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A Pipelined FFT Architecture for Real-Valued

Signals
Mario Garrido, Keshab. K. Parhi, Fellow, IEEE, and J. Grajal

Abstract—This paper presents a new pipelined hardware
architecture for the computation of the real-valued fast Fourier
transform (RFFT). The proposed architecture takes advantage
of the reduced number of operations of the RFFT with respect
to the complex fast Fourier transform (CFFT), and requires less
area while achieving higher throughput and lower latency.

The architecture is based on a novel algorithm for the com-
putation of the RFFT, which, contrary to previous approaches,
presents a regular geometry suitable for the implementation
of hardware structures. Moreover, the algorithm can be used
for both the Decimation In Time (DIT) and Decimation In
Frequency (DIF) decompositions of the RFFT and requires the
lowest number of operations reported for radix 2.

Finally, as in previous works, when calculating the RFFT the
output samples are obtained in a different order. The problem of
reordering these samples is solved in this paper and a pipelined
circuit that performs this reordering is proposed.

Index Terms—Fast Fourier Transform (FFT), Real-Valued
Signals, Pipelined Architecture, Reordering Circuit, Decimation-
in-Time, Decimation-in-Frequency, Memory Reduction

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most

important algorithms in the field of digital signal process-

ing, used to efficiently compute the discrete Fourier transform

(DFT). For the computation of the FFT, pipelined hardware

architectures [1]-[9] are widely used because they offer high

throughput and low latency as well as a reasonably low area

and power consumption. This makes them attractive for a large

variety of applications, specially when they present real-time

requirements. Thus, in order to provide solutions to present

and future applications, hardware designers keep improving

the signal processing capabilities of pipelined architectures of

the FFT.

The FFT internally operates over complex numbers and

previous works offer efficient designs for the computation of

the FFT of complex input samples (CFFT). However, they are

not optimized for the computation of the FFT of real input

samples (RFFT). Indeed, when the input samples are real the

spectrum of the FFT is symmetric [10] and approximately half

of the operations are redundant [11].

The RFFT plays an important role in different real-time

applications. In medical applications such as ECG (Electro-

cardiography) [12] or EEG (Electroencephalography) [13], the

power spectral density (PSD) of various real-valued signals
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has to be estimated. This requires calculation of the RFFT

repetitively on many overlapping windows of the signals,

where a specialized hardware implementation can make use of

a higher speed clock to meet real-time constraints. Moreover,

in implantable or portable devices [12], [13], a dedicated

hardware can save power consumption. On the other hand,

the RFFT is a key element in technologies based on DMT

(discrete multitone) modulation, such as ADSL (Asymetric

Digital Subscriber Line) or VDSL (Very high bit-rate Digital

Subscriber Line) [14], [15]. Nowadays, high signal process-

ing capabilities are required for second-generation standards

(ADSL2/2+ [16] and VDSL2 [17]). Moreover, DMT has been

used at rates of 24 Gb/s in local area networks (LAN) [18].

Finally, very high performance is also necessary in digital

wideband receivers [19], [20]. Currently, the RFFT has to be

computed in real time over a dataflow of 2 GSamples/s [20].

Thus, in order to meet the increasing demand on real-

time capabilities of new applications, much research has been

carried out on pipelined architectures of the CFFT. On the

other hand, for those applications with real input signals, a

dedicated pipelined RFFT architecture can lead to savings

in area and power consumption, while offering high signal

processing capabilities. However, to the best of our knowledge

no hardware-efficient pipelined architecture for the computa-

tion of the RFFT based on the Cooley-Tukey algorithm [21]

has been proposed yet. There exist only some pipelined

architectures [22], [23] based on the Bruun algorithm [24].

However, the Bruun algorithm has not been widely adopted

since it was demonstrated [25] that the noise is significantly

higher than that in the Cooley-Tukey algorithm [21].

The lack of specific pipelined architectures for the RFFT

is due to the fact that the specific algorithms proposed for

the computation of the RFFT [11], [26]-[30], do not lead

to regular geometries, which are necessary for designing

pipelined architectures. These specific approaches describe

programs based on removing the redundancies of the CFFT

when the input is real, and can be used to efficiently compute

the RFFT in a DSP (Digital Signal Processor) or in in-place

architectures [31]. A memory-based or in-place architecture

consists of a memory and a processing unit. The data are

loaded, processed and stored again in the memory until all

the operations of the algorithms are performed. This kind

of architecture allows the design of circuits with low area

and power consumption, but it is not suitable for real-time

applications.

