation using the proposed

design scheme is assessed and compared with that of other

existing architectures. A specific example of designing an

architecture for the DWT computation is also considered and

the resulting architecture is simulated and implemented on an

FPGA board in order to demonstrate the realizability and

validity of the proposed scheme. Section VI summarizes the

work of this paper by highlighting the salient features of the

proposed design scheme and the resulting pipeline

architectures.

II. FORMULATION OF THE DWT COMPUTATION

A. Matrix Formulation

The 1-D DWT of a signal is computed by performing the

filtering operation repeatedly, first on the input data and then on

the output data, each time after decimating it by a factor of two,

for the successive decomposition levels. The filtering operation

uses a quadrature mirror filter bank with lowpass and highpass

filters to decompose the signal into lowpass and highpass

subband signals, respectively. The transform can be expressed

using a matrix formulation in order to provide a better insight

into the underlining operations of the DWT as well as to

facilitate the proposed scheme for the design of the architecture

for its computation.

Let the signal be denoted as S=[s1,s2,...,sN-1,sN]
T
, where N, the

number of samples in the input signal, is chosen to be 2J, J

being an integer. Assume that hi and gi (i=0,1,…,L−1) are the

coefficients of the L-tap lowpass and highpass filters,

respectively. Then, by expressing the transform matrices for the

lowpass and highpass computations at the jth (j=1,2,…,J) level

decomposition as























=

−−−

−

1

3

0

210

123

1

1

3

0

210

)(

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

h

h

h

hhh

hhh

h

h

h

h

hhh

LLL

L

j
M

L

L

L

L

M

L

L

H

(1a)























=

−−−

−

1

3

0

210

123

1

1

3

0

210

)(

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

g

g

g

ggg

ggg

g

g

g

g

ggg

LLL

L

j
M

L

L

L

L

M

L

L

G

(1b)

respectively, where both H
(j)

 and G
(j)

 have a size of (N/2
j
)×

(N/2
j-1

), the outputs of the transform at the jth level can be

computed from the following:

)1(

)(

)(

)(

)(
−

⋅











=












j

j

j

j

j

C
G

H

D

C (2)

where C
(j)

 and D
(j)

 represent the column vectors of size N/2
j
 and

consist of lowpass and highpass output samples, respectively,

at the decomposition level j, with C
(0)

=S. It is clear from (1a)

and (1b) that the lengths of the filters and the size of the input

samples control the number of non-zero entries of the matrices

involved, which in turn, determines the complexity of the DWT

computation. If the decomposed signals are required to be

reassembled into the original form without loss of information,

the lowpass and highpass filters must satisfy the perfect

reconstruction condition given by

iL
i

i hg −−
+

−= 1
1)1((3)

A border extension of the input signal becomes necessary for

the processing of the samples on or near the border of a

finite-length signal. There are generally three ways by which

the border can be extended in a DWT computation, zero

padding, symmetric padding and periodic padding [21]. Even

though from the point of view of hardware cost, zero padding is

the least expensive, the periodic padding is the most commonly

used method for border extension, since it allows a precise

recovery of the original signal at or near the border. This

method extends the original sequence S by appending it with its

first L−2 samples as
T

231121],,,,,,,,[−−−= LLNN sssssss LLpS (4)

Thus, in order to operate on the padded input sequence Sp,

the transform matrices H
(j)

 and G
(j)

 have to be modified by

appending each by additional 2−L columns. The elements of

the appended columns in a row of a modified transform matrix

assume a zero value, if all the filter coefficients already appear

in the corresponding row of (1a) or (1b). Otherwise, the

elements in the row are made to assume the missing values of

the filter coefficients so that all the coefficients appear in that

row of the modified transform matrix.

B. Reformulation of (2)

It is seen from (1a) and (1b) that due to the

decimation-by-two requirement of the DWT, entries in the

successive rows of matrices H
(j)

 and G
(j)

, and therefore, in their

modified versions, are shifted to right by two positions. This

property can be utilized to decompose the arithmetic operations

in (2) into two parts so that the operations in one part can be

performed simultaneously with those of the other one. For this

purpose, we now decompose each of the modified transform

matrices H
(j)

 and G
(j)

 by separating the even and odd numbered

columns of each matrix into two sub-matrices. The resulting

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

sub-matrices, taking into account the perfect reconstruction

condition specified by (3), can be expressed as























=

−−

−

−−

−

24

2

0

20

24

2

0

20

)(

0

0

0

00

0

0

00

0

0

0

LL

L

LL

L

j
even

hh

h

h

hh

hh

h

h

hh

L

L

M

L

L

L

L

M

L

L

H
 (5a)























=

−−

−

−−

−

13

1

1

31

13

1

0

31

)(

0

0

0

00

0

0

00

0

0

0

LL

L

LL

L

j
odd

hh

h

h

hh

hh

h

h

hh

L

L

M

L

L

L

L

M

L

L

H
 (5b)























−=

−

−−

−

−−

13

1

1

31

13

1

1

31

)(

0

0

0

00

0

0

00

0

0

0

hh

h

h

hh

hh

h

h

hh

L

LL

L

LL

j
even

L

L

M

L

L

L

L

M

L

L

G
 (5c)























=

−

−−

−

−−

02

0

2

42

02

0

2

42

)(

0

0

0

00

0

0

00

0

0

0

hh

h

h

hh

hh

h

h

hh

L

LL

L

LL

j
odd

L

L

M

L

L

L

L

M

L

L

G
 (5d)

in which the entries in the successive rows are shifted to right

by only one position. With this decomposition of the transform

matrices, the DWT computation as given by (2) can be

reformulated as

)1(

)(

)(
)1(

)(

)(

)(

)(
−−

⋅











+⋅












=












j

oddj
odd

j
oddj

evenj
even

j
even

j

j

C
G

H
C

G

H

D

C (6)

where)(j
evenC and)(j

oddC are the two sub-vectors consisting of

even and odd numbered samples, respectively, in the padded

vector of C
(j)

.

It is seen from (6) that the operations in each of the two terms

are identical, and also, they can be performed independently in

parallel. Furthermore, in view of the structures of the

decomposed transform matrices as given by (5a)−(5d), the

filtering operation can be carried out by employing the

conventional clocking mechanism used for implementing

digital systems.

III. CHOICE OF A PIPELINE FOR THE 1-D DWT COMPUTATION

In a pipeline structure for the DWT computation, multiple

stages are used to carry out the computations of the various

decomposition levels of the transform. Thus, the computation

corresponding to each decomposition level needs to be mapped

to a stage or stages of the pipeline. In order to maximize the

hardware utilization of a pipeline, the hardware resource of a

stage should be proportional to the amount of the computation

assigned to the stage. Since the amount of computations in

successive decomposition levels of the transform get reduced

by a factor of two, two scenarios can be used for the distribution

of the computations to the stages of a pipeline. In the first

scenario, the decomposition levels are assigned to the stages so

as to equalize the computations carried out by each stage, that is,

the hardware requirements of all the stages are kept the same. In

the second scenario, the computations of the successive

decomposition levels are assigned to the successive stages of a

pipeline, on a one-level-to-one-stage basis. Thus, in this case,

the hardware requirement of the stages gets reduced by a factor

of two as they perform the computations corresponding to

higher-level decompositions.

