
A Pipelined Architecture for Partitioned DWT Based
Lossy Image Compression using FPGA’s

Jörg Ritter
Institute for Computer Science

Martin-Luther-University Halle-Wittenberg
06120 Halle, Germany

ritter@informatik.uni-halle.de

Paul Molitor
Institute for Computer Science

Martin-Luther-University Halle-Wittenberg
06120 Halle, Germany

molitor@informatik.uni-halle.de

ABSTRACT
Discrete wavelet transformations (DWT) followed by embedded
zerotree encoding is a very efficient technique for image compres-
sion [2, 5, 4]. However, the algorithms proposed in literature as-
sume random access to the whole image. This makes the algo-
rithms unsuitable for hardware solutions because of extensive ac-
cess to external memory. Here, we present an efficient architecture
for computing DWT of images, which is based on a partitioned ap-
proach for lossy image compression [3]. The architecture achieves
its computational power by using pipelining and taking advantage
of the flexible memory configurations available in FPGA’s.

Categories and Subject Descriptors
I.4.2 [Image Processing and Computer Vision]: Compression
(Coding)—Approximate methods; B.2.1 [Arithmetic and Logic
Structures]: Design Styles—pipelining; B.7.1 [Integrated Cir-
cuits]: Types and Design Styles—Algorithms implemented in hard-
ware

General Terms
Design, Performance, Algorithm

Keywords
pipelining, wavelet transformation, architecture, embedded zero tree
coding, FPGA, lossy image compression, field programmable gate
arrays, Xilinx

1. INTRODUCTION
Discrete wavelet transformation (DWT) of an image results in a

compact multi-scale representation of the image. For detailed in-
formation on wavelet transformation we refer to [2]. The wavelet
transformed image can be seen as a multi-rooted directed tree. Each
node of the tree corresponds to a pixel of the multi-scale representa-
tion. The tree is defined in such a way that each node v has either no
offspring or four offspring which are a ”refinement” of node v (see

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, CA, USA
Copyright 2001 ACM 1-58113-341-3/01/0002 ..$5.00

Figure 1). An excellent choice to encode such wavelet transformed
images is applying embedded zero tree (EZT) algorithms which are
iterative procedures [5, 4]. In the ith iteration, they start by encod-
ing the roots of the tree, i.e., the tree nodes in which normally most
of a wavelet transformed image’s energy is concentrated. Then for
each pixel of this level, the corresponding subtree is considered. If
all the nodes of the subtree are insignificant with respect to the ith

threshold Ti, then the offspring of the pixel are not encoded and the
subtree is pruned away. If the subtree is not such a zerotree with
respect to Ti, the offspring are encoded and the procedure is recur-
sively applied to the offspring. Here, a pixel of the wavelet trans-
formed image is called insignificant with respect to a threshold Ti
if its magnitude is smaller than Ti. A subtree is called zerotree with
respect to Ti, if all its nodes are insignificant with respect to Ti. The

Figure 1: Tree Structure of a wavelet transformed image.

test as to whether a subtree is a zerotree can only be done by consid-
ering all the nodes of the subtree until a significant pixel is found.
Thus, all pixels of a subtree have to be considered in the worst case.
Thus, the EZT algorithms assume that they can efficiently access all
the pixels of the image to be encoded. This makes them unsuitable
for hardware solutions, in particular for FPGA implementations if
the whole image cannot be stored in the internal memory. In [3]
we have presented a partitioned approach to perform DWT compu-
tations, allowing efficient calculation of the EZT algorithm using
programmable hardware. We have discussed a FPGA implementa-
tion for lossless image compression.

In this paper, we present an efficient FPGA implementation of
the two-dimensional DWT (2D-DWT) for lossy image compres-
sion. In particular, the hardware architecture proposed allows com-
pression ratios comparable to software implementations and guar-
antees, that no block artefacts are introduced. The paper is struc-
tured as follows. In Section 2, we give some basic notations. Sec-
tion 3 and 4 summarize the partitioned approach for lossless and
lossy image compression. Section 5 handles a hardware architec-
ture for computation of DWT for lossy image compression, which
is the main contribution of our paper. The paper closes with some
conclusions.

201

2. BASIC NOTATIONS
We consider a n � n image as two-dimensional pixel array I

with n rows and n columns and assume a c-bit greyscale resolu-
tion. Furthermore, we assume without loss of generality that the
equation n = 2k holds for some positive integer k.

