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Abstract: Clinical and preclinical research indicates that neurodegenerative diseases are characterized
by excess levels of oxidative stress (OS) biomarkers and by lower levels of antioxidant protection
in the brain and peripheral tissues. Dysregulations in the oxidant/antioxidant balance are known
to be a major factor in the pathogenesis of neurodegenerative diseases and involve mitochondrial
dysfunction, protein misfolding, and neuroinflammation, all events that lead to the proteostatic
collapse of neuronal cells and their loss. Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived
protein that works as a transcription factor and is related to the expression of many cytoprotective
genes involved in xenobiotic metabolism and antioxidant responses. A major emerging function of
Nrf2 from studies over the past decade is its role in resistance to OS. Nrf2 is a key regulator of OS
defense and research supports a protective and defending role of Nrf2 against neurodegenerative
conditions. This review describes the influence of Nrf2 on OS and in what way Nrf2 regulates
antioxidant defense for neurodegenerative conditions. Furthermore, we evaluate recent research and
evidence for a beneficial and potential role of specific Nrf2 activator compounds as therapeutic agents.

Keywords: Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; ALS; Nrf2; oxidative
stress; antioxidant; neurodegenerative

1. Introduction

Oxidative stress (OS) is a physiopathological state characterized by an imbalance
between reactive oxygen (ROS) and nitrogen species (RNS) generation and cellular an-
tioxidant capacity. Excess ROS formation causes critically important changes in cellular
biomolecules, such as proteins, DNA, and lipids. There are numerous studies that confirm
a major relationship between OS and neurodegenerative disorders [1,2] like Alzheimer’s
disease (AD) [3], Huntington’s disease (HD) [4], Parkinson’s disease (PD) [5], Multiple
sclerosis (MS) [6] and Amyotrophic Lateral Sclerosis (ALS) [7].

ROS/RNS are generated from many different sources in multiple compartments
within the cell, either physiologically or because of exposure to toxic or pathologic con-
ditions [8]. One of the most active types of ROS, superoxide (O2

−), is produced by the
one-electron reduction of O2 in mitochondria. Superoxide can also be produced by a family
of NADPH oxidases (NOXs), using oxygen and NADPH as substrates in which superoxide
is promptly disposed of [9]. Another important side-product of mitochondrial oxidative
phosphorylation is hydroxyl radical (.OH). This is very unsteady, extremely reactive, and
produces several reactive aldehydes from membrane lipid peroxidation (LP) that eventually
cause cell death. Moreover, the ROS hydrogen peroxide (H2O2), is rapidly formed in the
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cytoplasm by superoxide dismutase 1 (SOD1), while the H2O2 outside the cell is generated
by extracellular superoxide dismutase 3 (SOD3). To end up, H2O2 can be produced as
a by-product during β-oxidation of fatty acids by cytochrome P450s. Although H2O2 is
relatively more stable and less reactive, in the presence of Fe2+ or Cu+ (Fenton reaction), it
can be transformed into hydroxyl radical [10].

The main RNS is ONOO− that rapidly decays into HO•, nitrogen dioxide radical
(NO2•), and nitryl cation (NO2

+) [11]. All of these are neurotoxic.
There are multiple steps in the production of the OS and in the imbalance of the

endogenous cellular defense in neuronal cells that could be targeted therapeutically in the
processing of neurodegenerative diseases.

Nuclear factor (erythroid-derived 2)-like2 (Nrf2), is a transcriptional factor associated
with the essential defense mechanism of the cells against OS inducing expression of cyto-
protective genes [12,13]. Moreover, the Nrf2 is crucial for blood cell differentiation and for
the induction of a set of drug-metabolizing enzymes [14]. Proteins upregulated by Nrf2
signaling include heme oxygenase-1 (HO-1), SOD1, catalase, and enzymes involved in glu-
tathione (GSH) metabolism, such as glutathione S-transferase (GST), glutathione cysteine
ligase modifier subunit, and glutathione cysteine ligase catalytic subunit (GCLC) [15,16].

The capacity of Nrf2 to control intermediary metabolism and mitochondrial action
leads that Nrf2 activation is a smart and comprehensive approach to the management
of neurodegenerative disorders [17]. This review discusses the importance of oxidative
stress in neurodegenerative diseases and the advantages associated with targeting the Nrf2
pathway as a transcriptional antioxidant and cytoprotective response and highlights new
candidate therapeutics that have been developed to able to recover oxidative damage and
neuroinflammation through the Nrf2 signaling pathway activation.

2. Oxidative Stress and Neurodegenerative Conditions

The brain is very predisposed to OS because of low antioxidant levels, such as catalase
and GSH, but also because neurons and microglia produce a large amount of OS [18,19].
Moreover, the brain is rich in unsaturated lipids, Fe2+ or Cu+, an ideal environment for LP
and ferroptosis [20,21].

