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A PIVOTAL METHOD FOR AFFINE
VARIATIONAL INEQUALITIES

MENGLIN CAO AND MICHAEL C. FERRIS

We explain and justify a path-following algorithm for solving the equations Af^ix) = a,
where A is a. linear transformation from R" to R", C is a polyhedral convex subset of R",
and Ac is the associated normal map. When A^ is coherently oriented, we are able to prove
that the path following method terminates at the unique solution of A^ix) = a, which is a
generalization of the weU known fact that Lemke's method terminates at the unique solution
of LCP (q, M) when Af is a P = matrix. Otherwise, we identify two classes of matrices which
are analogues of the class of copositive-plus and L-matrices in the study of the linear
complementarity problem. We then prove that our algorithm processes A^ix) = a when A
is the linear transformation associated with such matrices. That is, when applied to such a
problem, the algorithm will find a solution unless the problem is infeasible in a well specified
sense.

1. Introduction. This paper is concerned with the Affine Variational Inequality
problem. The problem can be described as follows. Let C be a polyhedral set and let
^ be a linear transformation from U" to R". We wish to find z ^ C such that

(AVI) (Aiz) -a,y+z)^O, Vy e C.

This problem has appeared in the literature in several disguises. The first is the linear
generalized equation, that is

(GE) 0 ^Aiz) — a + (?i/'c(z),

where i/'c(-) is the indicator function of the set C defined by

, . , U ) : = / 0 if z e e .

It can be easily shown that dtpciz) = Nciz), the normal cone to C at z, if z G C and
is empty otherwise, and hence (AVI) is equivalent to (GE). The solutions of such
problems arise for example in the determination of a Newton-type method for
generalized equations.

The problem has also been termed the linear stationary problem and we refer the
reader to the work of Yamamoto (1987), Talman and Yamamoto (1989), and Dai, van
der Laar, Talman and Yamamoto (1991) for several methods for the solution of this
problem either over a bounded polyhedron or a pointed convex polyhedron. These
methods are simplicial in nature and require a triangularization of the set C in order
to general the path. Our method does not require such a procedure and is applicable
to any polyhedral set C, not just the bounded polyhedra or pointed convex polyhedra.
Another algorithm for this problem is given in Dai and Tahnan (1993). This is closer
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to our method in that only one pivot step is required to generate each segment of the
path. However, as described, their path hes entirely within the set C, whereas the
path generated by our algorithm moves through U." (on the "normal manifold"), not
through the feasible set. Further, the analysis of their algorithm is not as general as
will be given for our algorithm, in that our algorithm processes problems generated
from L-matrices, a new class of matrices defined in this paper. This class includes as
subclasses all those processed by the above algorithms, as well as some nontrivial
classes not included in the analysis of these algorithms. Other related methods for
finding stationary points of affine functions on polyhedral sets are given in Eaves
(1978a and b). In these papers, either the set C is assumed to have an extreme point
and the set C has to lie in the positive orthant, or the feasible set C is perturbed. Our
algorithm does not require either of these assumptions, although it does perform
preliminary steps to modify C so that it has an extreme point. These preliminary
steps are easily implementable and essentially factor out any lines in the set C (see
§3) and can be used to generalize the applicability of several of the algorithms
mentioned above.

In this work we will use the notion of a normal map due to Robinson (1992). The
normal map, relating to a function F: U." -» R" and a nonempty, closed, convex set
C, is defined as

where Vcix) is the projection (with respect to the Euclidean norm) of x onto the set
C. Throughout this paper, we will be concerned with solving affine normal maps, that
is, F = ̂  is a linear map, C is a polyhedral set and the solution x satisfies

(NE) . Acix)=a.

Note that (NE) is equivalent to (AVI), since if Acix) = a, then z — ircix) is a
solution of (AVI). Furthermore, if z is a solution of (AVI), then x ••= z + a - Aiz)
satisfies A(.ix) = a. We shall use this equivalence throughout this paper without
further reference. This equivalence was originally introduced by Eaves in (1971).

A very familiar special case of (GE) is when C = K is a polyhedral convex cone.
Then it is easy to show that (GE) is equivalent to the generalized complementarity
problem (Karamardian 1976)

z&K,Aiz) -a&K", (Aiz)-a,z) = O,

where K"^ ••= {z*\(z*,k) S: 0, Vit eii:} is the dual cone associated with K. The
pivotal technique that we describe here can be thought of as a generalization of
Lemke's complementary pivot algorithm (1965) for the special case K = IR", the
nonnegative orthant of U".

In §2 we describe the theoretical algorithm and apply several results of Eaves and
Robinson to establish its finite termination for coherently oriented normal maps. In
§3 we carefully describe an implementation of such a method, under the assumption
that C is given by

C = [z\Bz^b,Hz = h].

In §4 we extend several well known results for linear complementarity problems to
the affine variational inequality. In particular, we generalize the notions of copositive,
copositive-plus and L-matrices from the complementarity literature and prove that
our algorithm processes variational inequalities associated with such matrices. That
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is, when the algorithm is applied to such a problem, either a solution is found, or the
problem is infeasible in a well-specified sense. Our definition of L-matrices is new
and enables the treatment of both coherently oriented normal maps and copositive-
plus matrices within the same framework. Furthermore, this result (Theorem 4.4)
includes many of the standard existence results for complementarity problems and
variational inequalities as special cases.