Fig. 1 shows a stage-equalized pipeline structure, in which

the computations of all the K=log2N levels are distributed

equally among the M stages. The process of stage equalization

can be accomplished by dividing equally the task of a given

level of decomposition into smaller subtasks and assigning

each such subtask to a single stage and/or by combining the

tasks of more than one consecutive level of decomposition into

a single task and assigning it to a single stage. Note that

generally a division of the task would be required for low levels

of decomposition and a combination of the tasks for high levels

of decomposition.

Input
of N=2K

samples

···Stage 1 Stage 2 Stage M

Fig. 1. Stage-equalized pipeline structure.

In a one-to-one mapped structure, the computations of K

decomposition levels are distributed exactly among K stages,

one level to one stage. In practical applications, a structure with

less than K stages is used for the computation of a K-level DWT,

as shown in Fig. 2. In this structure, the computations of the

first I−1 levels are carried out by the stages i=1, 2, ···, I−1,

respectively, and those of the last K−I+1 levels are performed

recursively by the Ith stage. The amount of hardware resources

of a stage is one-half of that of its preceding one except for the

Ith stage that has the same size as that of the preceding stage.

Input

of N=2K

samples

···

Level 1 Level 2
Level
I-1

Stage 1 Stage 2 Stage
I-1

Stage
I

Levels
I to K

Fig. 2. A one-to-one mapped pipeline structure with I (I<K) stages.

The structures of Fig. 1 and Fig. 2 can be used to perform the

computations of multiple levels of decomposition. The

computation of each level is performed as an L-tap FIR filtering

operation by summing the L products of the input samples and

the filter coefficients, as described by (2). Generally, one MAC

cell is used to carry out one multiplication of an input sample by

a coefficient followed by one accumulation operation. In order

to perform an uninterrupted L-tap filtering operation with easy

control, one can thus use a network of L basic units of such a

MAC cell. Since all the decomposition levels perform L-tap

filtering operations, it would be desirable that each

decomposition level performs its filtering operation using this

same type of MAC-cell network. However, in the context of

one-to-one mapped pipeline structure of Fig. 2, in which the

requirement is that the hardware resource should get reduced by

a factor of two from one stage to the next, the use of the same

MAC-cell network for all the stages would not be possible

unless the pipeline has only two stages. In other words, the first

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

stage performs the level-1 computation and the second stage

performs the computations corresponding to all the remaining

levels recursively. In the context of a stage-equalized pipeline

structure of Fig. 1, where the requirement is that all the stages

should have the same hardware resource, the same MAC-cell

network can be used easily for all the stages. However, in this

case, the same amount of the computations cannot be assigned

to all the stages that are based on the same MAC-cell network

unless again there are only two stages in the pipeline.

In a situation of a pipeline of more than two stages, each

based on a network of L MAC cells, one cannot achieve a

resource-efficient architecture. Thus, for either pipeline

structure, i.e., the one-to-one mapped or stage-equalized, a

two-stage pipeline would be the best choice in terms of the

hardware efficiency as well as from the standpoint of design

and implementation simplicity. Note that the two-stage version

of either pipeline structure is the same and it is shown in Fig. 3.

An additional advantage of the two-stage pipeline is in the

design flexibility of a MAC-cell network where the

multiplication and accumulation operations can be furnished

together by using logic gates. These logic gates could be

arranged into more efficient arrays yielding a shorter

propagation delay for the MAC-cell network. Based on the

above discussion, it seems logical to use the two-stage pipeline

structure of Fig. 3 for the design and implementation of an

architecture for the 1-D DWT computation. The next section is

concerned specifically with a detailed design of the

architecture.

Stage 1 Stage 2

Levels 2 to JLevel 1
Fig. 3. Pipeline structure with two stages.

IV. ARCHITECTURE DESIGN

In the previous section, we advocated a two-stage pipeline

structure for the computation of the 1-D DWT. The structure,

whose development is constrained by the nature of the DWT

computation, is capable of optimizing the use of hardware

resources. In this two-stage structure, stage 2 performs by

operating on the data produced by stage 1 as well as on those

produced by itself, and therefore, the operations of the two

stages need to be synchronized in a best possible manner [22].

In this section, we present the design of the proposed two-stage

pipeline architecture focusing on data synchronization, the

details of the various components comprising the stages, and

inter and intra stages data flow.

A. Synchronization of Stages

In order to develop a suitable synchronization scheme,

consider the timing diagram for the relative operations of the

two stages shown in Fig. 4, where t1 and t2 are the times taken

individually by stage 1 and stage 2, respectively, to carry out

their operations, and ta and tc are the time spans during which

stage 1 or stage 2 alone is operational, and tb is the overlapped

time span for the two stages. Our objective is to minimize

ta+tb+tc. Since the operation of stage 1 is independent of that of

stage 2, it can continue its operation continuously until the

computation of all the samples of decomposition level 1 are

computed. In Fig. 4, the slots shown for stage 1 correspond to

N/2 samples of decomposition level 1 that it has to compute.

The presence of continuous slots indicates that stage 1 can

continue its operation uninterruptedly without having any idle

slot. Thus, the minimal possible value for t1 is equal to N·Tc/2,

where Tc is the time required to compute one output sample. If

J=log2N and we assume that the DWT operation has to be

carried out for all the J levels, then the number of samples that

stage 2 has to compute is N/2−1. Thus, the lowest bound for t2 is

(N/2−1)Tc. Now, by choosing a value of tc equal to its lowest

bound, if one can show that t2=t1−Tc
(i.e. stage 2 does not have

any idle slot during t2), then indeed not only ta+tb+tc will be

minimized but one also achieves its lowest bound. Now, we

will show that for the proposed architecture this is so possible.

Stage 2

Stage 1

ta

tctb

t2

t1

· · ·

Fig. 4. Timing diagram for the operations of two stages.