Ferroptosis is described as non-apoptotic, iron-dependent, oxidative cell loss. It plays a
significant part in the brain and neurological disorders [22]. Ferroptosis is reliant on excess
iron accumulation, which is a critical factor of LP [23]. Neurodegenerative disorders cell
death processes, which are closely related to excess buildup of iron and LP in the brain [24].
This excess iron accumulation in neurodegenerative disorders caused OS generation, mi-
tochondrial activity failure, over the formation of ROS as well as damage to DNA [25]. It
is stated that ferroptosis is organized by NRF2 and BACH1. NRF2 and BACH1 work by
stimulating or preventing the expression of genes in the pathways of ferroptosis [26].

Ferroptosis is considered a significant preclinical mark of AD. LP and excess iron
worsen amyloid β peptide and tau aggregation, which are significant in AD pathogene-
sis [27]. Recent research showed that BACH1/NRF2 proportion in the modulation of the
antioxidant defense, a valued approach therapeutically to investigate molecules could uti-
lize neuroprotective activity. For example, Down syndrome (DS) is a multifaceted genetic
disease described by BACH1 gene triplication that possible consequences in the damage
of NRF2 causing augmented OS. Pagnotta et al. [28] suggested that overproduction of
BACH1 modifies the BACH1/NRF2 proportion and interrupts the initiation of antioxidant
response genes eventually causing excessive oxidative damage. They found that the theory
that BACH1 triplication in DS is involved in the modification of redox homeostasis.

Research has recognized the part of ferroptosis in neurotoxicity and brain injuries,
proposing the pharmacological prospective of ferroptosis inhibition [29]. Diseases and some
other biological processes associated with ferroptosis neurodegeneration [30,31], autoim-
mune diseases [32], and a rare genetic neurological disorder called Pelizaeus-Merzbacher
Disease [33]. Ferroptosis is a form of regulated necrosis that induces an increase in lethal
levels of phospholipid hydroperoxides from polyunsaturated fatty acid (PUFA) [34]. This
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process is iron-dependent and causes membrane perforation and other damages within
cellular membranes [35,36].

A further source of OS is the neurotransmitters with catechol groups like dopamine
that generate hydrogen peroxide when is metabolized by monoamine oxidases (MAO) [37].

The areas of the brain more susceptible to OS are the cerebral cortex, the hippocampus,
and the striatum [20,38]. In the neurodegenerative conditions, aggregates of misfolded
proteins and mitochondrial dysfunction are the main prompter of ROS release.

The role of OS in general and of ROS, in particular, has been recognized using many
different animal models and a large variety of cultured cells. Moreover, the OS increase is a
factor age-dependent that promotes pathological alterations that can trigger neurodegener-
ative diseases [39]. An antioxidant defense system to fight the effects of OS in the brain is
the Nrf2, the chief regulator of redox homeostasis by triggering the antioxidant enzyme
system and regulating both mitochondrial function and biogenesis [40,41]. These activities
have made the Nrf2 a promising therapeutic target investigated in pre-clinical and clinical
studies [42]. Furthermore, Nrf2 has also been found to show anti-inflammatory activity
adding importance to its role in neurodegenerative diseases [43]. In fact, neuroinflamma-
tion is described as the inflammatory response of the central nervous system (CNS) against
harmful stimuli closely related to many neurodegenerative conditions [44]. A number of
studies have shown that the release of pro-inflammatory cytokines is due to inflamma-
some, a multiprotein complex triggered by receptors as the nucleotide-binding domain and
leucine-rich repeat-containing receptors (NLRs) family [45]. Nevertheless, in humans, the
mechanism of the inflammatory response is not entirely clarified. Redox balance is affected
by the occurrence of neuroinflammation or unbalanced mitochondrial activity [46].

3. The Nrf2-ARE Pathway as a Therapeutic Target

Nrf2 organizes cellular protection mechanisms against oxidants via modifying the
expression of more than 500 genes that are related to antioxidants, detoxification pathways,
or metabolic enzymes. Kelch-like ECH-associated protein (KEAP1) is one of the main
regulators of Nrf2 protein stability. Under normal homeostatic conditions, Nrf2 is located
in the cytosol and binds KEAP1 [2].

Nrf2 is one of the members of the cap “n” collar (CNC) subfamily of basic-region
leucine zipper (bZIP) transcription factors along with Nrf1, Nrf3, NF-E2 p45 subunits and
the less related factors BTB domain and CNC homolog 1 and 2 (Bach1 and Bach2) [47,48].