A word about our notation. For any vectors x and y in R", (x,y} or x^y denotes
the inner product of x and y, and in this paper, these two notations are freely
interchangeable. Each m Xn matrix A represents a linear map from U" to R"*, the
symbol A refers to either the matrix or the linear map as determined by the
context. Given a linear map A from R" to W", for any X c R", the set A(X) ••=
{y e IR'"|>' = Ax, for some J: e Z} is called the image of X under A; for any set
Y c R", the set A-^Y) ••= {x G R " | ^ G Y} is referred to as the inverse image of Y
under A. In particular, the set ker 4̂ — ^"^{0}) is called the kernel of A and the set
im A ••= A(W) is called the image of A. Given a nonempty, closed, convex set C in
R", rec C ••={dG U"\x + Xd e C, \/x e C, VA > 0} is called the recession cone of C
and lin C = rec C n - rec C is the lineality of C. If F is a function from R" to R",
then Fc represents the normal map defined above. If C is a polyhedral convex
convex set, a subset G is called a face of C if there exists a vector c e R" such that
G =

2. Theoretical algorithm. We describe briefly a theoretical algorithm that is
guaranteed to find a solution in finitely many steps when the homeomorphism
condition developed in Robinson (1992) holds. This method is a realization of the
general path-following algorithm described and justified in Eaves (1976). In what
follows we use various terms and concepts that are explained in Eaves (1976). A more
detailed description of an implementation of the methpd is given in §3; here we deal
with theoretical considerations underpinning the method. Other related work can be
found in Burke and More (1994).

In order to formulate the algorithm, it is important to understand the underlying
geometric structure of the problem. Our approach relies heavily on the normal
manifold of the set C, (Robinson 1992), which we will now describe. Note that the
normal cone to a convex set C at a point x G C is given by

Nc(x) = {n\{n, c - x> ^ 0, Vc G C}.

It is well known (Burke and More 1994, and Robinson 1992) that the normal cone is
constant on the relative interior of a face, that is Nc(y) = Nc(x), whenever x,y^
riC. The normal manifold is generated by the faces and these normal cones as
follows:

THEOREM 2.1. Let C be a nonempty polyhedral convex set in R" and let {f)|i G J^}
be the nonempty faces of C. For i G J ,̂ define Np^ to be the common value of Nc(-) on
ri Fi and let o-,- == F^ + N^^. The normal manifold J^^ of C consists of the pair (R", ̂ ) ,
where S^-= {a-,.|/ &^}, and R" = U.-^^CT;. The faces of the ai having dimension k ^ 0
are called the k-cells ofJ^c- - ^ « « subdividedpiecewise linear manifold of dimension n.

It can be seen that the normal map ^ ^ will agree in each n-cell of this manifold
with an affine map, and therefore, with each such cell we can associate the determi-
nant of the corresponding linear transformation. If each of these determinants has
the same sign, we say that Ac is coherently oriented. For example, if A is the matrix
representing the linear map A with respect to the standard coordinate system in R"
and C = R!̂ , the nonnegative orthant in R", then A^ is coherently oriented if and
only if ^ is a P-matrix. The following is the central result from Robinson 1992.
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THEOREM 2.2. The normal mapA(. is a Lipschitzian homeomorphism of R" into R"
if and only if A ̂  is coherently oriented.

We will assume first of all that A(-i'&& homeomorphism of R" onto R", so that the
same-sign condition holds and describe the algorithm within this framework. Later in
the paper, this condition will be weakened. The first step of the algorithm is to
determine if C contains any lines. If it does, take orthonormal bases for lin C and its
orthogonal complement according to the scheme explained in (Robinson 1992,
Proposition 4.1). The factoring procedure explained there shows how to reduce the
problem to one (which we shall also write Ac(x) = a) in a possibly smaller space, in
which the set C appearing in this problem contains no lines. In that case, as shown in
Robinson (1992), the determinants associated with A^. in the various cells oiJ^c "^"st
all have positive sign. Further, C will have an extreme point, say x^, and as pointed
out in Robinson (1992, §5) the normal cone Nc(xJ must have an interior. Let e be
any element of int Nc(x^). An implementation of the factoring procedure is given as
stage one of the method described in §3. The construction of an extreme point and
element in the interior of the normal cone corresponds to stage two of that method.

Now construct a piecewise-linear manifold .J' from J^^ by forming the Cartesian
product of each cell of y^ with R+, the nonnegative half-line in R. This . ^ will be a
PL(« + l)-manifold in R"" '̂, as can easily be verified (see Eaves 1976, Example 4.3).
Define a PL function F: J^ -^ R" (where R" is regarded as a PL manifold of one
cell) by:

We shall consider solutions x( fx.) of F(x, ix) = 0; it is clear from (NE) that x(0) will
solve our problem. Note that since we have assumed ^4^ to be a homeomorphism, the
function ;c(-) is single-valued and defined on all of R+, though this property is not
essential to our argument.

Now define w( /i) = x^ + (a - Ax^) + fie. It is clear that since

(1) w(}i) =x, +fi[e +iJi-'(a-Ax,)]

for large positive fi, W(/JL) lies interior to the cell x^ + N(^(xJ of y^. Therefore
(w( fi), ii) lies interior to the cell [x^ + Nc(x^)] X R+ of .^, and so it is a regular
point of Jl". (Given F, JH and R" as above, (H'( Û,), ̂ t) is a regular point if it is not
contained in any cell a with dim F(a-) < n.) Further, for such /x we have

A:̂ , so that

F(w(iJL),iJi) =Ax, + (a-Ax,) + ̂ e - ( fie + a) = 0,

and therefore for some /JLQ > 0, F"HO) contains the ray ((w(fji), /x)| /u, 5; ixg}.
Now we apply the algorithm of Eaves (1976) to the PL equation F(x, ix) = 0, using

a ray start at (w(/x^), ij.^) for some fx^>/XQ and proceeding in the direction
( —e, — 1). As the manifold . ^ is finite, according to Eaves (1976, Theorem 15.13) the
algorithm generates, in finitely many steps, either a point (J:*, /i,*) = 0, or a ray in
F"HO) different from the starting ray. As the boundary of . ^ is ./^ X {0}, we see that
in the first case /x* = 0 and, by our earlier remarks, x^ then satisfies Ac(x^) — a.
Therefore in order to justify the algorithm we need only show that it cannot produce
a ray different from the starting ray.
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The algorithm in question permits solving the perturbed system Fix^, fx^) = pie),
where pie) is of the form

(=1

for appropriately chosen vectors ;?,. It is shown in Eaves (1976) that pie) is a regular
value of F for each small positive e, and it then follows by Eaves (1976, Theorem 9.1)
that for such e, F~\pie)) is a connected 1-manifold Yie), whose boundary is equal
to its intersection with the boundary of ..#, and which is subdivided by the chords
formed by its intersections with the cells of J^ that it meets. Finally, for an easily
computed function

we have iwifi^), /LAJ) + bie) e Yie), and for small positive e this point evidently lies
on a ray in F~^ipie)). Because we start on this ray, Yie) cannot be homeomorphic to
a circle, and therefore it is homeomorphic to an interval.