Let us first determine the lowest bound on tc. Since the last

sample of level 1 as produced by stage 1 becomes available

only at the end of tb, a sample at level j≥2 that depends on this

last sample directly or indirectly could not possibly be

computed during the time span tb, and therefore, has to be

computed during tc. Assume that (i) during tc we compute nc

samples of levels 2 and higher, which could not possibly be

computed during tb, and (ii) other output samples necessary for

computing those nc samples have already been computed

during tb. The lowest bound on tc is ncTc. Therefore, in order to

compute this bound, we need to determine the value of nc. The

last sample of level 1, which is computed at the end of tb,

is)1(
2/NC . There are k=L/2 output samples at level 2 that depend

on this sample and they are given as ,
)2(

iC

i=(2J−1
−L+2)/2,…,2

J−2
, where x and x represent the

smallest integer larger than or equal to x and the largest integer

less than or equal to x, respectively. Next, at level 3, there are

(k+L−2)/2 output samples that indirectly depend on)1(
2/NC and

they are given as ,
)3(

iC i=(2J−2
−k−L+4)/2,…,2

J−3
. Similarly, we

can determine the numbers and samples that depend indirectly

on)1(

2/N
C for other levels. Table I givens the listing of the

numbers and samples of levels from j=2 to J that depend

on)1(
2/NC . After adding the expression in the third column of this

table and some manipulation, it can be shown that the value of

nc can be obtained as

()
 

 ()12

212312
22

2

2

log

log

3

232

−+

















+⋅−−+








+








= ∑

−

=

−−−

L

LJ

j

jjj
c L

LL
n

(7)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

TABLE I

NUMBERS AND SAMPLES IN THE LOWEST BOUND

Level Samples computed in tc,
)(j

iC Numbers of samples in tc

2   22 2,...,12/2 −−
+−=

JJ Li  2/Lk =

3   33
2,...,2/)4(2

−−
−+−=

JJ
Lki  2/)2(−+ LK ﹒ ﹒ ﹒
﹒ ﹒ ﹒

﹒ ﹒ ﹒

j
jJ

j

jJ LkL
i −

−

−







 −
+

−−
+= 2,...,

2

25

2

1
2

2








 −
+

+−

− 2

32

2

1
2

LLk

j

 ﹒ ﹒ ﹒
﹒ ﹒ ﹒

﹒ ﹒ ﹒
J JJ

i
−

= 2 1

In Fig. 4, ta is chosen to be (nc+1)Tc. Next, we explore the

possibility of developing a synchronization scheme for

computing all the output samples in the context of Fig. 4 with

the objective that stage 2 does not create any idle slots. In

developing such a scheme, one has to take into consideration,

the requirement of the underlying filtering operation of the

wavelet computation. This filtering operation imposes the

constraint that the first output sample at level j cannot be

computed until L samples at level j−1 have already been

computed and each of the subsequent samples at level j cannot

be computed unless two new samples at level j−1 have already

been computed. Note that this requirement of the filtering

operation imposes a constraint on the operation of stage 2 only,

since stage 1 operates sequentially and unilaterally to compute

the level-1 output samples only. Under this constraint, we now

give three steps of the synchronization that govern the

computation of the output samples at various decomposition

levels by stage 1 and 2.

Step 1. Stage 1 operates continuously to compute the level-1

output samples sequentially.

Step 2. Stage 2 starts the computation of level-2 samples

beginning at the time slot (nc+2).

Step 3. (a) When stage 2 is computing an output sample at the

lowest incomplete level j≥2.

After completing the computation of the present sample

at this level stage 2 moves on to the computation of a

sample at the lowest higher level, if the data required for

the computation of this sample have become available;

otherwise stage 2 continues with the computation of the

next sample at the present level j.

 (b) When stage 2 is computing an output sample at a

level other than the lowest incomplete level.

After completing the computation of the present sample,

stage 2 moves its operation to the lowest incomplete

level.

The rationale behind Step 3(a) is that moving the operation of

stage 2 to a higher level allows more data from level 1 as

produced by stage 1 to become available, since the availability

of the output samples of level 1 is crucial for the computation of

the samples at higher levels. On the other hand, the rationale

behind Step 3(b) is that there are always more samples to be

computed at lower levels than that at higher levels, and

therefore, more time needs to be spent in computing lower level

samples.

The nature of the filtering operation coupled with the

decimation by a factor of 2 requires that, in order for stage 2 to

compute a level-2 sample at slot m, stage 2 needs L level-1

samples computed by stage 1 at slots i+1, i+2,…, i+L (i<m−L),

of which the samples produced at the last two slots must not

have been previously used for the computation of level-2

samples. If stage 2 can meet this requirement during the entire

time span tb, then it can continue its operation uninterruptedly

without creating an idle slot. We will now show that, based on

the steps presented above, stage 2 would indeed be able to meet

this requirement. For this purpose, consider an algorithm,

Algorithm 1, which synchronizes the operation of stage 2

during the time span tb. In this algorithm, we have made use of

two counters, namely p and q. The counters p and q represent

the total number of samples having been computed at level 2

and that at the levels higher than 2, respectively, at a particular

instant of stage-2 operation. Note that at the time that stage 2

starts its operation, stage 1 has already produced nc+1 level-1

samples. Since a length-L filtering operation would require L

input samples and (nc+1)>L, stage 2 not only can start the

computation of level-2 samples, but it can continue the

computation of the succeeding level-2 samples at least for some

time. Since the computation of each level-2 sample makes use

of two new level-1 samples during the time in which only one

level-1 sample is produced by stage 1, the number of available

level-1 samples is reduced by one after the computation of each

level-2 sample. However, since stage 2, following Step 3 of the

synchronization, is allowed to compute the samples at levels

higher than 2 without making use of the samples from level 1,

the reservoir of level-1 samples is increased by one after the

computation of one such a higher-level sample. Therefore, at a

particular time, there are nb=nc+1−(p−q) level-1 samples

available to be used by stage 2 for the computation of the

succeeding level-2 samples. Since p increases faster than q, p−q

reaches its maximum value at the time slot just before the end

of the time span tb. At this time slot,

 2/2 2
Lp

J
−=

− (8a)

 ∑
=

−

−−−











 −⋅+−−−
=

J

i
i

iiJ
LL

q
3

2

322

2

123)12(2/2
 (8b)

Thus, using (7), (8a) and (8b), the lowest bound of nb during the

time span tb is calculated as



























+−−−








−−+≥

−−

2
12

2
21 22 L

n
L

nn c
JJ

cb (9)

Since in practice the filter length L is such that L<2
J−1

−1, the

above inequality can be written as

oddisLif

evenisLif

L

LLL
nb





+
=








−−








≥

122
 (10)

Thus, the lowest bound on nb is greater than or equal to L.

Therefore, during the entire course of the time span tb, there will

always exist sufficient number of samples available to stage 2

for it to continue its level-2 computation in the frame work of

Algorithm 1. In other words, during the time span tb, stage 2

would never have to cease its operation for the lack of

availability of at least 2 new level-1 samples, that is, the block

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

in Algorithm 1 that introduces a unit delay Tc will never be used

during the execution of the algorithm.