Molecular structure characterization of Nrf2 revealed seven functional domains, called
Nrf2ECH homology (Neh) domains 1–7 with distinct functions [49]. Neh1 domain is
responsible for the binding to DNA [50] and contains a nuclear localization signal (NLS)
for Nrf2 translocation from the cytoplasm to the nucleus [51]. The Neh2 domain is in-
volved in the interaction with KEAP1, the main Nrf2 repressor with an essential part in
regulating the Nrf2 signaling pathway [52]. Neh3 is responsible for the activation of the
antioxidant response element (ARE), a cis-regulatory element that primarily responds to
oxidative stress inducers. Neh4 and Neh5 are involved in the binding with different “cAMP
(cyclic Adenosine MonoPhosphate) response element-binding” (CREB) proteins and ac-
tivate transcription [53,54]. Neh6 domain is a negative regulatory domain that promotes
Nrf2 ubiquitination [55]. The Neh7 domain inhibits the Nrf2-ARE signaling pathway by
promoting the binding of Nrf2 to the Retinoic X Receptor (RXR) and disrupting binding
between CBP (CREB-binding protein) and the Neh4 and Neh5 domains [56].

In physiological conditions, Nrf2 is retained in the cytoplasm by the KEAP1/Cullin-
3/E3 Ubiquitin-Protein Ligase RBX complex, and undergoes proteasomal degradation, thus
maintaining the expression of ARE-responsive genes at basal levels [57]. When cells are
exposed to pro-oxidant conditions, they activate the Nrf2/KEAP1/ARE pathway [58,59].
Three cysteine residues (Cys151, Cys273, and Cys288) of KEAP1 are important for Nrf2
degradation. When these residues are oxidized, Nrf2 releases [60]. During OS, ROS causes
structural changes on KEAP1, inhibiting its binding to Nrf2. Furthermore, the p62 protein,
whose expression is prompted by ROS, also helps the stimulation of Nrf2 by docking
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straight onto KEAP1 through a KEAP1 binding area. This action results in blocking the
binding between KEAP1 and Nrf2 [61,62].

Oxidative or electrophilic challenges distract the complex between Nrf2 and Keap1,
leading to the translocation of Nrf2 to the nucleus. This allows Nrf2 to heterodimerise with
musculoaponeurotic fibrosarcoma proteins (MAFs) and to attach to ARE in the promoter
area of target genes [63,64]. Nrf2 is constantly produced and degraded, showing a half-life
of just 20–30 min. The heterodimer identifies ARE that is existing in the regulatory areas of
around 250 ARE-genes [65]. The sequence ARE was first identified on the promoter of the
rat gene encoding the GST A2 subunit (GST A2) [66]. Nrf2 binds to the cis-acting enhancer
ARE sequence (core sequence: 5′-TGACNNNGC-3′) existing in promoters of genes [67]. Of
note, the nrf2 gene includes two ARE-like sequences in its promoter so that Nrf2 is able to
autoregulate itself and make ARE-mediated gene expression longer [68].

The ARE is situated in the promoter area of a number of genes encoding phase II detox-
ifying enzymes, antioxidant enzymes, and proteins such as NAD(P)H:quinone oxidore-
ductase 1 (NQO1), GST, glutamate-cysteine ligase (GCL), HO-1, thioredoxin reductase-1,
and thioredoxin [69].

Since the ARE core sequence has similarities to the sequence regulated by activator
protein 1 (AP-1), it is possible that members of the Jun and Fos families of transcriptional
factors could have a role in the transcriptional activation of the rat GST A2 subunit (GST A2)
and quinone reductase (QR) genes. This suggestion was supported by the studies that Jun
and Fos family members can be activated by OS [70,71]. Hence, Nrf2 is a transcription factor
that responds to OS by binding to ARE in the promoter of genes coding for antioxidant
enzymes and proteins for GSH synthesis [72,73].

NADPH is an essential cofactor for numerous drug-metabolizing enzymes and antiox-
idant systems, such as cytochromes p450 (CYP) enzymes and the Nrf2 target NQO1 [74].
Nrf2 supports NADPH production through the positive regulation of the principal NADPH-
generating enzymes.

Many different compounds like anethole derivatives such as anethole trithione,
dithiolethiones, curcumin, isothiocyanates, caffeic acid, phenethyl esters, flavon deriva-
tives, and triterpenoids (Figure 1) have been found to stimulate ARE and the phase II
detoxifying enzymes [75,76].

Recently, a body of literature has demonstrated that numerous food compounds
protect against ferroptosis via activating Nrf2 [34].

The capability of the Nrf2 pathway to regulate genes related to antioxidant protection,
autophagy, and proteasome activation has been drawing attention to the importance of
Nrf2 activator compounds as therapeutic approaches for neurodegenerative diseases [77].
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4. Neurodegenerative Diseases Related to Oxidative Stress and Nrf2 Activation
4.1. Nrf2 in Alzheimer’s Disease

AD is an age-related neurodegenerative disease mainly defined by amnesia, dimin-
ished executive functions, and behavioral alterations that are characterized by two molecu-
lar hallmarks: plaques of beta-amyloid (Aβ) and tau protein. The latter one is phosphory-
lated, and this process produces neurofibrillary tangles increasing aggregation and toxicity
of the protein in the cell bodies of neurons. Some tau proteins are linked to amyloid plaques
producing neuritic plaque [78].