A simple computation at the starting point shows that the curve index Eaves (1976,
§12) at that point is - 1 . By Eaves (1976, Lemma 12.1) this index will be constant
along Yie). However, a computation similar to that in Eaves (1976, Lemma 12.3)
shows that in each cell of ^, if the direction of Yie) in that cell is ir, p) then

(sgnp)(sgndetr) = - 1 ,

where T is the linear transformation associated with Ac in the corresponding cell of
J^c- Under our hypotheses, det T must be positive, and therefore p is negative
everywhere along Yie). But this means that the parameter fi decreases strictly in
each cell of linearity that Yie) enters, and it follows from the structure of .^ that
after finitely many steps we must have fji = 0, and therefore we have a point x^ with
AcixJ = a + pie).

Now in practice the algorithm does not actually use a positive e, but only maintains
the information necessary to compute Yie) for all small positive e, employing the
lexicographic ordering to resolve possible ambiguities when e = 0. Therefore after
finitely many steps it will actually have computed XQ with A^ixo) = a.

Note that for linear complementarity problems, the above algorithm corresponds to
Lemke's method (1965). It is well known that for linear complementarity problems
associated with P-matrices, Lemke's method terminates at a solution. For variational
inequalities, we have a similar result due to the analysis above.

THEOREM 2.3. Given the problem (NE), assume thatA^ is coherently oriented; then
the path following method given in this section terminates at a solution of (NE).
Furthermore, the parameter fi decreases monotonically to zero.

3. Algorithm implementation. The previous section described a method for
solving the Affine Variational Inequality over a general polyhedral set and showed
(under a lexicographical ordering) that a coherently oriented normal equation (NE)
can be solved in a finite number of iterations by a path-following method. In this
section, we describe the numerical implementation of such a method, giving emphasis
to the numerical linear algebra required to perform the steps of the algorithm.
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We shall specialize to the case where C is given as

(2) C ••= {z\Bz ^ b,Hz = h),

and we shall assume that the linear transformation A is represented by the matrix A
in our current coordinate system. We can describe our method to solve the normal
equation in three stages. Note that by "solving,"we mean producing a pair (x, 17(0:)),
where ;«; is a solution of (NE) and ir(x) is the projection of x onto the underlying

set C.
In the first stage we remove lines from the set C, to form a reduced problem (over

C) as outlined in the theory above. The lineality space of C as defined by (2) is

lin C = h

We calculate bases for the lineality space and its orthogonal complement by perform-
ing a QR factorization (with column pivoting) of [B^ H^]. Ii [W V] represents
these bases, the reduced problem is to solve the normal equation

(3) A^y = a, where

(4) C = [z\Bz ^b,Hz = h), B = BV, H = HV.

Here

(5) A = U^AU,a = V^(I - AZ)a, with

(6) Z = W(W^AW)~^W^, U=(I-ZA)V,

and Z satisfies Z^AZ = Z^. In practice, A and a are calculated using one LU
factorization of W^AW. Furthermore, the solution pair (x, '!T(X)) of the original
normal equation (NE) can be recovered from the solution pair (y, 'ir(y)) of (3) using
the identities

x, = Z(a-AV',r(y)),

x = x, + Vy,

IT(X) =x, + V',r(y).

Therefore, we can assume that the problem has the form (3), with C given by (4) and

that the matrix f^i has full column rank. We note that a similar construction is

needed in Ralph (1992) and Robinson (1993).
In the second stage, we determine an extreme point of the set C, and using this

information reduce the problem further by forcing the iterates to lie in the affine
space generated by the equalify constraints. More precisely, we have the following
result:

LEMMA 3.1. Suppose y, ^ C and Yis a basis for the kemel ofH. Then y solves (3) if
and only ify=y^ + Yx where x solves

(7) Acx = a.
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Here A = Y'^AY, a = Y^(a -Ay,) and C = {z\BYz >b- By,}. Furthermore, BY has

full column rank if and only if\^-\ has full column rank.
H

Thus, to reduce our problem to one over an inequality constrained polyhedral set,
it remains to show how we generate the point y, G C. In fact we show how to
generate y, as an extremejjoint of C and further, how to project this extreme point
into an extreme point of C. The following result is a well known characterization of
extreme points of polyhedral sets (Murty 1976, §3.4).

LEMMA 3.2. Let u be partitioned into free and constrained variables (u^, u^). u is an
extreme point of S> = {u = (u^, u^)\Du = d,u^> 0} if and only if u G ^ and {d,|/ G
^) are linearly independent, where .^ == y UO G f |M̂ . > 0}.

If we adopt the terminology of linear programming, then the variables correspond-
ing to ^ are called basic variables; similarly, the columns of D corresponding to ^
are called basic columns; extreme points are called basic feasible solutions.

The extreme points of systems of inequalities and equalities are defined in an
analogous manner. Note that extreme points of C are (by definition) precisely the
extreme points of

(8)
B -I

H 0
> 0.

The slack variables s are implicitly defined by z, so without ambiguify we will refer to
the above extreme point as z. For other systems of inequalities and equations a
similar convention will be used. The following lemma outlines our method for
constructing the relevant extreme points.