Partitioning an image I into (n
q
)2 quadratic subimages

I(0;0); : : : ; I
(n
q
�1;n

q
�1)

of size q with q = 2r for some positive integer 0 � r < k results
in subimages with

I(s;t)[i; j] = I[s � q + i; t � q + j]

for all 0 � s; t < n
q

and 0 � i; j < q.
Furthermore, let DWT (I) denote the wavelet transformed im-

age I. We abbreviate I(s;t)[i; j] and I[l; k] with p
(s;t)
i;j and pl;k,

respectively. H(I) denotes the first order entropy of image I and
is defined as

H(I) = �
X
i;j

P (pi;j) � log P (pi;j)

with apriori probabilities

P (pi;j) =

P
l;k(pi;j == pl;k)

n2
:

3. PARTITIONED APPROACH FOR LOSS-
LESS IMAGE COMPRESSION

The basic idea to save external memory accesses is to partition
the image to be encoded into subimages, which can be stored in
internal memory. Thus the major task is to design compression
algorithms which wavelet transform and encode these subimages
without extensive external memory access.

Lossless image compression of partitioned images is quite easy.
The subimages I(s;t) can be wavelet transformed independently of
the other subimages. Of course, the resulting transformed image
DWT q(I) which is composed by

DWT (I(0;0)); : : : ; DWT (I
(n
q
�1;n

q
�1)

)

differs from the conventionally transformed image DWT (I). How-
ever, reversibility is ensured. Note that this simple hardware solu-
tion works for lossless image compression as no quantization takes
place. Figure 2 illustrates this simple approach and demonstrates
the potential to parallelize the computation of the wavelet transfor-
mation.

Figure 2: Partitioned wavelet transformation for lossless image
compression.

According to the chosen partition size q 2 f16; 32; 64g comput-
ing up to five levels of transformation is possible and reasonable.

After having applied the partitioned wavelet transformation, we can
apply an EZT algorithm on each partition. Thus, random access is
only necessary on the subimage itself which is stored in internal
memory. This makes the partitioned approach suitable for a FPGA
hardware implementation.

To quantify the effectiveness of the approach, we have measured
the first order entropy of both, the conventionally wavelet trans-
formed image DWT (I) and the partitioned wavelet transformed
image DWT q(I) after four levels of transformation. We used the
integer-to-integer (5,3)-wavelet [2]. We have applied this particular
wavelet because of its very simple filter operations

di = p2i+1 �
jp2i + p2i+2

2

k
(1)

si = p2i +

�
di + di�1

4

�
(2)

when using the lifting scheme [7]. pj denotes the jth pixel in the
row (column) just under consideration. Note that these two filters
can be implemented by additions and shifts. During the transforma-
tion steps, modular arithmetic units as proposed by Chao et.al [1]
are used. Thus, the transformed image also has c-bit greyscale res-
olution. Boundary treatment has been done by reflection at im-
age/partition boundaries. The benchmarks used are 8-bit greyscale
images of size 512�512, i.e., c = 8 and n = 512. The size of the
subimages has been set to 32.

Table 1 summarizes the results. The first column specifies the
image under consideration. The second, third, and fourth column
give the first order entropy of the original image I, the conven-
tionally wavelet transformed image DWT (I), and the partitioned
wavelet transformed image DWT32(I), respectively. We observe
that the first order entropy of a partitioned wavelet transformed im-
age is only slightly higher than the first order entropy of the con-
ventionally wavelet transformed image. This small difference is
caused by the reflection at partition boundaries. Thus, the hard-
ware solution proposed allows compression ratios comparable to
those guaranteed by wavelet based software solutions.