There exist other techniques described in [32], [33], which

take advantage of the CFFT to calculate the RFFT. On one

hand, the doubling algorithm uses the CFFT to compute
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two RFFTs simultaneously. On the other hand, the packing

algorithm forms a complex sequence of length N/2 taking

the even and odd indexed samples of the real input sequence

of length N , and calculates the N/2-point CFFT of the

complex sequence. In these CFFT-based techniques, additional

operations are necessary to obtain the final results from the

outputs of the CFFT. The packing algorithm has been used

to implement some in-place architectures [15], [34]. In these

architectures the hardware of the CFFT can be reused for

computing the post-processing stage. However, no pipelined

architecture has been proposed, not only because some of the

adders and multipliers saved in the CFFT need to be used

for post-processing, but mainly because the samples need to

be reordered before the post-processing stage [15], increasing

the memory and complicating the control.

Both in the specific algorithms for the computation of the

RFFT and in the CFFT-based ones, the output samples are

provided in different orders [27], which are different from the

bit-reversal one of the CFFT [35]. The sorting of the outputs of

the RFFT is also a problem not solved in the literature so far.

In this work we propose the first pipelined architecture

for the computation of the RFFT based on the Cooley-

Tukey algorithm. It combines the advantages of the pipelined

architectures with the reduction of operations achieved by

the specific algorithms. This is possible due to the proposed

algorithm for the computation of the RFFT which solves the

irregularities of the RFFT. Moreover, this approach is valid for

both Decimation In Time (DIT) and Decimation In Frequency

(DIF) decompositions and is generalizable for any number of

points N , which is power of 2. Furthermore, the problem of

the output order of the samples is solved and a pipelined circuit

that performs the reordering is proposed.

In the next section we briefly review the RFFT and the

existing techniques to compute it. In Section III we develop

the algorithm that allows the design of regular hardware

architectures for the computation of the RFFT, and the novel

proposed pipelined architecture is presented Section IV. Next,

in Section V the architecture is evaluated and compared to

previous approaches, and some conclusions are drawn in

Section VI. Finally, the reordering of the output samples and

the proposed solution are discussed in Appendix A.

II. THE RFFT

The N -point DFT of a sequence x[n] is defined as:

X[k] =

N−1∑

n=0

x [n] Wnk
N , k = 0, 1, . . . , N − 1 (1)

where Wnk
N = e−j 2π

N
nk.

The RFFT considers the input sequence, x[n], to be a real

sequence, i.e., ∀n, x[n] ∈ R. It is easy to demonstrate [10]

that if x[n] is real, then the output X[N − k] is complex

conjugate of X[k]. Consequently, an RFFT can be considered

a conventional FFT with the additional conditions:

Im(x[n]) = 0 (2)

and

X[N − k] = X∗[k] (3)

These two conditions that distinguish the CFFT and the

RFFT do not lead, however, to a direct simplification of

equation (1) for the RFFT, and the specific algorithms for the

computation of the RFFT require complicated developments.

Thus, other simpler techniques that use the CFFT to compute

the RFFT are sometimes preferred. Next, these approaches are

reviewed.

A. Computation of the RFFT using the CFFT

1) Direct use of the CFFT: The first idea when it is

necessary to compute an FFT over a real input signal is

to use the CFFT. As the real numbers are a subset of the

complex ones, the trivial solution is to set the imaginary part

of the input to zero. Although this procedure does not make

an efficient use of the resources, it is very simple and it is

not necessary to modify the CFFT. Indeed, it is the solution

adopted for many if not all real-time applications.

2) Doubling Algorithm: Another alternative is to take

advantage of the CFFT to simultaneously compute the FFT

of two real signals x1[n] and x2[n], n = 0, 1, . . . , N − 1
as it is explained in [32], [33]. This process requires to

form the signal y[n] = x1[n] + j · x2[n] and use an N-point

CFFT to obtain Y [k] = X1[k] + j · X2[k]. It is important

to notice that both X1[k] and X2[k] are complex, so they

cannot be obtained directly from Y [k]. Therefore, 2(N − 1)
additions are required to separate the outputs, in addition to

the operations of the CFFT.

3) Packing Algorithm: Given a real signal x[m], m =
0, 1, . . . ,M −1 it is also possible to compute the RFFT using

an M/2-point CFFT [32], [33]. This technique is sometimes

called packing algorithm because it takes the odd and even

indexed samples of the signal and form the complex signal

y[n] = x[2n] + j · x[2n + 1], n = 0, 1, . . . , N − 1 and

N = M/2. Then the N -point CFFT is applied to obtain

Y [k], k = 0, 1, . . . , N − 1. As in the doubling algorithm,

2(N − 1) additions are required to separate the outputs of

the CFFT. Moreover, in the packing algorithm it is necessary

to include an additional stage to compute the outputs of the

RFFT, which requires 4N − 1 extra additions and 4(N − 1)
multiplications.