LEMMA 3.3. Suppose yAh^^ linearly independent columns, Y is a basis of the kemel

ofH and B = BY. Then y, is an extreme point of (8) if and only ify, =y^ +Yz^, for

some 3' *, z * where Hy^, = h and z * is an extreme point of

(9) [B -

In our method we produce an extreme point of (8) as follows. Find orthonormal
bases U and y for im if and ker H respectively. This can be carried out by a singular
value decomposition of H or by QR factorizations of H and / /^ (in fact, Y could be
calculated as a by-product of stage 1 of the algorithm). In particular, if

then Y is the orthonormal basis of ker// and we can let y^ = ZR~^h, using this
value of y^ in (9). If b ^ imB, then find an extreme point of (9) by solving the
following auxiliary problem with the revised simplex method:

minimize

subject to \B b - By^Uf \>b - By^ ,
J [ -̂  aux J

0.
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Note that z = 0, z^^ = 1 is an initial feasible point for this problem, with basic
variables iz,z^^). In contrast to the usual square basis matrix (with corresponding
LU factors), we use a QR factorization of the nonsquare basis matrix. The calcula-
tions of dual variables and incoming columns are performed in a least squares sense
using the currently available QR factorization. This factorization is updated at each
pivot step either by using a rank-one update to the factorization or by adding a
column to the factorization (see Golub and Van Loan 1983). In order to invoke
Lemma 3.1, we l&t y^=y^ +Yz^ be the feasible point needed to define (7).

Note that in the well known method of Lemke, stages one and two are trivial since
C = U'l has no lines and a single extreme point at 0. Furthermore, stage one is an
exact implementation of the theory outlined in the previous section and stage two
corresponds to determining an extreme point and treating the defining equalities of
C in an effective computational manner.

It remains to describe stage three of our method. We are able to assume that our

problem is given as

(10) AcX = a,

with C = {z\Bz ^ fe}, where B has full column rank and x^ is an extreme point of C

(easily determined from 2*). We also have available a basis matrix corresponding to
this extreme point along with a QR factorization, courtesy of stage two.

The method that we use to solve this problem is precisely a realization of the
general scheme for piecewise linear equations developed by Eaves (1976). The
general method of Eaves (assuming a ray start and regular value v) moves along
the curve F~^iu) in the direction d^ from x^. Note that a direction rf # 0 points into
a- at X if X ^ a- and x + Od ̂  a ioi all sufficiently small B. The complete algorithm
is given as Algorithm 1.

Algorithm 1
Initialize:. Let L^ denote the linear map representing F on the cell o-;^. Determine
ixi, o-j, dj) satisfying

(11) L^^di = 0, di points into a^ at x^.

Fix,) = V,

(12) x,&(T

Iteration:. Given ix,^, cr̂ , d^) let

(13) 0, ••= sup{0U, + dd, e a,}.

If di^ = +00 then ray termination.

If Xi^+i ••= x,^ + di^di^ e dJl' then boundary termination.
Otherwise determine ixi^^^, 0-̂ .̂ .1, dj^+iX^t+i ^ 0> satisfying

(14) ^cr,,,^it+i = 0. and d^^, points into o-̂ +j from

k] with x^+i G o-^+i.

Set k = k + 1 and repeat iteration.

How does this relate to the description we gave in the previous section? The
manifold we consider is ^ = . / % X U^, and the corresponding cells 0^ are given by
(F^ + Np) XR+, where F^ are the faces of C.
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A face of C is described by the set of constraints from the system Bz ^ b which
are active. Let JJJ' represent such a set so that

where JMs the complement of the set s/. The normal cone to the face (the normal
cone to C at some point in the relative interior of F^^) is given by

cr^ is that there existcr^
It now follows that an algebraic description of ix,
ix, z, Uj^, Sjr, fi) which satisfy

(15) B^z = b^,

BjrZ - Sj= bjr, Sjr ^ 0,

X = z + BjfU^, u^ <. 0,

At> 0.

In particular, if x^ is the given extreme point, the corresponding face of the set C
is used to define the initial cell o-j. The piecewise hnear system we solve is

Fix, IJL) •• a) =0,

where e is_a point in the interior of N^ix^). An equivalent description of N^ix^) is
given by {B^u\u ^ 0), from which it is clear that the interior of this set is nonempty if
and only if Bj^ has full column rank.

LEMMA 3.4. Ifx^ is an extreme point of{z\Bz ^ b] with active constraints s^, then B^
has full column rank.

PROOF. By definition.

G =
0

- /

has linearly independent columns. If B^ does not have linearly independent columns,
then B^w = 0, for some w # 0, so that

w
= 0,

with iw, Bjrw) 9fe 0, a contradiction to the linear independence of the columns of G.
D

This is a simple proof (in this particular instance) of the comment from the previous
section that the normal cone has interior_at an extreme point. For consistency, we
shall let e be any point in this interior {B^u\u < 0}, and for concreteness we could
take

l '

e= -
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Hence F is specified, v = 0 and the cells of a^ are defined. By solving the perturbed
system Fix^, IJL^) = pie) (as outlined in §2), we know that F'^ipie)) is a connected
1-manifold whose boundary is equal to its intersection with the boundary of J! and
which is subdivided by the chords formed by its intersections with the cells of J^ that
it meets. In practice, this means that (under the lexicographical ordering induced by
pie)) we may assume nondegeneracy. Thus, if ties ever occur in the description that
follows, we will always choose the lexicographical minimum from those which achieve
the tie.

Note that if ix, /i,) e o^ as defined in (15) then

Fix, IX) =Az+x-z-iJie-a.

It follows that if ix, t̂i) e or̂  n F"HO) (i.e. ix, /x) is in one of the chords mentioned in
the previous paragraph), then there exist ix, z, u^, s^, ti) satisfying

(16) X — z = —Az + fie + a.

Z - Sjr= b^, Sj.-> 0,

X - z = B^u^, Uj^ <, 0,

Furthermore, these equations determine the chord on the current cell of the mani-
fold, or in the notation used to describe the algorithm of Eaves, the map L^^. The
direction is determined from (11) by solving L^^d = 0, which can be calculated by
solving

(17) Ax - Az = -AAz +

5^Az = 0,

A;c - Az = B^Au^.