Table 1: First order entropy H(I)

name I DWT (I) DWT 32(I)
airplane 6.70589 4.27120 4.31654
baboon 7.35795 6.16280 6.19905
goldhill 7.47778 4.90245 4.94677
lena 7.44551 4.42375 4.48359
peppers 7.59245 4.73790 4.77402

3.1 FPGA implementation
In order to obtain experimental data on the computation time of

the hardware approach just presented, we have implemented the
partitioned wavelet transformation on a FPGA prototyping board
equipped with a XC4085XLA-HQ240-09 and 2MB external SRAM.
After investigation of several implementation alternatives [6], we
have decided on an implementation which parallelizes the trans-
formation of one subimage by interlocked computation of the low-
and high-pass coefficients. Furthermore, filtering and access to the
external SRAM have been shared during the computation of the
first level (the whole image is first transfered from the PC to the
SRAM of the prototyping card). We achieved clock rates in an or-
der of magnitude of 20 MHz which result in a computation time for

202

wavelet transformation of a 512�512 image of less than 0.02 sec-
onds. Most of the running time is due to huge routing delays caused
by the relative large internal memory blocks in the XC4085XLA.
We suppose that the hardware solution can be still more speeded
up if no restrictions have to be made for the fixed input/output port
restrictions of the FPGA board or an FPGA with embedded block
RAM is taken as target device. Using such new devices the routing
of the address lines will not be the determining factor anymore.

4. LOSSY IMAGE COMPRESSION
If stronger requirements on transmission time or storage space

are postulated, higher compression ratios are needed. The only way
to meet these requirements is allowing loss of information. This is
usually done by quantization after the wavelet transformation had
taken place. If we apply the approach presented in the previous
section, namely transforming each subimage independently of the
neighboring subimages by simply using reflection at the bound-
aries of the subimage, we obtain block artifacts known from JPEG-
compressed images [9].

Figure 3: Image transformed by the partitioned DWT algo-
rithm presented in Section 3 and EZT compressed by a factor
of 20.

Figure 3 shows a 512�512 8-bit greyscale image DWT32(I)
obtained by applying the partitioned DWT algorithms presented in
the previous section. The image was compressed by a factor of 20
using a non optimized EZT algorithm without a subsequent arith-
metic or huffman coder. Although this compression ratio could
be improved while preserving the same image quality, the figure
shows that reflection at partition boundaries is no longer feasible
because of the block artefacts.

Our objective is that the partitioned compressed image does not
differ from the conventionally compressed image. Figure 4 shows
the image compressed by a factor 25 if the original image is trans-
formed by a non-partitioned DWT algorithm and compressed by a
factor 25 by a EZT algorithm. This emphasizes the necessity not to
use reflection at partition boundaries, but to work with the original
pixels.

Let us examine which pixels have to be considered in order to
compute the low- and high-pass coefficients of the (5,3)-wavelet
transformation already applied in Section 3. By resolving Equa-
tions 1 and 2, we obtain

di=�
1

2
p2i + p2i+1 �

1

2
p2i+2 (3)

sn=�
1

8
p2i�2 +

1

4
p2i�1 +

3

4
p2i +

1

4
p2i+1 �

1

8
p2i+2: (4)

Figure 4: Image transformed by the non-partitioned DWT al-
gorithm and EZT compressed by a factor of 25.

Now, take a look at a pixel row R of length 16 which consists of
pixels p0; : : : ; p15. The pixel row is transformed in a new 16-bit
pixel row consisting of 8 low-pass coefficients s0; : : : ; s7 and of 8
high-pass coefficients d0; : : : ; d7. These coefficients depend on the
pixels p

�2; p�1; p0; p1; : : : ; p15; p16. Note that in the partitioned
approach proposed in Section 3 the pixels p

�2, p
�1, and p16 are

not available in the internal memory. Thus, in order to compute
the coefficients s0; : : : ; s7 and d0; : : : ; d7, the transformation has
to look out over the right and left boundary of the pixel row R by
one and two pixels, respectively. In the following transformation
levels further pixels from outside of the pixel row R have to be
accessed. After four levels of transformation, the wavelet transfor-
mation of the 16-bit pixel row R has to look out over the left and
right boundary by 30 and 15 pixels, respectively. Unfortunately, it
is too expensive to simply store all these ”external” pixels in the in-
ternal memory, too. This would result in an internal memory with a
capacity which is more than 14 times larger than the internal mem-
ory used till now because a subimage of size 61 � 61 has to be
stored. We have decided on another approach and will illustrate it
in the following section.