Finding a drug molecule for the treatment of AD is still ongoing, as the pathogenesis
of AD is not entirely described. The drugs lanabecestat, (an inhibitor of beta-secretase 1
cleaving enzyme (BACE1), a fundamental key for the generation of amyloid-β peptides
in the neurons) (Figure 2), crenezumab (a monoclonal antibody against multiple forms
of aggregated Aβ), and solanezumab (a humanized monoclonal IgG1 antibody directed
against the mid-domain of the Aβ peptide that recognizes its soluble monomeric state)
have failed to show expected efficacy in the clinical trials. In 2021, the U.S. Food and Drug
Administration approved aducanumab, a new monoclonal antibody against a conforma-
tional epitope found on Aβ. Unfortunately, it is unclear how effective it is in improving
patients’ cognitive skills. The European Medicines Agency rejected a marketing application
on 16 December 2021.

It is worthwhile to study alternative therapeutic strategies to drugs based on the
inhibition of protein aggregation. The researchers have identified some areas that have
received relatively little attention yet but may hold the seeds of new hope for an efficacy
therapy. One of these areas is the brain’s OS reactions [79]. Exposure to excess OS affects
tau hyperphosphorylation by promoting the activity of p38 MAPK [80].

Histopathological research showed that in AD brain patients, mitochondria and NOX
are the two major sources generating ROS [81]. Tau protein also leads to escalating ROS
formation which was the main result of energy dysfunction of mitochondria. Abnormally
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phosphorylated tau protein dissociates from microtubules and aggregates into neurofibril-
lary tangles thus altering mitochondrial function and promoting ROS burst [82]. Therefore,
ROS produces damage to mitochondrial DNA (mtDNA) [83].
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Besides mitochondria, one of the significant findings is neuroinflammation due to ex-
tensive activation of astrocytes and microglial cells detected in tau-related conditions. Glial
activation is associated with the high levels of interleukin-1β (IL-1β) and cyclooxygenase-2
(COX2). It proves the involvement of glial activation in AD and suggests a link between
activated glial cells and AD pathogenesis [84]. Hence, preventing the formation of neuroin-
flammation has been described to be a promising approach in AD treatment.

The level of Nrf2 is observed to be reduced in AD patients [85] and a significant
negative correlation between Nrf2 deficits and AD has also been reported [86,87]. Research
showed that Nrf2 activation not only applies anti-oxidative properties but also reduces
neuroinflammation [88]. Nrf2, directly and indirectly, influences changes in autophagy
in vivo and in vitro [89,90]. Moreover, activation of Nrf2 by genetic and pharmaceutical
interventions leads to a neuroprotective role in AD patients [91]. Thus, Nrf2 signaling is
a significant regulator of neuroinflammation in AD, which provide an awareness of the
potential of Nrf2 regarding finding other beneficial therapeutical strategies for AD [92].

It has been shown that andrographolide (Andro) (Figure 3a) may bind to a spectrum
of protein targets including “nuclear factor kappa-light-chain-enhancer of activated B
cells” (NF-KB) and actin by covalent modification [93]. Andro is the principal bioactive
chemical constituent of Andrographis paniculata (Acanthaceae), which exhibits a wide range
of biological activities including anti-inflammatory, antioxidant, and promising antidiabetic
potential [94,95]. The Andro significantly ameliorated cell death due to Aβ1–42 insult
through the activation of autophagy and the Nrf2-mediated p62 signaling pathway in
PC12 cells. In the early stage of AD, autophagy promotes the clearance of Aβ and Tau.
With the disease progression, Aβ and Tau are continuously produced and accumulated,
thus determining autophagy dysfunction. Nrf2 promotes the expression of the regulated
autophagy marker SQSTM1/P62 and of NDP52, the receptor that promotes selective
autophagy by the interaction with LC3 and cargo on autophagosome, thus supporting the
clearance of tau [96]. These mechanisms could be useful also for other neurodegenerative
diseases (see below, Parkinson’s disease paragraph).
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In a transgenic mouse model (J20 Tg) with mild AD phenotype expression (high levels
of amyloid aggregates), presymptomatic administration of Andro prevented the reduction
of cellular energy metabolism markers, improved cognitive performance, restored the
deficiencies at the synaptic level, and restored the length of synapses. Of note, Andro is a
canonical Wnt signaling activator. Wnt signaling is a pathway involved in several processes
during the development and maintenance of the adult central nervous system. The loss
of Wnt signaling function has been associated with neuronal dysfunction in AD. The data
obtained in the J20 Tg mouse model support the idea that the Andro activation of Wnt
signaling during presymptomatic stages could represent an interesting pharmacological
strategy to delay the onset of AD [97].