At the first iteration, Bj^ has full column rank, so that Az = 0, which also implies
that Asjr= 0. The remaining system of equations is

Ax = eAfi,

Ax =

We choose A /x = - 1 in order to force the direction to move into a, (as required by
(11)), and then it follows that Ax = —e for the choice of e outlined above Au^ =
(1,...,1)^. The actual choice x^ = iwi/x), fx) given in the previous section ensures
that (12) is satisfied.

We can now describe the general iteration and the resultant linear algebra that it
entails. We are given a current point ix, z, u^, s^, \x) satisfying (16) for some cell a^
and a direction iAx, Az, Au^, As^, Afx) satisfying (17). The value of d^ to satisfy (13)
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can be calculated by the following ratio test; that is to find the largest 6 such that

(18) u^ + eAu^ < 0,

Sj, + eASjr > 0,

IX + ei^ii ^ 0.

Ray termination occurs if AM^̂  < 0, Ai^ S; 0 and A/it > 0. Obviously, if ix + ^A/u, = 0,
then we have a solution. Otherwise, at least one of the {M,|i ^s/} or [s^li e J^} hits a
bound in (18). By the lexicographical ordering we can determine the "leaving"
variable from these uniquely. The set s/ is updated (corresponding to moving onto a
new cell of the manifold) and a new direction is calculated as follows: if M,, i e j / is
the leaving variable, then s/ ••=s/\{i}, ASj = 1 and the new direction is found by
solving (17); if 5,, i e^J^ is the leaving variable, then s/ —J^/DU], AM,- = - 1 and the
new direction is found by solving (17). Note that in both cases, the choice of one
component of the direction ensures movement into the new (uniquely specified) cell
cTj^ and forces a unique solution of (17).

The linear algebra needed for an implementation of the method is now clear. The
actual steps used to carry out stage 3 are now described. First of all, x is eliminated
from (16) to give

a =

^<O,M^= 0, Sjr>Q,s^ = Q.

Note that we have added in the variables which are set to zero for completeness. The
QR factorization corresponding to the given extreme point is used to eliminate the
variables z. In fact, we take as our initial active set s/, th£ variables^ corresponding to
QR, where R is the invertible submatrix of R. Thus z = B^^(s^ + \), and substitut-
ing this into the above gives

'{^ + 6^) + ^e + a = B^u^ + B^u^,

Essentially we treat this system as in the method of Lemke. An initial basis is given by
(Uj^, s^) and complementary pivots can then be executed (using the variables u and s
as the complementary pair). Any basis updating technique or anti-cycling rule can be
incorporated from the literature on linear programming and complementarity. In fact
we have an initial QR factorization of the basis available from the given factorization
if needed.

We showed in the previous section that if ^ ^ was coherently oriented then
following the above path gives a monotonic decrease in fx. However, the proof of the
finite termination of the method (possibly ray termination) goes through without this
assumption, and in the following section we will look at other conditions which
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guarantee that the method terminates either with a solution or a proof that no
solution exists. The coherent orientation results are direct analogues of the P-matrix
results for the linear complementarity problem—the results we shall give now
generalize the notions of coposition-plus and L-matrices.

4. Existence results. The following definitions are generalizations of those found
in the literature.

DEHNITION 4.1. Let K he a given closed convex cone. A matrix A is said to be
copositive with respect to the cone K if

A matrix A is said to be copositive-plus with respect to the cone K if it is copositive
with respect to K and

(x,Ax) = O, x&K =» iA+A^)x = O.

DEFINITION 4.2. Let K be a given closed convex cone. A matrix A is said to be
L-matrix with respect to K if both

(a) For every q G ri(Ar^), the solution set of the generalized complementarify
problem

(19) z^K, Az + q^K^,

is contained in lin K.
(b) For any z # 0 such that

there exists z' =^ 0, such that z' is contained in every face of K containing z and
—A^z' is contained in every face of K^ containing Az.

To see how these definitions relate to the standard ones given in the literature on
linear complementarify problems (e.g. Murfy 1988 and Cottle, Pang and Stone 1992),
consider the case that C = IR" and /C = rec C = IR". Condition a) says that
LCPiq, A) has a unique solution 0 for all ^ > 0. Condition b) states that, if z # 0 is a
solution of LCP(O, AL) , then there exists z # 0 such that z' is contained in every face
of R" containing z and —AJZ' is contained in every face of IR" containing Az. In
particular, z' e {J: e IR"U, = 0}, for all i G {I|Z, = 0}. Hence z\ = 0 for each i such
that z, = 0. That is, suppz' c supp z. In another words, there exists a diagonal
matrix D ^ 0 such that z' = Dz. Similarly, there exists a diagonal matrix £ ^ 0 such
that -A^z' = EAz. Hence iEA +A^D)z = 0. where, Z), £ ^ 0 and Dz # 0. Thus
the notion of L-matrix defined here is a natural extension of that presented in Murfy
(1988). The following lemma shows that the class L-matrices the class of copositive-
plus matrices.

LEMMA 4.3. If a matrix A is copositive-plus with respect to a closed convex cone K,
then it is an L-matrix with respect to K.

PROOF. Suppose that q G viiK'^) and z G ii:\lin ii:, then 7r(|in^)i(z) ^ 0. Fur-
thermore, there exists an e > 0, such that q - e-n-̂ in jj^ji(z) G K^, since aff(/C^) =
(lin K)^ (cf. Rockafellar 1970, Theorem 14.6). It follows that

0<{z,q- e7r(Hnjt)x(z)) = {z,q) - ^{z,'iT^^^K).iz)) = {z,q) - elk(Hn;,)X (z)| |t
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That is <z, ^> ^ e||7r(|in^)i(z)|l2 > 0. Also z^Az'^0 since A is copositive with
respect to K. Thus z^(y4z + q) = z'''Az + z^q > z'^'q > 0. This shows that the set
K\lin K does not contain any solution of (19). Therefore the solution set of the
problem (19) is contained in lin K.