B. Specific Algorithms for the Computation of the RFFT

The greater reduction in the number of operations is ob-

tained by using the specific algorithms for the computation

of the RFFT. Most of them are obtained from the CFFT by

applying the properties of the RFFT in order to remove the

redundant operations. The first proposed algorithms were de-

fined for the DIT (Decimation In Time) decomposition of the

FFT. The DIT FFT has the property that the samples at each

intermediate stage can be computed using the conventional

FFT [10]. Consequently, equation (3) can be applied at each

stage, and only one half of the intermediate outputs must be

calculated, whereas the rest can be obtained by conjugating

those intermediate values.
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This is the basic idea of algorithms proposed for split-

radix [11], [26], radix-2 [27], [30] and high radices [28]. These

algorithms are, however, not valid for the DIF (Decimation

In Frequency) decomposition of the FFT because it is not

possible to apply the property (3) at each stage. On the other

hand, it has been also demonstrated that it is possible to

obtain the same savings for the DIF decomposition using

an alternative algorithm [29] that makes use of linear-phase

sequences.

In general, the number of multiplications in all of these

algorithms is reduced to half of that required for the CFFT,

and the number of additions is N − 2 less than half the

additions of the CFFT. Likewise, only half of the memory

is needed. Thus, there are only slight differences among all of

them in the number of operations and in the order in which

the computations are performed.

III. PROPOSED ALGORITHM FOR THE COMPUTATION OF

THE RFFT

A. Basis of the algorithm

Figure 1 shows the flow graph of an N -point FFT for the

case of N = 16, radix r = 2, and decomposed according to

the decimation in frequency (DIF) [10]. The graph is divided

into logrN = 4 stages and each of them consists of a set

of butterflies and rotators. The numbers at the input and the

output of the graph represent respectively the index of the input

and output samples, whereas each number, φ, in between the

stages indicates a rotation by:

e−j 2π

N
φ (4)

If we consider that the inputs are complex, all the internal

nodes and outputs of the graph are needed for the computation

of the CFFT, and the regularity of the flow graph leads to

efficient pipelined architectures [2]. On the other hand, if the

inputs are real, it is possible to simplify the graph according

to the properties of the RFFT, as explained next.

1.- The first simplification is to consider that in the real

FFT X[N − k] = X∗[k]. According to this, N/2 − 1
outputs of the FFT are redundant and can be removed. Most

approaches [11], [27], [31] obtain either the frequencies with

indexes k = [0, N/2] or k = [0, N/4] ∪ [N/2, 3N/4] and, if

necessary, calculate the rest of the frequencies by conjugating

these results. However, considering that k′ = N/4− k− 1 for

the indices k, k′ = 0, . . . , N/4− 1 and using the property (3):

X[4k + 3] = X∗[N − 4k − 3] = X∗[4k′ + 1] (5)

leads to a more efficient architecture.

Consequently, the set of frequencies X[4k + 3] can be

obtained by conjugating frequencies X[4k+1], as mentioned

in [26] for the split-radix RFFT. According to Figure 1,

samples X[4k+3] are the last quarter of the outputs; so all the

butterflies used exclusively to compute these samples may be

removed, which are represented by the lower darkened region.

The same concept can be applied to samples X[8k + 6],
which can be computed by conjugating samples X[8k + 2].
Generalizing this idea, samples X[2α · (4k + 3)] can be

computed by conjugating the samples X[2α · (4k+1)], where

Fig. 1. Flow graph of a 16-point DIF FFT. The darkened regions and the
boxed components are considered in the simplifications of the new algorithm
for the RFFT.

k = 0, . . . , N/(4 ·2α)−1, for all α = 0, . . . , log2N−2. Thus,

all the darkened regions in Figure 1 can be removed and only

N/2− 1 outputs of the FFT need to be computed.

2.- The second simplification refers to the fact that

Im(x [n]) = 0. According to this, every piece of data is real

until it is rotated for the first time. In Figure 1, all the additions

performed before the data reach the boxed components are real

and, thus, the number of additions in that area is halved with

respect to the CFFT. Once the data reach the first rotations,

the data are necessarily complex until the end of the FFT.