Algorithm 1: Synchronizing the operation of stage 2 during tb

Initialize p←0, q←0

While p+q ≤ 2J-1-nc

If (at least 2 new samples available from level 1) then

Compute a new sample at level 2

p←p+1

If (enough data available from the lowest level k≥2) then

Compute a new sample at level k+1

q←q+1

End if

Else

Unit delay Tc

End if

End while

End algorithm

We now consider an example to illustrate the

synchronization scheme that has been presented above. For this

purpose, we consider a 128-point (J=7) DWT computation

using 4-tap (L=4) FIR filters. The synchronized operation of the

two stages is shown in Fig. 5, in which each rectangle

represents a time slot during which a lowpass output sample is

produced. Stage 1 starts the computation of the first level-1

output sample at slot 1 and continuous its operation until slot 64

when the computation of the 64th

level-1 output sample is

completed. Equation (7) can be used to obtain the value of nc as

13. Thus, at the slot number (nc+2)=15, stage 2 starts the

computation of the first level-2 output sample. At this point, the

reservoir of level-1 available samples contains (nc+1)=14

samples. Note that the number of samples in this reservoir

decreases by one sample as one new level-2 sample is

computed and it increases by one as one sample at a level

higher than 2 is computed. However, the general trend is a

decline in the number of available level-1 samples from 14

samples at slot 15 to 4 samples at slot 65 when the

computations of all level-1 samples are completed. At slot 66,

an output sample at level 4 is computed, since the required

samples from level-3 have become available for its

computation. After this computation, stage 2 returns its

operation to the computation of the last level-2 output sample.

Note that for the computation of this last level-2 sample, two

padded samples would be required, since at this time no level-1

output sample is unused. Beyond this point, all the remaining

samples from level 3 to level 7 are computed using Step 3 of the

synchronization.

B. Design of Stages

Since in the stage-equalized architectures, the two stages

together perform the DWT computation with amount and the

type of computations of the individual stages being the same,

each of the two stages can use identical processing units.

However, the control units to be employed by the stages have to

be different, since, as seen from Algorithm 1 of the previous

subsection, the operation of stage 1 is autonomous, whereas

stage 2 must always synchronize its operation with that of stage

1. Based on this algorithm, the design of the control unit used

by stage 2 would have to be a bit more involved than that of the

control unit used by stage 1. Obviously, in order to synchronize

the operation of stage 2 with that of stage 1, a buffer has to be

used to store the lowpass output samples from the two stages.

Fig. 6 gives a block diagram incorporating all these

requirements for the design of the proposed architecture. The

two processing units are referred as PU1 in stage 1 and PU2 in

stage 2. Note that in this architecture, the highpass samples

from PU1 and PU2 are outputted directly.

C(1)

Stage 2

Buffer
In

Stage 1

Control
Unit 1

PU2PU1

Out

Control
Unit 2

D(j)C(0)

D(1)

C(j)

Fig. 6. Block diagram of the two-stage architecture.

In each stage, the processing unit by employing L

multiplication-and-accumulation (MAC) cells network

performs an L-tap filtering operation and at each clock cycle

generates a total of L product terms and their sum. Since,

normally, the interval between the two consecutive input

samples must not be smaller than the delay of a MAC cell, the

maximal allowable data rate of the input to the processing unit

would be determined by this delay. However, if the

L-MAC-cell network is organized into m sub-networks

operating in parallel, the input samples can be applied to these

sub-networks in an interleaved manner. The interval of the two

consecutive input samples can thus be shortened by a factor m.

To this end, considering the problem at hand in which a

two-subband filtering operation is performed and for each

consecutive decomposition level the input data is decimated by

a factor of 2, the L MAC cells can be conveniently organized

into a pair of even and odd filter blocks. These even and odd

filter blocks, which receive the even and odd numbered input

Stage 2

Stage 1

Level 7
Level 6
Level 5
Level 4
Level 3
Level 2

ta tctb
Fig. 5. Synchronization scheme for a 128-point (J=7) DWT computation using length-4 (L=4) FIR filter.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

samples, respectively, employ L/2-MAC-cell networks, and

each produces only L/2 product terms and their sums. The

partial sums from the two networks are required to be added in

an accumulation block by using a carry propagation adder

(CPA), as shown in Fig. 7. Since the delay of the accumulate

block is comparable to that of the L/2-MAC-cell network, it is

useful to pipeline them for parallel computation. Since the

high-pass operation differs from that of the low-pass operation

only in reversing the sign of the even-numbered coefficients,

the proposed organization of the processing unit would allow

the filter block to use the same filter coefficients simply by

introducing a sign inversion block into the even filter block, as

shown in Fig. 7.

Demux

CPA

Odd
filter
block

Accumulation
block

+/−

Latch block for filter
coefficients

Latch
Latch

Latch

Even filter
block

L/2-
MAC-cell
network

L/2-
MAC-cell
network

)()(
1 ,, j

i
j

i CC +L

L,,,,
)1(

1

)1(

1

)1()1(+

+

+

+

++ j

k

j

k

j

k

j

k DCDC

h2 hL-2h0

hL-3 h1hL-1
…

…

Mux

)(, j
iCL

)(
1,
j

iC +L

+

Fig. 7. Block diagram of the processing unit for L-tap filtering computation

assuming L to be an even number.

As discussed earlier and seen from Fig. 6, all the output data

must be synchronized in accordance with Algorithm 1. This

synchronization process is facilitated by introducing in stage 2

a buffer, which stores output data from the two stages and

provides input data to stage 2. According to Step 2 of the

synchronization scheme, during the time span ta, the number of

samples that need to be stored for the operation of stage 2

increases until nc+1. However, this number will not exceed

nc+1 during the time spans tb and tc, since the number of

samples newly produced by stage 1 and 2 is equal to or less than

that consumed by stage 2. Thus, the minimum capacity of the

buffer for the operation of stage 2 is nc+1 registers. Since the

number of output samples at a level that would be needed to

compute an output sample at the next higher level will not

exceed the filter length L, the buffer, therefore, is divided into

k=(nc+1)/L channels, as shown in Fig. 8. Each channel

consists of L shift registers except channel k that only has (nc+1

mod L) registers, where (a mod b) is the remainder on division

of a by b. Channel 1 is used for storing only the level-1 samples

produced by PU1, whereas channel j=2,...,k for the level-j

samples during tb and tc, and would also be used for storing the

level-1 samples during ta. Note that channel 2 is also chosen to

store the samples of the remaining levels j≥k since the time slot

that all the level-2 samples have been consumed.

L

(nc+1 mod L)

Channel 1

Channel k

· · ·

· · ·

Channel 2

Shift
register

To
PU2

Mux

Mux

. . .

From
PU2

From
PU1

...

· · ·

Demux

...

L

L

Fig. 8. Structure of the buffer.

C. Design of L/2-MAC-cell Network

In the processing unit shown in Fig. 7, each physical link

from a given input bit to an output bit of an L/2-MAC-cell

network gives rise to a channel or data path having a delay that

depends on the number and the types of operations being

carried out along that path [23]. Thus, it is crucial to aim at

achieving the shortest critical data path when designing an

L/2-MAC-cell network for our architecture. In order to have a

better appreciation of the operations of an L/2-MAC-cell

network, let us consider an example of the filtering operation of

one such network with L/2=2. Let us assume that the input

samples and the filter coefficients have the wordlengths of 6

and 3, respectively. Each MAC-cell network has 6 partial

products, with a total of 36 bits, which can be produced in

parallel, as shown in Fig. 9(a). Our objective is to design a

MAC-cell network, in which the bits of the partial products are

accumulated in such a way as to optimize the delays of the data

paths from the individual bits of the partial products to the

output bits of the MAC-cell network.