To complete the proof, note that for any z e. K, such that Az G K'^ and z^Az = 0,
we have Az + A^z = 0, or -AJZ = Az, since A is copositive-plus. So the condition b)
of Definition 4.2 is satisfied with z' = z. a

We now come to the main result of this section.

THEOREM 4.4. Suppose C is a polyhedral convex set and A. is an L-matrix with respect
to rec C which is invertible on the lineality space of C. Then exactly one of the following
occurs:

• The method given above solves iAVI);
• the following system has no solution:

(20) ^ - f l G ( r e c C ) ^ , X G C .

PROOF. Suppose that C = {z\Bz ^ b,Hz = h}. We may assume that (AVI) is in
the form (10) due to Lemma A.4 and Lemma A.5 and our assumption regarding the
linealify space of C. The pivotal method fails to solve (AVI) only if, at some iterate
x^, it reaches an unbounded direction d^^^ in a^+i. We know that x,, satisfies (16),
and the direction d/^^., which satisfies L^̂ ^̂ d̂ t+i = 0 can be found by solving (17).
Suppose (AJ:, AZ, SU^^, Asjr, Ayu.) is a solution of (17), then

(21)

provided that x,, +

(22)

M ^ < 0 , Asjr>0, Aix>0,

is an unbounded ray. By reference to (17), we have

B^Az = 0,

0.

That is, Az satisfies

Az G rec C,

= 0.

If AyL> 0, then eA/x G int N^ixJ, hence -eAp, G int(rec C)^. The above system
has a unjque solution Az = 0 by the fact that A is an L-matrix with respect to rec C
and linC = {0}. Therefore the terminatingj-ayj^s the startmg ray, a contradiction.
Thus Afx = O. It follows that Az G rec C, ^ A z e ( r e c C ) ^ , and Aẑ y4Az = 0.
Therefore there ejdst f # 0, such that z is contained in every face of rec C containing
Az, and that - ^ ^ z is contained in every face of (rec C)^ containing ^Az. We
observe that, since Xi^e o-i^n a^^., n F~\0), there exist z^, U/^, s^, and fx,^ such that
(16) is satisfied. It is easy to verify that Az is in the face
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of rec C, and AAz is in the face

of (rec C)^, and thus

(23) - A^z = Wu e G2, for some ii = (it^, 0) S: 0.

Consequently, by (16) we have

=O, and

since z e. Gy Therefore

+ z'^a = ii^{b - Bz^) + Ci^Bz^. +

= [B'^H+A'^zf z,,- ixe'^z

= - ixe'^z > 0,

in which the last inequality is due to f G rec C and e e int Nc(x,) c - int(rec C)^.
We now claim that the system

(24) Ax-a^ (rec C)^, x^C

has no solution. To see this, let jr e C, then UJBX + f'^tc = 0, as a result of (23).
Subtract from this the _inequality ifT) + z^a > 0 which we have just proven.
Th il^(Bx - B) + z'^(Ax -_o) < 0. It is obvious_that ii^(Bx - 6) ^ 0, hence

-a)<0. But z e rec C. Thus / k - a ^ (rec C)^.
The proof is complete by noting that (24) has a solution if and only if (20) has a

solution. D
As a special case of this theorem, we have the following result for copositive-plus
matrices.

COROLLARY 4.5. Suppose C is a polyhedral convex set, A is copositive-plus with
respect to rec C and invertible on the lineality space of C. Then exactly one of the
following occurs:

• The method given above solves (AVI);
• the following system has no solution:

(25) Ax - a ^ (lec C)°, x&C.

PROOF. Obvious, in view of Lemma 4.3. n
We can also prove Theorem 2.3 (without the proof of monotonic decrease in ix) as

a special case of Theorem 4.4 by noting the following lemma.
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LEMMA 4.6. Suppose A(. is coherently oriented. Then
(a) A^^^ Q is coherently oriented;
(b) A is an L-matrix with respect to rec C.

PROOF, a) This follows from the proof of Theorem 4.3 of Robinson (1992).
b) By the first part, A^^^ c is coherently oriented, so by Robinson (1992, Theorem

4.3) it is a Lipschitzian homeomorphism, and hence A^^^^^x) = q has a unique
solution for all q. Therefore, parts (i) and (ii) of the definition of L-matrices are
trivially satisfied by the unique solution {0}. a

Note also that if C is compact, then any matrix A is an L-matrix with respect to
rec C. Thus Theorem 4.4 also recovers the standard existence theory for variational
inequalities over compact sets.

5. Computational results. The algorithm described in this paper has been imple-
mented in MATLAB (The Math Works 1992). Copies of the code and the testing script
files are available from the second author.

The algorithm NEPOLY is implemented as 3 function files in MATLAB. The develop-
ment of the code is exactly as outlined in §3. The first function removes the lineality
of the set C, then calls the second routine which proceeds to determine an extreme
point and factor out the equality constraints. Having accomplished this, the third
routine then executes the pivot steps. We note in particular, that Lemke's original
pivot algorithm can be carried out just using the third routine, since the defining set
C = R" has no lines, no equality constraints and a single extreme point 0.

We now present two tables of our results of applying this algorithm to some small
quadratic programs. In Table 1 we present a comparison of NEPOLY to the standard
QP solver that is available as part of the optimization toolbox of MATLAB. This QP
solver is an active set method, similar to that described in Gill, Murray and Wright
(1981). Further details available in The Math Works (1992).

The problems that we generate are of the form

(26) minimize ^x^Qx + c^x + y^y

subject to Ax + By = b, x >0,

TABLE 1
NEPOLY and MATLAB QP

p NEPOLY time MATLAB QP time

10

20

30

10

10

20

10

70

40

100

10

10

50

40

80

60

10

10

20

40

10

20

60

10

40

10

10

100

30

100

40

60

10

10

10

10

50

30

20

30

40

10

100

10

40

60

100

100

0.3

0.2

0.3

3.4

0.6

1.2

5.8

0.8

4.6

0.5

3.1

28.0

7.9

32.4

10.2

13.3

0.8

0.2

0.3

10.5

5.7

4.6

45.1

0.9

14.3

0.6

9.8

121.1

6.8

208.5

37.4

114.5
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where Q e IR"^", A e IR''̂ " and B G RP^"". The minimum principle generates an
affine variational inequality which under convexity is equivalent to (26). In general,
the variational inequality represents necessary optimality conditions for (26).