3.- One further simplification of the boxed components may

be carried out. Let’s assume that the first stage of the FFT

is s = 1 and the last one is s = n ≡ logrN , and Xs

are the outputs of stage s. According to this and Figure 1,

in the second stage it is not necessary to compute the data

X2[i + 3N/4], i = 0, . . . , N/4−1, and samples X2[i+N/2]
are calculated as:

X2[i+N/2] = X1[i+N/2] · e−j 2π

N
i+

+X1[i+ 3N/4] · e−j 2π

N
(i+N/4) (6)

This calculation requires 2 rotations and 1 addition. How-

ever, expanding the expression and taking into account that

both X1[i+N/2] and X1[i+3N/4] are real samples, we can

obtain:

X2[i+N/2] = {X1[i+N/2]− j ·X1[i+ 3N/4]} · e−j 2π

N
i

(7)

The resulting expression only requires one rotation and no

additions because X1[i+N/2] and X1[i+3N/4] are real and

rotations by 1, −1, j and −j are trivial, taking into account that

they can be calculated by interchanging the real and imaginary
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Fig. 2. Simplified flow graph of a 16-point FFT for real input samples,
before a regular structure is obtained.

parts and/or changing the sign of the data. This simplification

can be extended to all the boxed components, which reduces

even more the number of rotators and adders of the FFT.

Figure 2 represents the flow graph of the RFFT once

the explained simplifications have been carried out. All the

data previous to the boxed components are real, and only

real butterflies are necessary for this region. On the other

hand, according to equation (7) the boxed components do

not require any operation but the trivial rotation −j, since

the additions that appear in the graph do not have to be

performed because one of the inputs is real and the other one

is purely imaginary. Finally, the complex rotations appear after

the boxed components and the butterflies need to be complex.

Consequently, it is easy to see from Figure 2 that the total

number of real additions is N log2 N−(N−2) or, considering

that n = log2N :

# add = (n− 1) · 2n + 2 (8)

Likewise, the number of non-trivial complex multiplications

can be obtained from the flow graph as:

# mult = (n− 4) · 2n−2 + n (9)

With regard to the output samples, all the frequencies

X[0] to X[N/2] can be computed from the obtained data by

conjugating those frequencies with index greater than N/2.

The explained simplifications can also be applied to the

DIT FFT. In this case it is first necessary to redraw the typical

flow graph of the DIT FFT so that the inputs are in natural

order and the outputs in bit-reversal [36]. The result only

differs from that of Figure 2 in the rotations performed at

the different stages. In this case, the number of non-trivial

complex multiplications can be calculated as:

Fig. 3. Proposed flow graph of a 16-point DIF RFFT. All edges are real and
the boxed numbers represent rotations of the RFFT according to equation (4).
The sign of the data is changed in edges where −1 is depicted.

Fig. 4. Proposed flow graph of a 16-point DIT RFFT. All edges are real and
the boxed numbers represent rotations of the RFFT according to equation (4).
The sign of the data is changed in edges where −1 is depicted.

# mult = (n− 3) · 2n−2 + 1 (10)

Finally, as in the other specific designs of RFFT, the

obtained structures are irregular because the symmetries of

the CFFT have been used to reduce the number of opera-

tions. Although the flow graph in Figure 2 could be used to

implement an in-place architecture, it is not suitable for the

implementation of a pipelined architecture.

B. Obtaining regularity

The last step of the algorithm consists of transforming the

flow graph in Figure 2 to obtain a flow graph with regular

geometry. The obtained structure is depicted in Figure 3 for

the DIF FFT, whereas the result for the DIT decomposition is



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR PAPERS 5

TABLE I

NUMBER OF OPERATIONS OF THE ALGORITHMS FOR THE COMPUTATION OF THE RFFT.