Even though all the bits of the partial products as given by

the array shown in Fig. 9(a) are available simultaneously, they

cannot be used in parallel to produce simultaneously all the bits

of an output sample. The reason for this is that the processes of

accumulation of the bits in each column of the array of the

partial products have to be carried out bit-wise and at the same

time one has to take care of the propagations of the carry bits. In

other words, the accumulation of the partial products has to be

carried out in a certain sequence. Thus, the task of

accumulation can be divided into a sequence of layers such that

the operations of the first layer depend only on the partial

products bits and those of the succeeding layers depend on the

partial product bits not yet used as well as on the bits of the

results of the preceding layers. In order to meet our goal of

minimizing the critical path from a partial product bit to a bit of

the output sample, we can organize the layers of the MAC-cell

network that would carry out the accumulation of the partial

products based on the following guiding principle. Minimize

the number of layers while minimizing the delay of each layer.

The number of layers can be minimized by assigning to each

layer the maximum number of such tasks that can be performed

independent of each other in parallel. The accumulation task in

each layer can be performed by using full-adder (3:2) and

double-adder (2×2:3) modules, as shown in Fig. 9(b). The two

types of module are chosen, since (i) their delays are about the

same so that the delay of any layer can be made to be equal to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

this delay irrespective of whether the layer uses one type or two

types of modules, and (ii) the two modules can be used together

in such a way so that they produces of a smaller number of the

propagating carry bits, and therefore, their combined use helps

in reducing the number of layers.

Two 6-bit
samples

Two 3-bit
coefficients

Array of partia l product
bits

××
Carry Sum1 Sum2

Double-adder
(2×2:3)

Full-adder (3:2)

Carry Sum

Partial
product bit

Sum bit

Carry bit

Output bits to next stage

Layer2

Layer3

Layer1

Array of partia l

product bits

(a)

(b)

(c)
Fig. 9. (a) Formation of an array of partial products. (b) Two types of bit-wise

adders. (c) A layered organization of bit-wise addition using the two modules

in (b).

With the choice of the combination of the full-adders and

double-adders, the first layer can be formed by using as many

modules as necessary with the maximum number of partial

product bits being utilized as 3-bit or 4-bit inputs to the

respective modules. Scanning the partial product array from

right to left, a maximum number of bits of this array are first

used as inputs to as many full-adder modules as necessary,

since in comparison to a double-adder this module is more

efficient in consuming the bits of the input array. In this process,

whenever in a column (i) only two bits of the partial product

array are left unused, these two bits along with a pair of bits

from the neighbouring left column of the array are used as

inputs to a double-adder modules, and (ii) only one bit of the

partial product array is left unused, then this bit is used in the

next layer for accumulation. Note that the case of using a

double-adder also helps in propagating two carry bits, one

internal and the other external to the adder, to the left within the

same time delay as that of the full-adder. The next layer can

then be formed again by using as many modules as necessary

with inputs from the partial product bits, still unused, and the

sum and carry output bits from the previous layers being

utilized in a carry-save manner. This process can be continued

until after the last layer when all the bits of an output sample are

produced.

Based on the principles and the procedure enunciated above,

we can now give formally an algorithm, Algorithm 2, which

carries out the organization of a MAC-cell network, given L/2

input samples and L/2 filter coefficients. Fig. 9(c) gives an

illustration of the organization of the adder modules into three

layers of a MAC-cell network for the example considered

earlier. It is seen from this figure that the delay of the critical

path is equal to that of three full-adders for this particular

example.

Algorithm 2: Organizing the bit-wise modules of the MAC-cell network

Initialize an NI(k)×MI array AI of partial product bits from the L/2 X-bit

samples and L/2 Y-bit filter coefficients, where MI=X+Y−1 and

I

I

MkYX

YXkYX

YXk

LkYX

LYX

kL

kN

≤≤

−≤≤

−≤≤









⋅−+

⋅=

),max(

1),max(),min(

1),min(1

2/)(

2/),min(

2/

)(

While NI(k)≥3 for any 1≤k≤MI

Initialize the elements of an NO(k)×(MI+1) array AO by NO(k)←zeros for

k=1,…,MI+1

 For every column i=MI ,…,2,1

 While NI(i)≥3

Assign 3 bits, AI[NI(i)− −,i], AI[NI(i)− −,i], AI[NI(i)− −,i], as inputs

to a full-adder

Append one sum bit to AO[++NO(i),i], and one carry bit to

AO[++NO(i−1),i−1] in AO

 End while

 If NI(i)=2 and NI(i−1)≥2 then

Assign 2×2 bits, AI[NI(i−1)− −,i−1], AI[NI(i−1)− −,i−1], AI[NI(i)−

−,i], AI[NI(i)− −,i], as inputs to a double-adder

Append two sum bits to AO[++NO(i),i], AO[++NO(i−1),i−1], and

one carry bit to AO[++NO(i−2),i−2] in AO

 Else

Carry forward unused bits AI[NI(i)− −,i] to AO[++NO(i),i] in AO

 End if

 End for

AI←←←←AO

End while

End algorithm

Using Algorithm 2, a generalized structure for the MAC-cell

network, as shown in Fig. 10, can be generated with L/2 X-bit

samples and L/2 Y-bit filter coefficients as inputs to the network.

Layer0 produces a total of 2/LYX ⋅⋅ partial product bits. The

accumulations of these partial product bits are carried out

successively by a set of layers of adder modules. A variable size

array is used as input to each layer. This array initially contains

only the partial product bits, and for successive layers, it

contains the sum and carry bits from the previous layers and the

partial product bits still unused. An input to a layer that consists

of a partial product bit or a sum bit is shown in the figure by an

arrow going down vertically into the layer, whereas an input

that consists of a carry bit is shown by an arrow going down

leftward. The MAC-cell network has a total of

Z=log3/2[min(X,Y)·L/4] layers, which is the minimum number

of layers with the choice of using the maximum number of

full-adders followed by, if necessary, the double-adders in each

layer. The number of adder modules used for each layer

progressively decreases from Layer0 to LayerZ. The output bits

of the MAC-cell network are then used by the accumulation

block of the processing unit to produce the final sum. In above

design of the MAC-cell network, optimization of its critical

path is carried out by incorporating and arranging the multiply

and accumulate operations into multiple layers. This leads to a

network that has a critical path with a smaller delay than the

delay of the MAC cell used in DSP processors, in which the

delay of the critical path is simply the sum of the delays

associated with a multiplier and an accumulator. The critical

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

path of the MAC-cell network could be shortened further by

encoding the input data to the MAC-cell network using booth

encoders. Thus, the delay of the MAC-cell network is reduced

by making a smaller number of carry bits to propagate through

the MAC-cell network. However, such an improvement can be

achieved with an expense of additional hardware resources to

be used for encoders.