5. THE PIPELINED ARCHITECTURE FOR
LOSSY IMAGE COMPRESSION

Before we explain the architecture in detail we have to address
the given environment. Our experiments are based on a prototyping
PCI-card, equipped with a Xilinx-FPGA XC4085XLA-09-HQ240
and external 2MB SRAM as already mentioned in Section 3.1. The

FPGA

PCI - Interface

R
A

M

Clock &
Support

C
on

ne
ct

or

PCI, 33 Mhz, 32 Bit

64

64

Local bus,
40 Mhz, 32 Bit

Figure 5: environment of the prototyping card

203

FPGA is connected to the PCI bus trough a 32-bit wide local bus
with a maximum frequency of 40MHz. The external SRAM lo-
cated on the prototyping card is connected via a 36-bit wide bus and
21-bit address lines and several control signals. Figure 5 illustrates
the given environment. The pixels of an image can be transfered to
the FPGA in a data stream with 4 pixels at one clock cycle, if we
consider at most 8-bit greyscale or 24-bit color images (each color
channel is transformed independently of the other). The maximal
throughput is therefore given as 152Mbyte per second and already
bounded by the maximal throughput of the PCI bus of 132Mbyte/s.

The proposed architecture for the partitioned 2D-DWT mainly
consists of two one-dimensional DWT units (1D-DWT) for hori-
zontal and vertical transformations, a control unit realized as a fi-
nite state machine, and an internal memory block. For illustration
see Figure 6. To process a subimage, all rows are transfered to the

PC

pipelined

hor. 1D-DWT

pipelined

vert. 1D-DWT

control

internal
memory

(RAM, FIFO’s)

FPGA

d(4)
i

s(4)
i

d(3)
i

d(2)
i

d(1)
i

Figure 6: block diagram of the proposed architecture

FPGA via the PCI bus and transformed on the fly in the horizontal
1D-DWT unit using pipelining (see Section 5.1). The coefficients
computed in this way are stored in internal memory of different
types. The coefficients corresponding to the rows of the subimage
itself are stored in single port RAM. The others are shifted into
the fifo’s (see Section 5.3). Now the vertical transformation lev-
els can take place. This is done by the vertical 1D-DWT unit (see
Section 5.2). The control unit coordinates these steps in order to
process a whole subimage and is responsible for generating enable
signals, address lines, and so on.

At the end, the wavelet transformed subimage is available in the
internal RAM. At this point an EZT-algorithm can be applied to
the multi-scale-representation of the subimage. Since all necessary
boundary information was included in the computation, no block
artefacts will be introduced by the following quantization.

The following sections describe the particular units, in detail.

5.1 Horizontal DWT unit
As opposed to the conventional 2D-DWT where horizontal and

vertical 1D-DWT alternate, we compute first all four horizontal
transformation levels. This allows a pipelined approach because
the intermediate results do not have to be transposed. The whole
horizontal transformation is done for the 16 rows of the subim-
age under consideration. In addition, 30 rows of the neighboring
subimage in the north and 15 rows of the southern subimage are
transformed in the same manner. These additional computations
are required by the vertical DWT applied next.

As already mentioned this unit has to take four pixels of a row at
each clock cycle and must perform 4 levels of horizontal transfor-
mations. Figure 7 illustrates that the unit consists of four pipelined
stages, one for each transformation level. The module 4i4o used in
the first and second level will be described in Section 5.1.2. The
module 1i2o is presented in Section 5.1.1, in detail.

The data throughput is mainly dominated by the first stage, since
the number of coefficients is down sampled to half after each level
of transformation. Therefore the first and second level are per-
formed by a module with higher throughput than the following two
levels. The first and second stage outputs two low and two high fre-
quency coefficients at one clock cycle, respectively. After the first
stage, the two high frequency coefficients (the ones at even and
odd positions) are merged together to output a continuous stream
of d(1)i . The two low frequency coefficients are merged together in
the same manner. Furthermore they are combined into a four pixels
wide bus as input of the second stage. This is done in the module
named 2to4 by a simple delay element.

The second stage operates similar to the first one but at only half
speed. The computed low frequency coefficients of level two are
merged together into a single data stream. This is the input for the
third stage. The high frequency coefficients are merged in the same
way and are shifted out.

The transformation units of stage three and four (named 1i2o in
Figure 7) take only one coefficient of the previous level as input
and alternately outputs a low or a high frequency coefficient at one
clock cycle. The horizontal 1D-DWT unit processes a pixel row
of length 16 in only 32 input clock cycles including the boundary
pixel.

In the following two subsections we specify the modules 1i2o
and 4i4o used in the different transformation levels.