RFFT Algorithm Radix Real Multiplications Real Additions

S
p

ec
ifi

c
A

lg
o

ri
th

m
s Sorensen [11] DIT Split-radix (2n− 6) · 2n−2 + 2 (n− 1) · 2n + 2

Duhamel [26] DIT Split-radix (2n− 6) · 2n−2 + 2 (n− 1) · 2n + 2

Bergland [27] DIT radix-2 (3n− 10) · 2n−2 + 4 (n− 1) · 2n + 2

Sekhar [29] DIF radix-2 (3n− 10) · 2n−2 + 4 (n− 1) · 2n + 2

Sundararajan [30] DIT radix-2 (11/2n− 25/3) · 2n−2 + 10/3 (n− 1) · 2n + 2

Proposed
DIF radix-2 (3n− 13) · 2n−2 + 4n− 2 (n− 1) · 2n + 2

DIT radix-2 (3n− 10) · 2n−2 + 4 (n− 1) · 2n + 2

C
F

F
T

-b
as

ed

Packing Algorithm
split-radix 2n · 2n−2 (n+ 2) · 2n + 3

radix-2 (3n− 5) · 2n−2 + 4 (n+ 2) · 2n + 3

Doubling Algorithm
split-radix (4n− 12) · 2n−2 + 4 (2n+ 2) · 2n − 2

radix-2 (6n− 20) · 2n−2 + 8 (2n+ 2) · 2n − 2

shown in Figure 4. Contrary to Figures 1 and 2, all the edges in

Figures 3 and 4 are real, i.e, the data have been separated into

their real and imaginary components. Consequently, in the flow

graph the rotations have two inputs and two outputs. They are

represented by the boxes with a number inside, which indicate

the rotation angles according to equation (4). The upper inputs

and outputs are used for the real part of the samples and the

lower ones for the imaginary part. On the other hand, those

trivial rotations by −j in the boxed components of Figure 2

only operate over a real sample, which is equivalent to multiply

it by −1 and input it in the imaginary part of the rotator, as it

is done in Figures 3 and 4. Finally, the output samples of the

flow graph include a letter to indicate if the value corresponds

to the real part (R) or the imaginary part (I) of the output.

Moreover, the complex butterflies after the boxed components

in Figure 2 have been unfolded in the new structure.

Contrary to the flow graph in Figure 2, in the structures of

Figures 3 and 4 every stage has N inputs and outputs and all

of them are real samples. Moreover, at every stage butterflies

operate over samples whose indexes differ the same quantity

and non-trivial rotations are placed in particular positions.

These regularities allow the development of efficient pipelined

hardware architectures, as explained in section IV. On the

other hand, it can be noticed that, as in the other specific

algorithms of the RFFT and the CFFT-based ones, the outputs

are not available in bit-reversed order. However, it is possible

to sort them out as explained in Appendix A.

C. Comparison to other algorithms for the computation of the

RFFT

Table I compares the number of operations of the different

approaches for the computation of the RFFT and, conse-

quently, their efficiency when they are implemented in DSPs.

The number of real multiplications has been calculated accord-

ing to the criterion used in previous approaches [11]: Rotations

by 45◦,135◦,225◦ and 315◦ require 2 real multiplications and

the rest of non-trivial rotations are calculated with three real

multiplications. On the other hand, the additions in Table I

include those of the butterflies and those required for the post-

processing in the CFFT-based algorithms.

As it is shown, the number of operations in all the ap-

proaches has the same order of magnitude. Among them, the

specific algorithms based on split-radix require less operations

than those based on radix-2. The same is true for CFFT-

based algorithms. On the other hand, for the same radix,

the specific algorithms are better than the packing algorithm

both in the number of multiplications and additions. Likewise,

they are also better than the doubling algorithm. This is not

only because for the doubling algorithm two signals need to

be computed in parallel, but also because it needs twice the

number of multiplications and more than twice the number of

additions.

Comparing the specific algorithms for the computation of

the RFFT, the proposed approach is the only one that can be

used for both the DIT and DIF decompositions of the FFT.

Moreover, the DIF version of the algorithm has the lowest

number of operations reported for radix-2. The reason why

the DIF version has less operations than the DIT one is due

to the fact that the simplification of Equation (7) can only be

applied to the DIF decomposition.

However, the most relevant advantage of the proposed

algorithm over the previous approaches is that it offers a

regular structure suitable for the implementation of hardware

architectures. It may be noted that a regular structure for RFFT

with fewest number of operations has not been presented so

far.

IV. PIPELINED ARCHITECTURE OF THE RFFT

Figure 5 shows the proposed pipelined architecture for a

16-point DIF RFFT, obtained from the graph of Figure 3. It

is a radix-2 feedforward pipelined structure that maximizes

the use of the multipliers, as well as achieves a throughput

of 4 samples per clock cycle. As in the flow graph, all the

edges carry real samples. Therefore, the radix-2 butterflies

(R2) process two real inputs and, thus, they only consist of

a real adder and a real subtractor. Likewise, the rotators (⊗)

have two inputs and two outputs, as in the flow graph. The

upper input receives the real part of the sample to be rotated

and the lower one the imaginary part. Finally, the rest of

circuits are shuffling structures used for reordering the samples

according to the dataflow. They are composed of buffers and
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Fig. 5. Proposed pipelined architecture for the computation of the 16-point DIF RFFT. The architecture is composed of radix-2 real butterflies (R2),
rotators (⊗), and shuffling structures, which include buffers and multiplexors.

Fig. 6. Shuffling structure of the pipelined RFFT. This examples shows the
shuffling of the second stage of a 16-point RFFT.

multiplexors. In a general case of an N -point RFFT, with N
power of two, the circuit requires 2·log2(N)−1 real butterflies,

log2(N)− 2 rotators, and buffers or memories of a total size

N − 4.