V. PERFORMANCE EVALUATION AND FPGA IMPLEMENTATION

In order to evaluate the performance of the architecture

resulting from the proposed scheme, we need to make use of

certain metrics that characterize the architecture in terms of the

hardware resources used and the computation time. The

hardware resources used for the filtering operation are

measured by the number of multipliers (NMUL) and the number

of adders (NADD), and that used for the memory space and

pipeline latches is measured by the number of registers (NREG).

The computation time, in general, is technology dependent.

However, a metric, that is independent of the technology used

but can be utilized to determine the computation time T, is the

number of clock cycles (NCLK) consumed from the instant the

first sample is inputted to the last sample outputted assuming a

given clock cycle period, say unity, as the latency of a MAC

cell.

For a J-level DWT computation of an N-sample sequence

using L-tap filters, the expressions for the metrics mentioned

above for various architectures are summarized in Table II.

Assuming that the number of samples N is much larger than J·L,

it is seen from the table that compared to the architecture of [17],

all the other architectures, including the proposed one, require

approximately twice the number of clock cycles, except the

architecture of [14], which requires four times as many clock

cycles. This performance of [17] is achieved by utilizing the

hardware resources of adders and multipliers that is four times

that required by the architecture of [14] and twice that required

by any of the other architectures. However, if the value of J·L

cannot be neglected in comparison to that of N, the values of N,

J and L should be taken into consideration while comparing the

architectures in terms of NCLK. In this regard, only for the

proposed architecture and the architecture of [18], NCLK is

independent of the filter length with the proposed architecture

giving the lowest value of NCLK for a given N. The proposed

architecture requires the number of registers that is at least 20%

less than that required by any of the other architectures when

the filter length L is large. It should be noted that approximately

20% of the hardware resource comprises registers.

TABLE II

COMPARISON OF VARIOUS ARCHITECTURES

Architecture NMUL NADD NREG NCLK

Parallel [13] 2L 2L−2 JL+4L N+JL

Systolic [14] L L−1 2JL+L+2 2N+2JL

Pipelined

[17] ∑
=

− 






J

k
k

L

1
2

2

∑

=
− 






J

k
k

L

1
22

2JL+J+

∑
=

− 






J

k
k

L

1
22

N/2+JL/

2

DRU [18]

∑
=

− 






J

k
k

L

1
12

 ∑
=

− 





J

k
k

L

1
12

−

1

JL+2J+

 ∑
=

−
J

k

k
L

1

12/

N+2J

IP core [19]  4/LJ ⋅  2/LJ ⋅ 2JL+2J N+JL

Proposed 2L 2L−2 4L+nc+1 N+J

Since the area of the circuit for the DWT computation

depends on the filter length L and the total number of samples

N, it would be useful to have a measure of the area of the circuit

as functions of L and N. Only the proposed architecture and

those of [13] and [18] are used for this study, since the numbers

of multipliers and the numbers of adders for these architectures

are the same. Thus, any difference in the areas of the three

architectures could be accounted for due mainly to the

difference in the number of the registers used by each of the

architectures. As seen from Table II, the number of registers for

the architecture of [13] is (J+4)L and that for the architecture of

[18] is approximately JL+2J+2L=(J+2)L+2J. However, the

number of registers for the proposed architecture not only

depends directly on the filter length L but also indirectly on L

and N through the parameter nc. These dependencies are

intuitively obvious from the fact that as the filter length or the

number of samples increases, the starting point of stage 2 gets

more delayed. In other words, nc is increased. However, it is

seen from this figure that the dependence of nc on N is relatively

much more non-linear than its dependence on L. The results of

Fig. 11 can be used to obtain a measure of the area of the

proposed architecture as functions of L and N. We estimate the

areas of the proposed architecture along with that of the other

two architectures under the assumption that the ratio of areas of

one multiplier, one adder and one register is 12:3:1. The plots of

the estimates of the areas as functions of L and N are shown in

Fig. 12. It is obvious from this figure that area of the proposed

architecture is, in general, lower than those of the other two

architectures. The lower area of the proposed architecture can

be attributed due mainly to the presence of the parameter nc in

its expression for the NREG. Recall that nc is a parameter that we

minimized in the design of the proposed architecture in order to

maximize the parallelism between the two stages, and a lower

value of nc, in turn, results in smaller number of registers

required to store the results of the operations of stage 1 before

the operation of stage 2 starts.

Considering the clock cycle period Tc as the delay of the

MAC cell used by an architecture, the computation time can be

obtained as T=NCLKTc. Note that the reciprocal of Tc is simply

the throughput of the architecture assuming that one sample is

Ci+L-2
(j) . . . Ci+2

(j) Ci
(j)

...

…

. . . h0/hL-1
h2/hL-3

L/2 input samples

Output bits

. . .

Layer0
Partial products generator

. . .

Layer2

LayerZ

hL-2/h1

. . .

Layer1

Fig. 10. Structure of the L/2-MAC-cell network.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

inputted during each clock cycle. Using T, one can determine

the area-time complexity, AT, where the area, A, mainly

comprises the areas of the multipliers, adders and registers. In

order to evaluate the performance of the architectures in terms

of Tc and AT, we consider an example of designing a circuit for

the DWT computation where the sample size N=128 and the

number of the decomposition levels J=7. We use Daubechies

6-tap filter (L=6) as analysis filters and the sample and filter

coefficient wordlengths are taken as 8 bits. The carry

propagation adder of the processing unit utilizes the structure of

a combination of carry-skip and carry-select adders [24]. The

registers are designed using D-type flip-flops (DFF). All the

modules, such as partial products generator, DFF, full-adder,

double-adder, multiplexer and demultiplexer, used in the

proposed architecture are designed by using 0.35-micron

CMOS technology and simulated by using HSpice to obtain the

delays. Note that these same modules are also used to evaluate

the performance of all the other architectures. Table III shows

the values of the clock cycle period and the area-time

complexity for the various architectures. It is seen from this

table that the proposed architecture has significantly smaller

value of the clock cycle period compared to that of all the other

architectures. The proposed architecture has the highest

throughput of 138 MBPS (megabytes per second) and the

lowest area-time complexity, among all the architectures

considered.

In order to estimate the power consumption of the proposed

architecture, an example of the proposed architecture is

constructed for a 7-level DWT computation of 8-bit samples

using 6-tap filters and simulated at a clock frequency of 138

MHz using Synopsys Power Compiler. The resulting power

consumption values are 154.2 mW and 67.6 mW using

0.35-micron (VDD = 3.3 V) and 0.18-micron (VDD = 1.8 V)

technologies, respectively.