The further results indicated that this neuroprotective effect may be mainly due
to the inhibition of NO, TNF-α, IL-6, ROS, and iNOS production, and to the enhanced
expression of the anti-inflammatory marker CD20, determined by the suppression of
nuclear translocation of NF-κB as well as the activation of Nrf2 and HO-1 [98].

A study carried out in the aged Chilean rodent Octodon degus that have been proposed
as a potential “natural” model for sporadic AD, demonstrated that intraperitoneal treatment
with Andro significantly reduced Aβ burden, astrogliosis, and interleukin-6 levels in
brains. Furthermore, it reduced 4-hydroxynonenal and N-tyrosine adducts levels, thus
demonstrating that Andro is able to induce a relevant reduction of oxidative stress [99].
In a recent study, ref. [100] evaluated Andro neuroprotective activity and its potential for
effects on AD using the aluminum maltolate (Al(mal)3)-induced neurotoxicity in PC12 cells.
Andro significantly increased the viability of Al(mal)3-treated cells. Moreover, it decreased
the expression of APP, BACE1, and Keap1 proteins while increasing the protein and mRNA
expression of Nrf2. Silencing p62 or Nrf2 can significantly reduce the protein and mRNA
expression of Nrf2 and p62 under co-treatment with Andro and Al(mal)3. These results
suggest that Andro could be a promising therapeutic tool to contrast neurotoxicity by
regulating the p62-mediated Keap1/Nrf2 pathway [101].

It was proved that electrophilic molecules stimulate the Keap1/Nrf2 pathway when
they interact with thiol groups on Keap1, thus causing the Nrf2 accumulation in the
cytoplasm and it enters into the nucleus, where it binds to the ARE on the promoters of
phase 2 genes [102]. The Carnosic Acid (CA) (Figure 3b) is a natural product found as a
pro-electrophilic molecule that is changed to its active form by OS. This form triggers the
Keap1/Nrf2 transcriptional pathway to create phase 2 antioxidant enzymes [103] found
that histologically, CA increased dendritic and synaptic markers, and decreased astrogliosis,
Aβ plaque number, and phospho-tau staining in the hippocampus, thus explaining CA
therapeutic benefits in rodent AD models.
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Methysticin is a kavalactone derivative found in the kava plant that belongs to the
piperaceae family. The administration of this compound for 6 months to transgenic
APP/Psen1 mice (a mouse model of AD), determined the Nrf2 pathway activation in
the hippocampus and cortex. Furthermore, it significantly reduced microgliosis, astroglio-
sis, oxidative damage, and the secretion of the pro-inflammatory cytokines TNF-α and
IL-17 [104] (Figure 4).
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Sulfur is widely existent in natural products and synthetic organic compounds such
as organosulfur, which are often associated with a multitude of biological activities since
they have innate antioxidant potential, and some are currently being evaluated in clinical
trials. O-benzothiazole, in which the benzene ring is fused to the 4,5-positions of the
thiazolerganosulfur compounds continues to garner increasing amounts of attention in
the field of medicinal chemistry, especially in the development of therapeutic agents
for AD [105].

Sulforaphane (Figure 5a) is a compound within the isothiocyanate group of organosul-
fur compounds obtained from cruciferous vegetables [106]. It showed promising behavioral
cognitive impairments and attenuated brain Aβ burden in AD model mice. In addition,
sulforaphane prevented Aβ aggregation and tau phosphorylation via Nrf2 activation.
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Allicin (Figure 5b), which is obtained from fresh garlic extract, improved endoplasmic
reticulum (ER) stress-related cognitive impairments by increasing double-stranded RNA-
dependent protein kinase (PKR)-like ER-resident kinase (PERK)/Nrf2 pathway in the
hippocampus of AD rat model treated with tunicamycin, an ER stress stimulator [107].

One of the alternative treatments for AD includes organochalcogens. The preventive
effect of [(4-tert-butylcyclohexylidene)methyl] (4-methoxystyryl)sulfide (BMMS) (Figure 5c)
was demonstrated in an AD mouse model induced by scopolamine treatment. The data
obtained in this study showed that BMMS pretreatment was able to prevent OS levels
increase and Na+/K+ ATPase activity reduction in the cerebral cortex, as well as the
impairment of short- and long-term memory retrieval induced by scopolamine [108].

A number of pieces of evidence have shown a link in pathological mechanisms be-
tween ferroptosis and dysfunctional Nrf2 signaling in AD [34]. In fact, the expression of
Nrf2 decreases as we age and Nrf2-regulated proteins that are linked to ferroptosis have
been shown to be altered in AD [109–112] Senescence, a pathology associated with aging
and AD, elevates also intracellular iron, and causes resistance to ferroptosis [113].

The pharmacological modulation of the Nrf2 signaling pathway remains one of the
more optimal approaches for treating ferroptosis-related pathologies [114–116].