Considering both Figures 3 and 5, the first stage computes

only real butterflies. According to the input order of the data,

the upper butterfly of the structure computes the pairs of

samples (0, 8), (1, 9), (2, 10) and (3, 11), whereas the lower

butterfly operates samples (4, 12), (5, 13), (6, 14) and (7, 15).

On the other hand, both in the architecture and in the flow

graph, the upper outputs of the butterflies of the first stage are

connected to a butterfly of the second stage, whereas the lower

outputs are rotated in the second one. Previous to the rotator,

it is necessary to compute a trivial rotation of −1, which can

be embedded in the rotator.

At the second stage, the butterflies operate over each pair of

samples X1[i] and X1[i+N/4], and the rotations are calculated

over X1[i + N/2] and X1[i + 3N/4], for i = 0, . . . , 3.

Consequently, the indexes of two samples operated together

always differ by N/4. On the other hand, at the third stage,

the indexes of two samples operated together differ by N/8.

According to this, the shuffling structure depicted in Fig-

ure 6, which corresponds to the second stage of the architec-

ture of Figure 5, shows how the order of the data required at

the second stage of the 16-point RFFT is transformed to the

order of the third stage. The structure consists of buffers and

multiplexors. In the Figure, the length of the buffers is L = 2,

and the numbers of the inputs and the outputs represent the

index of each piece of data. Thus, the structure receives in

parallel samples from the second stage, whose indexes differ

by N/4 = 4, and provides in parallel samples adapted to the

third stage, where the indexes differ by N/8 = 2.

The shuffling is performed in two steps. The first one

interchanges the intermediate inputs and the second step in-

terleaves the data. Considering the upper circuit of the second

step, indexed samples (0, 1, 2, 3) and (8, 9, 10, 11) are received

respectively at each of the inputs. Initially the control of the

multiplexors is set to ”0” and, thus, samples with indexes (0, 1)
are stored in the output buffer and (8, 9) in the input one. Next,

the control signal switches to ”1” and indexed samples (0, 1)
are provided at the output in parallel with (2, 3), whereas (8, 9)
pass to the output buffer and (10, 11) are stored in the input

one. These samples will be provided in parallel at the output

when the multiplexor switches again to ”0”.

In a general case of an N -point RFFT, the shuffling structure

at a stage s ∈ [2, n−1] requires buffers of length L = N/2s+1,

and, as can be observed in Figure 5, for the first stage of the

RFFT, s = 1, only the first step of the shuffling structure is

required.

On the other hand, the third stage of the architecture in

Figure 5 includes a switch before the rotator. This switch is

necessary in every stage s ∈ [3, n − 1]. As it is shown in

Figure 3 the rotations required by the boxed components of

Figure 1 operate over samples whose indexes differ the same

quantity as the butterflies at the same stage. For these rotations,

the switch does not swap the inputs. However, for the rest of

rotations the switch is activated and the samples that come

from the lower output of the upper butterfly are routed through

the rotator.

Finally, Figure 7 represents the hardware architecture for the

DIT RFFT. It only differs from the DIF structure in Figure 5

on the placement of the boxed switch and the rotator, due to

the fact that the positions of the rotations in the flow graphs

of Figures 3 and 4 are different.
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Fig. 7. Proposed pipelined architecture for the computation of the 16-point DIT RFFT. The architecture is composed of radix-2 real butterflies (R2),
rotators (⊗), and shuffling structures, which include buffers and multiplexors.

TABLE II
COMPARISON OF PIPELINED HARDWARE ARCHITECTURES FOR THE COMPUTATION OF AN N-POINT RFFT.

AREA PERFORMANCE
PIPELINED Complex Complex Complex Memory Latency Throughput

ARCHITECTURE Rotators Adders Samples Rotations (cycles) (samples/cycle)

FB Radix 2, [1] log4N − 1 2(log4N) 4N/3 N N 1
FB Radix 2, [2] 2(log4N − 1) 4(log4N) N N N 1

FB Radix 4, [2], [3] log4N − 1 8(log4N) N N N 1
FB Radix 22, [2] log4N − 1 4(log4N) N N N 1
FB Split-radix, [4] log4N − 1 4(log4N) N N N 1

FF Radix 2, [5] 2(log4N − 1) 2(log4N) N N N 1
FF Radix 2, [2] 2(log4N − 1) 4(log4N) N N N/2 2
FF Radix 2, [3] 2(log4N − 1) 4(log4N) 4N N N 2
FF Radix 2, [6] 2(log4N − 1) 4(log4N) N N N/2 2
FF Radix 4, [7] log4N − 1 3(log4N) 2N N N 1
FF Radix 4, [8] 3(log4N − 1) 8(log4N) N N N/4 4
FF Radix 4, [3] 3(log4N − 1) 8(log4N) 8N/3 N N/3 4
FF Radix 4, [6] 3(log4N − 1) 8(log4N) N N N/3 4