In order to have a fair comparison of the power consumption

performance of different architectures, the circuit complexities

and the technologies used for the circuit design of the

architectures under consideration must be the same. In this

regard, estimates of the power consumption for the

architectures listed in Table III are either unavailable or, if

available, the underlying architectures have been designed with

substantial differences in the circuit complexities and process

technologies. Despite this difficulty in carrying out a fair

comparison of power consumption of architectures, we

compare the estimated power consumption of the proposed

architecture with that given in [25]. The architecture of [25] is

also a pipeline architecture that uses the same filter core as that

used in [19] of Table III. In [25], an example of the architecture

using 9/3 filters and 9-bit samples has been constructed, and

simulated for an operation at 100 MHz clock frequency using a

0.35-micron technology. The resulting power consumption

figure is 325 mW. This value of power consumption is more

than twice the value of 154.2 mW obtained from the example of

the proposed architecture in 0.35-micron technology, which is

constructed by employing 6-tap filters operating on 8-bit

samples at 138 MHz clock frequency.

 In order to verify the estimated results for the example of the

DWT computation considered above, an implementation of the

circuit is carried out in FPGA. Verilog is used for the hardware

description and Xilinx ISE 8.2i for the synthesis of the circuit

on Virtex-II Pro XC2VP7-7 board. The FPGA chip consists of

36×36 arrays with 11,088 logic cells and it is capable of

operating with a clock frequency of up to 400 MHz. The

implementation is evaluated with respect to the clock period

(throughput) measured as the delay of the critical path of the

MAC-cell network, and the resource utilization (area)

measured as the numbers of configuration logic block (CLB)

slices, DFFs, look-up tables (LUTs) and input/output blocks

(IOBs). The resources used by the implementation are listed in

Table IV. The circuit is found to perform well with a clock

period as short as 8.7 ns, a value that is reasonably close to the

estimated value of 7.2 ns. The power consumption of the FPGA

chip on which the designed circuit implemented is measured to

be 105 mW (VDD=1.5 V). Thus, the simulated value of 67.6

mW is reasonably realistic for power consumption for the

circuit realizing the proposed architecture, considering the

measured value of the power consumption also includes the

power dissipated by the unused slices in FPGA.

TABLE IV

RESOURCES USED IN FPGA DEVICE

Resource Number

used

Total number

available

Percentage

used

CLB Slices 1532 4928 31%

Flip Flop Slices 858 9856 8%

4-input LUTs 2888 9856 29%

Bonded IOBs 38 248 15%

8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

nc

N
4 6 8 10 12 14 16 18

15

20

25

30

35

40

45

50

nc

L
(b)(a)

Fig. 11. Estimated values of nc. (a) nc vs. L (N=28), and (b) nc vs. N (L=16).

4 6 8 10 12 14 16 18
1

2

3

4

5

6

7

A

L

DRU
Parallel
Proposed

×102

8 16 32 64 128 256 512 1024

5.0

5.5

6.0

6.5

7.0

×102

A

N

DRU
Parallel
Proposed

(a) (b)
Fig. 12. Estimated areas of the three architectures. (a) A vs. L (N=28), and (b) A

vs. N (L=16).

TABLE III

EVALUATION OF VARIOUS ARCHITECTURES

Architecture Tc (ns) A·T

Parallel [13] 17.8 243

Systolic [14] 11.8 141

Pipelined [17] 11.8 183

DRU [18] 10.2 117

IP core [19] 11.8 159

Proposed 7.2 62

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

VI. CONCLUSION

In this paper, a scheme for the design of a pipeline

architecture for a real-time computation of the 1-D DWT has

been presented. The objective has been to achieve a low

computation time by maximizing the operational frequency

(1/Tc) and minimizing the number of clock cycles (NCLK)

required for the DWT computation, which in turn, have been

realized by developing a scheme for an enhanced inter-stage

and intra-stage parallelisms for the pipeline architecture.

A study has been undertaken that suggests that, in view of the

nature of the DWT computation, it is most efficient to map the

overall task of the DWT computation to only two pipeline

stages, one for performing the task of the level-1 DWT

computation and the other for performing that of all the

remaining decomposition levels. In view of the fact that the

amount and nature of the computation performed by the two

stages are the same, their internal designs ought to be the same.

There are two main ideas that have been employed for the

internal design of each stage in order to enhance the intra-stage

parallelism. The first idea is to decompose the filtering

operation into two subtasks that operate independently on the

even and odd numbered input samples, respectively. This idea

stems from the fact that the DWT computation is a

two-subband filtering operation, and for each consecutive

decomposition level, the input data are decimated by a factor of

two. Each subtask of the filtering operation is performed by a

MAC-cell network, which is essentially a two-dimensional

array of bit-wise adders. The second idea employed for

enhancing the intra-stage parallelism is to organize this array in

a way so as to minimize the delay of the critical path from a

partial product input bit to a bit of an output sample through this

array. In this paper, this has been accomplished by minimizing

the number of layers of the array while minimizing the delay of

each layer.

In order to assess the effectiveness of the proposed scheme, a

pipeline architecture has been designed using this scheme and

simulated. The simulation results have shown that the

architecture designed based on the proposed scheme would

require the smallest number of clock cycles (NCLK) to compute

N output samples and a reduction of at least 30% in the period

of the clock cycle Tc in comparison to those required by the

other architectures with a comparable hardware requirement.

An FPGA implementation of the designed architecture has

been carried out demonstrating the effectiveness of the

proposed scheme for designing efficient and realizable

architectures for the DWT computation. Finally, it should be

pointed out that the principle of maximizing the inter-stage and

intra-stage parallelisms presented in this paper for the design of

architecture for the 1-D DWT computation is extendable to that

for the 2-D DWT computation.

REFERENCES

[1] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet

representation,” IEEE Trans. Pattern Analysis and Machine Intell., vol.

11, no. 7, pp. 674−693, Jul. 1989.

[2] J. Chilo and T. Lindblad, “Hardware implementation of 1D wavelet

transform on an FPGA for infrasound signal classification,” IEEE Trans.

Nuclear Science, vol. 55, no. 1, pp. 9−13, Feb. 2008.

[3] S. Cheng, C. Tseng, and M. Cole, “Efficient and effective VLSI

architecture for a wavelet-based broadband sonar signal detection

system,” in Proc. IEEE 14th Int. Conf. Electronics, Circuits and

Systems(ICECS), Marrakech, Morocco, Dec. 2007, pp. 593−596.

[4] K.G. Oweiss, A. Mason, Y. Suhail, A.M. Kamboh, and K.E. Thomson, “A

scalable wavelet transform VLSI architecture for real-time signal

processing in high-density intra-cortical implants ,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 54, no. 6, pp. 1266−1278, Jun. 2007.

[5] C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Architectures for

wavelet transforms: a survey,” J.VLSI Signal Process, vol. 14, no. 2, pp.

171−192, Feb. 1996.

[6] C. Huang, P. Tseng, and L. Chen, “Analysis and VLSI architecture for

1-D and 2-D discrete wavelet transform,” IEEE Trans. Signal Processing,

vol. 53, no. 4, pp. 1575−1586, Apr. 2005.

[7] M. Martina and G. Masera, “Multiplierless, folded 9/7-5/3 wavelet VLSI

architecture,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 9, pp.

770−774, Sep. 2007.