One study has investigated the effects of icariin, astragalus, and puerarin on the iron
content in the cerebral cortex of APPswe/PS1∆E9 transgenic mice. These compounds have
lightened iron overload by reducing oxidative stress and the inflammatory response [117].

DL-3-n-butylphthalide (found in celery oil) (Figure 6a), piperine derivative HJ105,
Pseudoginsenoside-F11 (found in American ginseng) (Figure 6b) are other compounds that
have been demonstrated to be able to recover neuroinflammation and oxidative damage in
rat AD models through the Nrf2 signaling pathway activation [118–120].
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4.2. Nrf2 in Parkinson’s Disease

PD is a long-term degenerative disease of the central nervous system that primarily
affects the motor system described by rigidity, resting tremor, bradykinesia, and postu-
ral instability [121]. These symptoms derive from neurodegeneration of dopaminergic
(DAergic) neurons in substantia nigra pars compacta (SNpc), reduction of dopamine levels
in the dorsal striatum [122], and intraneuronal accumulations of a-synuclein into Lewy
body inclusions [123].

DAergic neurons are particularly affected by OS-related injuries since they can generate
large amounts of ROS as a metabolic by-product via metabolization of dopamine by MAO
and via auto-oxidation [124]. OS is regularly stated as a hallmark feature of PD [125].
Indeed, several studies have demonstrated increased markers of oxidative damage along
with decreased levels of antioxidants in the blood and CSF of PD patients, which was found
to be linked with the Nrf2 pathway [126,127]. Nrf2 translocates to the nuclei of DAergic
neurons and escalates the transcription of target genes such as HO-1 and NQO1, which are
found in the brains of PD patients [128]. The stimulation of Nrf2, which battles OS, appears
to be a favorable approach for maintaining cell homeostasis [129]. Levodopa (L-Dopa)
(Figure 7a) is the most effective drug for lessening the symptoms of PD. However, long-term
usage of L-dopa prompts unwanted effects and can contribute to ROS generation [130].
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Chalcones with a common chemical scaffold of 1,3-diaryl-2- propen-1-one, are richly
existent in nature with a wide variety of pharmacological activities. Chalcone-type com-
pounds (Figure 7b) stimulate Nrf2 by modifying the cysteine residues of Keap1 by Michael
addition since they contain an α,β-unsaturated carbonyl group. The Nrf2 activator com-
pounds that contain an α,β-unsaturated carbonyl group display powerful antioxidant and
anti-inflammatory effects [131–133].

The vinyl sulfones by presenting halogens and nitrogen heterocycle are capable to
amplify the activity on Nrf2 and the most effective molecules have halogen substitution
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in the ortho position of the benzene ring, but also a substitution of the vinyl group in
beta-position with a halogenated pyridine ring [134].

One derivative, (E)-3-chloro-2-(2-((2-chlorophenyl)sulfonyl)vinyl)pyridine, signifi-
cantly exhibited potent Nrf2 activating efficacy, a remarkable increase of Nrf2 nuclear
translocation, and Nrf2 protein levels in microglial BV-2 cells. Additionally, this molecule
protected DAergic neurons and restored the PD-associated motor dysfunction in the 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity mouse model.

Stimulation of Nrf2 was succeeded at the basal ganglia by dimethyl fumarate (Figure 7c)
which is known as an MS drug [135]. It was shown that dimethyl fumarate keeps nigral
DAergic neurons and reduces astrocytosis and microgliosis. This result points out that tar-
geting Nrf2 with dimethyl fumarate is a promising approach to strengthen the endogenous
brain protection process against PD-associated synucleinopathy.

Molecules that can be active on both oxidative damage and inflammatory systems
have been shown favorable effects against neurodegeneration [136]. Lee [137] showed
that isothiocyanate (ITC) (Figure 8a) derivatives induce the expression of antioxidant,
Nrf2-dependent enzyme genes avoiding inflammatory reactions in microglia and DAergic
neurons in animal models of PD.
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2-(1H-indol-3-yl)ethan-1-amine derivatives (Figure 8b) were found as Nrf2 inducers
with complementary activities such as selective MAO-B inhibition activity. Some of these
molecules showed neuroprotective properties against OS toxicity in PD-related models
in vitro [138].

Polyphenolic compounds are successful to scavenge free radical species via Nrf2
activation. Epigallocatechin gallate (EGCG) (Figure 9a) is one of the most active catechin
compounds. A number of studies have revealed that EGCG is able to cooperate with
mitogen-activated protein kinases (MAPK), producing the disassociation of the Nrf2/Keap1
complex [139]. Tert-butylhydroquinone (tBHQ) (Figure 9b) is an oxidized product from
butylated hydroxyanisole that becomes electrophilic only when oxidized to tBHQ. In
this form, it covalently binds to cysteine residues of Keap1 and stimulates Nrf2 [140].
Fucoidan (Figure 9c), a long chain sulfated polysaccharide present in species of Brown algae,
significantly improved behavioral deficits and protected DAergic neurons by enhancing
the mitochondrial function in a rotenone-induced rat model of PD [141].
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(c) Fucoidan, (d) Pyridoxine.