5.1.1 The w-bit input 1D-DWT unit (1i2o)
To implement one level of DWT using the lifting method (see

Section 2) the following steps are necessary:

� split the input into coefficient at odd and even positions,

� perform a predict-step, that is the operation given in
Equation 1,

� perform an update-step, that is the operation given in
Equation 2.

An efficient realization of the last two steps is given in Figure 8
and Figure 9. The computation is split into the elementary pieces,

dn

w

(w+1)-bit

registered

adder w-bit

registered

substractor

w+1 w w+1

p
2n

p
2n+1

p
2n+2 w

w
shift

right

Figure 8: predict unit

which are additions, subtractions and shifts in order to achieve
clock rates above 40 MHz. With the given arrangement, the com-
binational functions between two flip-flops fits into one column of
CLB’s. Furthermore the registered adder/subtracters generated by
Logiblox are configured such that the dedicated carry logic in the
XC4000 series is used.

The whole w-bit 1D-DWT unit is constructed accordingly to the
lifting scheme [7]. Figure 10 sketches the architecture. The unit
consists of two register chains. The registers in the upper chain are
enabled at even, the registers in the lower chain at odd clock edges.
This splits the input into words at even and odd positions. Now the
predict and update steps can be applied straightforward.

204

pi+3

pi+1

pi+2

pi

1i2o

2to4

merge

merge

merge

1i2o

s (4)
z

d (4)
y

d (3)
x

d (2)
w

d (1)
v

s(1)
2j+1

s(1)
2j

d(1)
2j+1

d(1)
2j

4i4o

4i4o
s(2)

2r+1

s(2)
2r

d(2)
2r+1

d(2)
2r

s(2)
w

s(3)
x

s(1)
k

s(1)
k+1

s(1)
k+2

s(1)
k+3

merge

s (3)
xs (2)

ws (1)
v

Figure 7: 4 level horizontal 1D-DWT unit

sn

w+1

w+1

w

(w+1)-bit

registered

adder w-bit

registered

adder

w+2 w w+1

d
n

p
2n

d
n-1

shift

right

(2x)

Figure 9: update unit

s (l)
i

FF
update

predict

FF

FF FF

s (l+1)
j

d (l+1)
j

w

w+1

w+1

w+1

Figure 10: w-bit input 1D-DWT unit

5.1.2 The 4w-bit input 1D-DWT unit (4i4o)
In order to perform a faster transformation, which is needed dur-

ing the first and second level, the w-bit input 1D-DWT has to be
parallelized. One approach is to process four rows in parallel but
we have to take into account the growing chip area (factor 4). An-
other disadvantage is the fact, that we have to split the RAM into
four slices, where each slice corresponds to a w-bit input 1D-DWT.
This results in additional data and address lines and slow down the
access time to the RAM. As a direct consequence of this, the order
of the data transfered to the FPGA has to be adapted accordingly.

To avoid the disadvantages just mentioned we have implemented
a filter unit as shown in Figure 11, which takes four pixels of the
same row at a time. Instead of 12 w-bit and 12 w+1-bit flip-flops,

FF

FF

FF

FF

FF

predict

predict

update

update

d
(l+1)
2j+1

s
(l+1)
2j

s
(l+1)
2j+1

d
(l+1)
2j

s
(l)
i+3

s
(l)
i+2

s
(l)
i+1

s
(l)
i

w

w

w

w

w+1

w+1

w

w

w+1

w

w+1

w+1

w+1

w+1

w

Figure 11: 4w-bit input 1D-DWT unit

4 predict and update units we only need 4 w-bit and 5 w + 1-bit
flip-flops and 2 predict and update components, if the bit width of
the input coefficients/pixels is w.

We use this unit for both the first and the second level of the
transformation.

5.2 Vertical 1D-DWT unit
The vertical 1D-DWT unit is based only on the w-bit input 1D-

DWT component. During the vertical transformation up to five
such components can work in parallel, because the memory is al-
ready split in vertical slices. The overall structure of this unit (cas-
caded one level components) is similar to the horizontal one.