We generate Q as a random sparse symmetric matrix. Unfortunately, the MATLAB
QP solver did not solve (26) unless Q was positive semidefinite, so in Table 1, Q was
generated positive semidefinite. All other matrices were generated using the MATLAB
random generator, although the feasible region was guaranteed to be nonempty.

MATLAB 4.0 was used with dedicated access to a Hewlett Packard 9000/705
workstation. The times reported are elapsed times in seconds using the built in
stopwatch timer of MATLAB. The ordering of entries in the table is by total problem
size. Since the problems are convex, both codes always found the solution of (26). The
constraint error was always less than 10"'''. All MATLAB codes reported here do not
use the sparse matrix facility of MATLAB.

Notice that NEPOLY solves all but one of these instances quicker than the MATLAB
code. On the bigger problems, NEPOLY is much quicker that QP. These results are
averaged over 10 randomly generated problems of the given size. The times vary
slightly for different random problems of the same dimension, but the main conclu-
sion is that NEPOLY outperforms MATLAB QP.

In Table 2,- we present similar results comparing NEPOLY with a standard Lemke
code. As outlined above, NEPOLY is easily adapted to generate the Lemke path as a
special case. In order to carry out this comparison, we reformulate (26) as the
following quadratic program:

minimize \x^Qx + c^x + ^{z - e^)^(z - e^)

Ax + B{z - e^) > b,

subject to e'^{Ax + B(z - e^)) <e'^b,

x,z,^^ 0.

The necessary optimality conditions for this problem give rise to a standard form LCP
to which Lemke's method can then be applied. Table 2 reports the iteration count

m

10
10
20
10
13
13
13
20
20
10
30

50
10
40
40
80

n

10
10
10
14
26
26
26
40
40
50
30

30
50
70

100
40

TABLE• 2

NEPOLY and MATLAB QP

P

10
10
5

24
10
10
10
20
20
30
30
40
70
50
60

100

NEPOLY
iter

8
9
0
9

37
29
18
32
23
F

20
10
F

40
55
29

time

0.3
0.3
0.1
0.5
2.4
2.3
2.1
4.6
2.8

2.1
8.1

13.5
33.8
21.9

iter

46
69
64

75
80
114

F
126
173

F

168
196

F

298
323
349

Lemke
time

2.6
3.5
4.0
7.7

11.3
16.5

46.5
62.6

60.8
109.6

471.2
1199.5
860.7
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and elapsed time for problems of various sizes. In all cases, the problems were solved
to high accuracy (constraint errors less than 10"''').

Notice on some of the problems, one or other of the codes failed (denoted by F in
the table). This is because for these experiments, Q was generated sparse and
symmetric but not positive definite. The convergence theory does not guarantee
finding a solution in these case, but note that the number of failures are small for
NEPOLY. The number of failures can be made large by testing problems with large n
since the failures are entirely due to the indefiniteness of Q. However, it is easy to
infer that NEPOLY is significantly quicker than the standard Lemke code.

6. Conclusions. We have presented a method for solving affine variational
inequalities and demonstrated its implementabihty. Further, the algorithm has been
used to generate a new class of matrices (L-matrices) for which the corresponding
affine variational inequality is solvable, or provably infeasible. Qur theory is shown to
unify several existing results in the literature. An implementation shows the method
performs well in comparison with a standard active set method and Lemke's comple-
mentary pivot algorithm when applied to quadratic programs. Further testing is
needed to ascertain whether the technique is effective for large scale problems.

Appendix A. Invariance properties of L-matrices. In this appendix we show that the property of
L-matrix with respect to a polyhedral convex cone is invariant under the two reductions presented in §3.
We begin with the following technical lemmas.

LEMMA A.I. Let C, C, and C be as in (AVI), (3) and (10); Vand Y be as in (6) and Lemma 3.1. Then

(27) recC = K(recC),

(28) recC = y(recC), and

(29) K'"((recC)'') =(recC) ' ' ,

(30) y^((recC)") = (recC)''.

Furthermore

(31) • K^(ri((recC))°) = ^

(32) y'"(ri(rec C)") = ri(rec C)''.

PROOF. (27) and (28) are obvious from definition.
Based on these two equations and Rockafellar (1970, Corollary 16.3.2), we have

(recC)^ = -(recC)° = -(KrecC)°

where K" = —K'^ is the polar cone of K and (V^)~^ is the inverse image of the linear map V^ (also see
Rockafellar 1970). Similarly

(recC)^ = (YKCC)" = (y '" ) ' ' ( recC)" .

So we have proven (29) and (30).
(31) and (32) can be obtained from (29) and (30) by applying Rockafellar (1970, Theorem 6.6). D
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LEMMA A.2. For 2 e rec C, z e rec C, and z e rec C, define

D(z) := (d e (rec C)'^\{d, 2) = O},

D{z) := {rf e (recC)^|<d,2> = o}.

Then

(33) D(2) =

(34) D(z) =

where V and Y are as in (6) and Lemma 3.1.

PROOF.

D{z) = ( i e (recC)^|<i,z> = o} = {d s K^(recC)^|<d, z> = O}

= F^{d e (rec C)''Kd'", Kz") = O} = V'^D{Vz).

The other equation can be proven similarly. D
Actually, for z e rec C, D{z) is the set of vectors defining faces of rec C containing 2, a vector z' is in

every face of rec C containirig 2 if and only if {d, z'> = 0 and all d e D{z). Similar observation can also
be made for the set C and C.