In the PD mouse model (MPTP-induced neurotoxicity), the pyridoxine (Figure 9d)
treatment has reduced the loss of nigral DAergic neurons facilitating GSH synthesis via
the pyruvate kinase M2 (PKM2). This process is triggered by astrocytic dopamine type 2
receptors and mediated by the Nrf2 pathway [142].

The discovery of a missense mutation (A53T) in encoding gene PARK1 in an Italian
family, displayed the importance of alpha-synuclein (alpha-SYN) in idiopathic PD [143].

In an animal model lacking the transcription factor Nrf2 (Nrf22/2) the stereotaxic
injection of an adeno-associated viral vector for expression of human alpha-SYN in the
ventral midbrain induced an increase in nigral dopaminergic neurons degeneration, but
also of neuroinflammation and gliosis in comparison to mice expressing Nrf2. The brain
tries to compensate for these hallmarks through activation of the Nrf2 pathway. In fact, in
the same study, it has been demonstrated an increase in HO-1 expression in astrocytes and
microglia in post-mortem brains of patients in early- to middle-stage progression of PD.
This study has established the role of Nrf2 in alpha-SYN pathology [144].
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Brandes [145] treated neurons isolated from an A53T alpha-synuclein mouse model of
synucleinopathy with the methyl ester of fumaric acid (DMF). This treatment reduced ROS
levels and improved mitochondrial function and dendritic arborization.

Celastrol (Figure 10a), a pentacyclic triterpene with anti-inflammatory and anti-
oxidative properties, protects through the Nrf2-NLRP3-caspase-1 axis against the neu-
rodegeneration of dopaminergic neurons in an MPTP-induced PD mouse model and
relieves Adeno-Associated Virus-mediated human α-SYN overexpression PD model [141].
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The alpha-SYN is degraded by both the ubiquitin-proteasome system and the au-
tophagy pathway. As the accumulation of misfolded α-SYN in Lewy bodies is a hallmark
of PD, the increased clearance and degradation of this protein represents a different experi-
mental approach toward PD therapy [143].

Trehalose (Figure 10b) is a non-reducing disaccharide found in the hemolymph of
invertebrates, but also in bacteria, yeast, fungi, and plants. It protects cells against various
environmental stresses including oxidation [146], and it has been shown to enhance au-
tophagy [147] and activate Nrf2 [148–150]. Oral trehalose provided in the drinking water
has been found to reduce the damage of the substantial nigra dopaminergic neurons, in-
crease autophagy, and up-regulate nuclear translocation of Nrf2 and the expression of down-
stream antioxidant enzymes in a rat model of PD lesioned with 6-hydroxydopamine [151].

4.3. Nrf2 in Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease charac-
terized by demyelination, astrocytosis, axonal degeneration, and sclerotic plaques as all fea-
tures of the autoimmune response [152]. Today some therapies have been presented to the
clinical practice for the treatment of MS such as the administration of immunosuppressives
or treatment with immunomodulatory and neuroprotective drugs [153–155]. Unfortunately,
the low clinical efficacy of existing molecules justifies the investigation of new pharmaco-
logical approaches, including the regulation of redox-sensitive signaling pathways.

The DMF (Figure 11a) has been approved by the U.S. Food and Drug Administration
(FDA) as a treatment of choice for patients with MS (brand name Tecfidera) since 2013.
The exact mechanism of action of DMF is not identified yet but it is thought that it can
activate the Nrf2 pathway [156,157]. Several Nrf2-activating molecules such as resveratrol,
quercetin, ferulic acid, and lycopene (Figure 11b–e) have been shown to reduce LPS-induced
neurotoxicity, improve synaptic and mitochondrial function, and inflammatory markers as
well as gliosis in MS experimental models [158–160].
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Ozone therapy also showed an antioxidant and anti-inflammatory activity linked with
stimulation of Nrf2 activation in MS patients [161].

4.4. Nrf2 in Amyotrophic Lateral Sclerosis

ALS, also known as Charcot’s or Lou Gehrig’s disease, is a severe neurodegenerative
condition that is described by advanced upper motor neuron damage in the cerebral
cortex and lower motor neuron damage in the brainstem and spinal cord [162]. Research
regarding the mechanisms of ALS shows that different dynamics, including excitotoxicity,
mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation, and OS, can
be involved in this process [163]. It is known that OS is activated by an excess production of
O2
•− and NO• in motor neurons and in the central glia, starting from the pre-symptomatic

phase of ALS. This may also be assisted by the primary reduction of the GSH level in the
several tissues affected by ALS [164].