5.3 Internal Memory
To perform the partitioned DWT we introduce memory blocks to

store the low and high frequency coefficients of the different levels.
Our main goal with the partitioned approach in mind was to effi-
ciently perform an EZT-algorithm on an internal saved subimage.
As explained in Section 4, pixels belonging to neighboring subim-
ages have to be considered and stored, resulting in larger memory
requirements. By applying pipelining, the memory can be reduced
by a factor of four. Instead of a RAM block of size 61�61, a block
of size 16 � 61 is sufficient, now. The partition size q = 16 was

205

chosen due to the routing capabilities of the Xilinx device. Huge
memory blocks slow down the achievable frequency and introduce
large routing delays, especially for the address lines to the mem-
ory. Because random access is needed on the transformed subimage
only, all boundary coefficients are stored in fifo’s. Keep in mind,
that blocks with different memory depth are necessary, due to the
growing bit width after each transformation level.

In order to compute the range of the coefficients of different sub-
bands and different levels consider the wavelet transformation in
Equation 3 and 4 in terms of FIR filters [8]. The computation of
the sub-band coefficients can now be expressed as convolution,

dn = f � x =
X
k

fn�k � xk

sn = g � x =
X
k

gn�k � xk

where f and g are appropriate FIR filters. If we recursively apply
the filter g on sn, we obtain a new FIR filter g2

s
(1)
m = g � (g � sn) = (g � g) � sn := g

2 � sn:

After determining all filters of each sub-band and each level we can
compute the maximum and minimum values of the corresponding
coefficients. Table 2 summarizes these values for the one dimen-
sional case.

Table 2: range of coefficients after each level of horizontal
transformation

coefficients
level i high frequency low frequency

max min max min
1 255 -255 191 -192
2 160 -160 223 -224
3 136 -136 249 -250
4 103 -103 260 -261

As a consequence our memory modules for the 2D-DWT should
have at minimum the bit width given in Figure 12. Note that each

10
11

10

10

1011

910

1010

1010
10

10 1010

1010

10

Figure 12: affordable memory bit width

vertical slice is realized by a separate RAM module generated by
the Xilinx Logiblox generator.

6. CONCLUSIONS
We have presented a promising FPGA based hardware architec-

ture for DWT in case of lossy and lossless image compression. The
FPGA implementation proposed achieves its computational power
by using the partitioned approach and taking advantage of pipelin-
ing.

Currently, an EZT algorithm based on this 2D-DWT architec-
ture is implemented within the scope of a master’s thesis at our
institute. In future work, we will investigate the applicability of the
approach presented in this paper to video compression, in particu-
lar to motion estimation. We suppose that the partitioned approach
is suitable for being applied to this area because motion seems to be
usually localized through the subimages used. Furthermore, we are
looking for methods allowing the partitioned approach to result in
higher compaction ratios than the non-partitioned algorithms. One
point of departure is to classify the subimages with respect to sim-
ilarity, to compress only one representative JC of each class C,
and to represent the remaining subimages I of class C by the im-
age I � JC which specifies the differences between subimage I
and its representative JC . Another point of departure is to exploit
similarities between the trees of the multi-scale representation.

7. REFERENCES
[1] H. Chao, P. Fisher, and Z. Hua. An approach to integer

wavelet transformations for lossless image compression.
Technical Paper, University of North Texas, Denton, TX
76208, U.S.A., 1996.

[2] I. Daubechies. Ten lectures of wavelets. SIAM, Philadelphia
PA, 1992.

[3] J. Ritter and P. Molitor. A partitioned wavelet-based approach
for image compression using FPGA’s. In Proceedings of the
2000 Custom Integrated Circuits Conference, pages 547–550.
IEEE, 2000.

[4] A. Said and W. A. Pearlman. A new fast and efficient image
codec based on set partitioning in hierarchical trees. In Trans.
Signal Processing, volume 5, no.9, pages 1303–1310. IEEE,
1996.

[5] J. Shapiro. Embedded image coding using zerotrees of
wavelet coefficients. In Trans. Signal Processing, volume 11,
pages 3115–3162. IEEE, 1993.

[6] S. Sutter. FPGA-architectures for partitioned wavelet
transformations on images. Master thesis (in German),
Martin-Luther-University Halle-Wittenberg, D-06099 Halle,
Germany, 1999.

[7] W. Sweldens. The lifting scheme: A custom-design
construction of biorthogonal wavelets. In Applied and
Computational Harmonic Analysis, volume 3, no.2, pages
186–200, 1996.

[8] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding.
Prentice Hall, Inc, New Jersey, 1995.

[9] G. Wallace. The JPEG still picture compression standard.
Comm. ACM, 34:30–44, 1991.

206