Proposed 2(log4N − 1) 4(log4N) N/2 3N/4 N/4 4

V. COMPARISON AND ANALYSIS

Table II compares the proposed structure to other efficient

pipelined architectures for the case of computing an N -point

RFFT. The proposed design is the only specific approach for

the computation of the RFFT and, thus, it takes advantage of

the reduced number of operations required by the RFFT with

respect to the CFFT. The other approaches are not specific for

the RFFT and can be used to calculate the CFFT.

The table shows the trade off between area and performance.

The area is measured in terms of the number of complex rota-

tors, adders and memory addresses, whereas the performance

is represented by the throughput and the latency. In all cases,

the throughput is that for which each architecture has been

designed, and the number of components and the latency are

measured from the butterflies of the first stage to those of

the last stage, i.e, circuits for reordering the input and output

samples have not been considered. This criterion shows the

lowest area and the highest performance that each architecture

can obtain. As it can be observed in the table, feedback (FB)

architectures and some feedforward (FF) ones [5], [7] require

less hardware components and achieve a throughput of one

sample per clock cycle. On the other hand, the parallelization

of feedforward architectures has the advantage of a higher

throughput and a lower latency due to an increase in area.

The proposed architecture is in the group of the feedforward

ones. It uses radix-2 but can process 4 samples in parallel,

achieving a higher performance than feedback designs, both in

terms of latency and throughput. On the other hand, compared

to other radix-2 feedforward architectures, the proposed design

doubles the throughput and halves the latency and the data

memory, while keeping the same number of rotators and

adders. Therefore, although the new approach uses radix-2, it

achieves the same throughput as other radix-4 feedforward ar-

chitectures. Compared to these high-throughput architectures,

the proposed one obtains a significant reduction in the number

of rotators, adders and memory addresses.

The reduction in memory is an important advantage of the

proposed architecture. It only needs a total of N real memory

addresses for the samples or, equivalently, N/2 complex ones.

This involves a great reduction in area, taking into account

that, except in case of computing a low number of samples, the

memory takes up most of the area of the circuit. Moreover, the

memory used to store the coefficients for the rotations has been

reduced to 3N/4. Thus, the low area makes the architecture

very suitable for the implementation of long-length transforms.

Finally, it is interesting to analyze the case that input

samples arrive in natural order. Under these circumstances

feedforward architectures require input memories for reorder-

ing the samples, whereas feedback structures do not need

any additional hardware. For the proposed design it can be

used a memory of N real samples or, equivalently, N/2
complex samples. As the throughput of the architecture is
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4 samples per clock cycle, the memory will be filled in

N/4 cycles, leading to a total latency of the circuit of N/2
cycles. Consequently, using the same memory as a feedback

architecture, the proposed design can process 4 times more

samples in half the time.

As a conclusion, the high performance and the low area of

the new architecture make it very attractive for the computation

of the RFFT in real-time applications.

VI. CONCLUSION

The previous approaches on the RFFT had demonstrated

that it requires half the operations of the CFFT. This paper

shows that this reduction of operations is not only theoretical

but also can be applied to the design of efficient hardware

architectures for the computation of the RFFT. This is possible

due to the novel algorithm proposed in this paper for the

computation of the RFFT, which obtains a regular geometry

similar to that of the CFFT, and is valid for both the DIF and

DIT decompositions of the RFFT. Based on this algorithm, a

new pipelined architecture for the computation of the RFFT

is presented. It processes 4 samples in parallel and requires

significantly less memory than other efficient pipelined struc-

tures. The low area and latency, and the high throughput of

the circuit make it attractive for the computation of the FFT

in any application that processes real samples. Moreover, the

circuit is very efficient for long-length transforms due to the

reduction in memory, and it is also very suitable for real-time

applications because of its high throughput capabilities.

APPENDIX A

REORDERING OF THE OUTPUT SAMPLES

The scrambled order of the output samples is an inherent

problem of the FFT. In the CFFT the outputs are obtained in

the so called bit-reversal order [35]. In in-place architectures it

is possible to reuse the memory to sort out the output samples,

which increases the latency and reduces the throughput of the

system.

On the other hand, in pipelined architectures an extra

memory of N addresses is necessary to perform the bit-

reversal, which increases the area and the latency. Samples

are stored in the memory in natural order using a counter

for the addresses and then they are read in bit-reversal by

reversing the bits of the counter. Moreover, it is possible to

use this strategy for calculating the bit-reversal of a series of

FFTs. In this case, the first FFT is stored in natural order.