LEMMA A.3. For w e (rec O " , w e (rec C)°, and w e (rec C)^, rfe/i/ie

;?(») := { re recCKr ,^ ) = 0},

R(w) — [f e recCKr, w) = O},

R(w) ••= {rsrecC|<?,iv> = 0}.

Then

(35) VRiV^w) = ;?(H'),

(36) yR(y^iv) = R(w),

where V and Y are as in (6) and Lemma 3.1.

PROOF.

i?(H') = {rsrecC|<r,>v> = 0} = {r e K(recC)|<r, w> = 0}

= V{f e rec C|<r, K'"H'> = 0} = VR{V'^w).

The other equation can be proven similarly. D
Similar to the case of Lemma A.2, for w s (rec O " , R{w) is the set of vectors defining faces of (rec C)' '

containing w, a vector w' is in every face of (recC)'' containing w if and only if <r, iv') = 0 for all
r s R{z). The situation is similar for the set C and C.

Now, we come to the invariance of the L-matrix property.

LEMMA A . 4 . Given the problems (3) and (10). Suppose A is an L-matrix with respect to rec C, then A is an

L-matrix with respect to rec C.

PROOF. For z s rec C^z e rec C. For any ^ s ri(rec C)^, there exists 9 e re(rec C)'' such that
q = Y^q due to (32). li Az-^-q e (rec C)^ then

Y^AYz + Y^q s (rec C)°,
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by definition of A. Hence

< AYz + q, Yz) = {Y^AYz + Y'^q,z)^O, Vz e rec C.

It follows from (28) that

(AYz + q,z)-^Q, Vie recC.

Thus AYz + q e (rec C)°. Therefore z satisfies

(37) z e rec C, Ai + q e (rec C)°, and 2'"( A^ + q) = 0,

with q e ri(rec C)^, implying that Yz satisfies

(38) Yz e recC, y4'yz + q s (recC)°, and {Yzf[A{Yz) + ^] = 0,

with q s ri(rec C)^. Thus, the solution Yz of (38) is contained in lin C = {0}, which implies that 2 = 0.
Thus the solution of (37) is {0} c lin C.

For any 0 *z e recC such that

we have, 0 ^^ Yz s rec C, and

(rec C) ' ' and I ' S = 0,

(rec C)" and (y2-)^/i(y2) = 0.

So, there exists 0 ¥= z s rec C such that z is contained in every face of rec C containing Yz, and —/Ff is
contained in every face of (rec C)^ containing AYz. That is

Consequently, there exists 0 # 2' e r ecC such that 2 = yf'. For any d e Diz), d = Y^d for some
d e D(Yz). Hence

(d, V) = <yV, 2') = {d,Yr) = 0.

So, z' is contained every face of rec C containing z. Moreover, for any f e i?(/4z)

<r,-Z^z'> = <yr,-^'^yz-'> = <yf,-^'^z> = 0,

since Yz e Ri^AYT). We see that —A'^Z' is contained in every face of (rec CV containing Az. Thus A is an
L-matrix with respect to C. G

LEMMA A.5. Given the problems (NE) and (3). Suppose A is an L-matrix with respect to rec C, then A is
an L-matrix with respect to rec C.

PROOF. For any z s rec C, Vz e rec C and

t/2 = ( K - W(W'^AWy^W'^AV)z = Vz-- W(W'^AWy^W'^AVze rec C,

since W{W'^AWY^W'^AVz e lin C. For any q e ri(rec C)^, there exists 9 e ri(rec C)° such that g =
\i A2 + qe (rec C)^ then

U^AUz + K^9 e (rec C)", qe (rec C)^,

by definition of A. But

U^AU = K'kt/ - V^A'^W(W^AW)'^ W'^AU = V'^AU,
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since W^AU == 0, as can be directly verified. Thus

V^iAUz + q) = V^AUz + V^q e (recC)'', q e (recC)°,

which implies

{AUz + q,Vz) = (V^(AUz + q), z) S: 0, Vi e rec C.

It follows from (27) that

{AUz + q,z)^O, VzerecC.

Thus AUz + 9 e (rec C)°. Also, WzY[A{.Uz) + q] = i^Az = 0. Therefore f satisfies

(39) z e rec C, Az + q e (rec C)" , and z'^(^Az + q) = Q,

with q s ri(rec C)'^. This implies Uz satisfies

(40) Uz s recC, AUz + qe (recC)", and (f/f)'"[/l(t/f) + 9] = 0,

with 9 e ri(rec C)^. Hence the solution Uz e lin rec C = lin C. But then

Kz'e H'(H'':4If)"'/l^Kz +lin C c lin C,

which, by the definition of V, implies z = 0. This shows that the solution of (39) is contained in lin C = {0}.
For any 0 # z s rec C such that

Az s (rec C) and Z'''AZ = 0,

we have 0 # [/z e rec C, and

V'^AUz = U'^AUz=Aze (rec C)^,

which implies A(Uz) e (rec C)^. We also have

z) = z^Az = 0.

So, there exists 0 # z' e rec C such that z' is contained in every face of rec C containing Uz, and that
-A^z' is contained in every face of (rec C)" containing A(Uz). That is

<r,-Az') = O, VreR(AUz).

Consequently, there exists 0 # z' s rec C, such that z' = Vz', and for any d e D(z), we have J = V^d,
for some d e Z)(Kz"). Since d e (rec C)°, W'^d = 0, therefore <rf, Vz) = <t/, f/z>, so d e D(Vz) implies
rf e D(C/z), hence

U, f ' ) = <K'"d, z'> = <d, Ki" > = <d, z'> = 0.

So, z ' is contained in every face of rec C containing z. For any f s R(.Az),

(f,-A^z') = <r,- U^A'^Uz') = {f,- U^A^Vz" > = <f,- t/'k^z')

= <r,- K'>l''z'> = <Fr, - / l^z ' ) = <r,-/l^z'> = 0,

since r = Vf s. RiAUz) as a result of (36). This proves that -A''Z' is contained in every face of (rec C)'^
containing Az. D
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