[8] A. Acharyya, K. Maharatna, B.M. Al-Hashimi, and S.R. Gunn, “Memory

reduction methodology for distributed-arithmetic-based DWT/IDWT

exploiting data symmetry,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.

56, no. 4, pp. 285−289, Apr. 2009.

[9] K.A. Kotteri, S. Barua, A.E. Bell, and J.E. Carletta, “A comparison of

hardware implementations of the biorthogonal 9/7 DWT: convolution

versus lifting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 5,

pp. 256−260, May 2006.

[10] C. Wang and W.S. Gan, “Efficient VLSI architecture for lifting-based

discrete wavelet packet transform,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 54, no. 5, pp. 422−426, May 2007.

[11] G. Shi, W. Liu, L. Zhang, and F. Li, “An efficient folded architecture for

lifting-based discrete wavelet transform,” IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 56, no. 4, pp. 290−294, Apr. 2009.

[12] A.S. Lewis and G. Knowles, “VLSI architecture for 2D Daubechies

wavelet transform without multipliers,” Electron. Lett., vol. 27, no. 2,

pp.171−173, Jan. 1991.

[13] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete

and continuous wavelet transforms: from single chip impelmentations to

mapping on SIMD array computers,” IEEE Trans. Signal Processing, vol.

43, no. 3, pp. 759−771, Mar. 1995.

[14] A. Grzesczak, M.K. Mandal, and S. Panchanathan, “VLSI

implementation of discrete wavelet transform,” IEEE Trans. Very Large

Scale Integration Systems, vol. 4, no. 4, pp. 421−433, Dec. 1996.

[15] C. Cheng and K.K. Parhi, “High-speed VLSI implementation of 2-D

discrete wavelet transform,” IEEE Trans. Signal Processing, vol. 56, no.

1, pp. 393−403, Jan. 2008.

[16] S.S. Nayak, “Bit-level systolic imlementation of 1D and 2D discrete

wavelet transform,” IEE Proc. Circuits Devices Syst., vol. 152, no. 1, pp.

25−32, Feb. 2005.

[17] F. Marino, D. Guevorkian, and J. Astola, “Highly efficient

high-speed/low-power architectures for 1-D discrete wavelet transform,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 47, no. 12, pp. 1492−1502,

Dec. 2000.

[18] T. Park, “Efficient VLSI architecture for one-dimensional discrete

wavelet transform using a scalable data recorder unit,” in Proc.

ITC-CSCC, Phuket, Thailand, Jul. 2002, pp. 353−356.

[19] S. Masud and J.V. McCanny, “Reusable silicon IP cores for discrete

wavelet transform applications,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 51, no. 6, pp. 1114−1124, Jun. 2004.

[20] M. Vishwanath, “The recursive pyramid algorithm for the discrete

wavelet transform,” IEEE Trans. Signal Processing, vol. 42, no. 3, pp.

673−677, Mar. 1994.

[21] M. Ferretti and D. Rizzo, “Handling borders in systolic architectures for

the 1-D discrete wavelet transform for perfect reconstruction,” IEEE

Trans. Signal Processing, vol. 48, no. 5, pp. 1365−1378, May 2000.

[22] C. Zhang, C. Wang, and M. O. Ahmad, “An efficient buffer-based

architecture for on-line computation of 1-D discrete wavelet transform,”

in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing,

Montreal, Canada, May 2004, vol. 5, pp. 201−204.

[23] C. Zhang, C. Wang, and M.O. Ahmad, “A VLSI architecture for a

high-speed computation of the 1D discrete wavelet transform,” in Proc.

IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005, vol. 2, pp.

1461−1464.

[24] A. Satoh, N. Ooba, K. Takano, and E. D′Avignon, “High-speed MARS

hardware,” in Proc. 3rd AES conf., New York, USA, Apr. 2000, pp.

305−316.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

[25] S. Masud and J.V. McCanny, “Rapid design of diorthogonal wavelet

transforms,” IEE Proc. Circuits Devices Syst., vol. 147, no. 5, pp.

293−296, Oct. 2000.

Chengjun Zhang received the B.S degree and M.S.

degree in Physics from Nanjing University, Nanjing,

Jiangsu, China, in 1994 and 1997, respectively. He is

working toward the Ph.D. degree in the Department

of Electrical and Computer Engineering at Concordia

University, Montreal, QC, Canada.

 His research interests include signal processing,

architecture design, and VLSI implementation of

digital systems.

Chunyan Wang received the B. Eng. degree in

electronics from JiaoTong University, Shanghai,

China, and the M. Eng. and Ph.D. degrees from

Universite´ Paris Sud, Paris, France.

 She joined Concordia University, Montreal, QC,

Canada, in 1997, as an Assistant Professor, where she

is presently an Associate Professor of Electrical and

Computer Engineering.

 Her current research areas are low-power

analog-mixed VLSI design, CMOS sensor

integration, and VLSI implementation of digital

signal processing systems.

M. Omair Ahmad (S’69-M’78-SM’83-F’01)

received the B.Eng. degree from Sir George Williams

University, Montreal, QC, Canada, and the Ph.D.

degree from Concordia University, Montreal, QC,

Canada, both in electrical engineering.

 From 1978 to 1979, he was a member of the

Faculty of the New York University College, Buffalo.

In September 1979, he joined the Faculty of

Concordia University as Assistant Professor of

Computer Science. Subsequently, he joined the

Department of Electrical and Computer Engineering,

Concordia University, where he was the Chair of the department from June

2002 to May 2005 and is presently a Professor. He holds the Concordia

University Research Chair (Tier I) in Multimedia Signal Processing. He has

published extensively in the area of signal processing and holds four patents.

His current research interests include the areas of multidimensional filter

design, speech, image and video processing, nonlinear signal processing,

communication DSP, artificial neural networks, and VLSI circuits for signal

processing. He was a Founding Researcher at Micronet from its inception in

1990 as a Canadian Network of Centers of Excellence until its expiration in

2004. Previously, he was an Examiner of the Order of Engineers of Quebec.

 Dr. Ahmad was an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS PART I: FUNDAMENTAL THEORY AND

APPLICATIONS from June 1999 to December 2001. He was the Local

Arrangements Chairman of the 1984 IEEE International Symposium on

Circuits and Systems. During 1988, he was a member of the Admission and

Advancement Committee of the IEEE. He has also served as the Program

Co-Chair for the 1995 IEEE International Conference on Neural Networks and

Signal Processing, the 2003 IEEE International Conference on Neural

Networks and Signal Processing, and the 2004 IEEE International Midwest

Symposium on Circuits and Systems. He was General Co-Chair for the 2008

IEEE International Conference on Neural Networks and Signal Processing.

Presently, he is the Chair of the Montreal Chapter IEEE Circuits and Systems

Society. He is recipient of numerous honors and awards, including the Wighton

Fellowship from the Sandford Fleming Foundation, an induction to Provost's

Circle of Distinction for career achievements, and the award of Excellence in

Doctoral Supervision from the Faculty of Engineering and Computer Science

of Concordia University.