Next, the count is in bit-reversal and, thus, the frequencies are

provided in the correct order, while the outputs of the second

FFT are stored in the memory in bit-reversal order. Since the

bit-reversal is an inversion operation, i.e, Br(x) = Br−1(x),
the outputs of the second FFT must be read in natural order

to sort out the frequencies. At the same time, the third FFT is

stored in natural order, which completes the cycle.

Nevertheless, for reordering the outputs of the RFFT a

more complicated algorithm is required. Next the algorithm is

explained to be performed in-place and then it is shown that

it is possible to perform it in pipeline and the corresponding

circuit is presented.

Fig. 8. Problem of the reordering of the output samples of the RFFT.

Figure 8 shows how to sort out the outputs of the RFFT

to obtain them in bit-reversal order for the case of a 32-point

RFFT, where only frequencies 0 to 16 are necessary.

The first column (index) represents the order of arrival of

the output samples. The second column (output frequencies)

indicates the indexes of the output frequencies of the RFFT.

Frequencies k = 0 and k = N/2 = 16 are both real and they

are grouped together at the output of the RFFT. The goal is to

obtain the frequencies in the order of the first column provided

the order of the second column.

First of all, the data at frequencies greater than N/2 must

be conjugated to obtain all the frequencies in the interval k ∈
[0, N/2], which appear in the third column (output order).

Next, the output order given in the second column must be

converted into bit-reversal order. To achieve this goal, it is first

necessary to realize that the output order and the samples in

bit-reversal have certain similarities: the order of the first four

samples (indexes I = 0, . . . , 3) is the same, the following four

(I = 4, . . . , 7) can be obtained by shuffling the samples in the

same position, and the last half of the samples (I = 8, . . . , 15)

can also be obtained by shuffling. It can be generalized for

higher number of points: the bit-reversal order of all samples

in positions I ∈ [2p, 2p+1 − 1], p = 0, . . . , log2N − 2 can be

obtained by shuffling the samples in those positions according

to the output order.

Given any of those sets of samples, the sorting can be

performed in two stages. First, it is necessary to notice that

the first and the second half of the samples in the sets are

interleaved. According to this, the intermediate order shown

in the fourth column of Figure 8 is obtained by deinterleaving

these groups of data. Next, the bit-reversal order is obtained

by reversing the order of the last half of the samples of each

set.

Figure 9 shows the deinterleaving and reversing procedures

for the case under study. Assuming that bn−1, . . . , b1, b0 are
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Fig. 9. Solution to the reordering of the output samples of the RFFT.

the bits of the index I , the deinterleaving moves a sample in

position P = bn−1, bn−2, . . . , bp, bp−1, . . . , b1, b0 to position

P ′ = bn−1, bn−2, . . . , bp, b0, bp−1, . . . , b2, b1, where p =
⌊log2(P )⌋. This is performed by successively interchanging

the bits bα, bα+1 from α = 0 to α = p− 2. Note that in this

figure p = 2 for I ∈ [4, 7] and p = 3 for I ∈ [8, 15], so each

group of samples is treated differently.

On the other hand, the reversing moves the data in positions

P = bn−1, bn−2, . . . , bp, 1, bp−2, . . . , b1, b0 to position P ′ =
bn−1, bn−2, . . . , bp, 1, b̄p−2, . . . , b̄1, b̄0. The reversing can be

performed by negating the position bit by bit and interchanging

the corresponding data.

Fig. 10. Basic circuit for the reordering of the output data.

This procedure can be easily performed in place, but it is

also possible to implement a pipelined hardware structure for

the reordering of the samples. It is necessary to realize that ev-

ery stage of the deinterleaving and the reversing interchanges

samples in positions P and P ′ = P+L, where L is a constant.

The simple circuit in Figure 10 performs this exchange. If the

multiplexer is set to ”1” the samples will be provided at the

output in the same order as in the input, whereas setting it to

”0” the input sample in position P ′ is forwarded to position

P , while the data in position P is fed back to the buffer and

will appear at the output in position P ′.

Fig. 11. Structure for the reordering of the output data of a 32-point RFFT.

Joining the stages of the deinterleaving and the reversing,

the circuit in Figure 11 performs the reorder of the outputs to

obtain them in bit-reversed order. As it can be seen, it only

uses six complex registers for a 32-point RFFT. In a general

case, a N -point RFFT requires buffers or a memory of 2 ·
(N/8− 1) complex data to obtain the outputs in bit-reversal,

and a memory of N/2 complex data to obtain them in natural

order.
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