Immunohistologic evaluation in the lumbar spinal cord of ALS patients revealed aug-
mented 4-hydroxynonenal (HNE)-peroxidated products [165] and malondialdehyde [166].
The 4-HNE, a product from LP of omega-6 polyunsaturated fatty acids, is highly reactive
to nucleophilic sites in DNA and proteins inducing cytotoxicity, inactivation of enzymes,
and redox imbalance [167]. One of the metabolic pathways involved in the detoxification
of 4-HNE is conjugation with GSH catalyzed by GST [168].

In human cervical squamous cancerous cells (HeLa cells), NrfF2 rapidly translocated
into the nucleus after exposure to 4-HNE, inducing GST A4 and other enzymes [169]. This
process was abolished when Nrf2 was knocked down using small interfering RNA, thus
indicating a role of Nrf2 in the detoxification of 4-HNE.
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Currently available drugs, riluzole, and edaravone (Figure 12a,b), only extend the
survival of ALS patients. Riluzole delays the onset of ventilator-dependence or tra-
cheostomy [170] while edaravone is used to help people to recover from stroke and
ALS [171]. Animal studies revealed that edaravone triggers remarkably high expres-
sion of Nrf2 and antioxidant defense system in the brain [88]. The role of Nrf2 in ALS is
confirmed in ALS mouse models that overexpress Nrf2 exhibiting noteworthy delay at the
beginning of ALS and prolonging survival of the animals [172]. Correspondingly, lack of
Nrf2 increased immune cell infiltration, glial cell activation in the spine, and inflammatory
enzyme in an acute autoimmune model of MS. Furthermore, exacerbated clinical course, a
more rapid onset, and a greater percentage of mice with the disease were reported [173].
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Vitamin E (Figure 12c) has been shown to be effective in delaying ALS onset in the
mouse model, but it was found to be ineffective in some patients with ALS [174]. It
remains likely that vitamin E supplements in healthy people may reduce or delay the risk
of ALS [175].

There is a favorable link between ALS and the intake of carotenes [176]. β-carotene
(Figure 13a) may work for treating neuroinflammation and apoptosis in ALS patients [177].
Therefore, carotene intake might be beneficial for the prevention and delaying of the onset of
ALS [178]. Epigallocatechin-3-gallate (EGCG), the major bioactive compound of green tea,
shows anti-neurodegenerative and antioxidant effects, particularly on the motor neurons
since it can cross the blood-brain barrier and modifies mitochondrial responses to OS [179].
Some natural molecules such as flavonoids, resveratrol, and curcumin are beneficial for the
treatment of ALS. Their action is associated with the reduction of cognitive damage and
neuronal dysfunction and suppresses neuroinflammation [180].
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Pterostilbene (PTER) (Figure 13b) (trans-3,5-dimethoxy-4hydroxystilbene), belongs
to the stilbenes family as resveratrol but with a better pharmacokinetics profile (excellent
oral bioavailability, lipophilicity and higher permeability to targeted tissues) [181]. PTER
reduces CNS injury in vitro triggering Nrf2 signaling and exhibiting defensive activity
against mitochondrial dysfunction-derived OS [182].

Moreover, PTER protected murine hippocampal neuronal HT22 cells from glutamate-
induced OS injury-inducing Nrf2-GSH-SOD pathway [183].

Familial ALS in some cases is due to a mutation of SOD1 and improvement of the
NAD+ reverses the toxicity of primary astrocytes expressing the SOD1 mutation related
to ALS [184]. In a randomized, double-blind, placebo-controlled study in humans, admin-
istration of a combination of nicotinamide riboside, a nicotinamide adenine dinucleotide
(NAD+) precursor vitamin, and pterostilbene (PT) increased NAD+ levels [185]. Due to
this, PTER could be a promising therapeutic strategy in ALS.

Multitarget hybrid fasudil (Figure 14a) derivatives were found as promising molecules
for the treatment of ALS by activating the Nrf2 and stimulating the expression of the
antioxidant response enzymes HO-1 and NQO1via a KEAP1-dependent mechanism [186].
Acetyl-11-keto-beta-boswellic acid (AKBA) (Figure 14b) is a pentacyclic triterpenoid mix-
ture obtained from Boswellia serrata and other plants, with anti-inflammatory and antioxi-
dant properties [187]. In a rat model of mercury-induced ALS, AKBA treatment restored
behavioral, neurochemical, and morphological alterations [188]. Tetramethylpyrazine ni-
trone (TBN) (Figure 14c) is a derivative of tetramethylapyrazine, that reduced motor deficits
and cognitive impairment in the early stages of ALS progression and prolonged survival
rate in mice [189].
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5. Concluding Remarks

In spite of growing studies about the etiology and pathogenesis of neurodegenerative
diseases and research on finding effective drugs, the question related to the origin of these
diseases remains open, but oxidative damage has gained importance in etiology fields.

Exposure to OS initiates cell injury that causes neurodegeneration due to a lack of
the regulation of the inflammatory defense. During the chronic state of OS, ROS/RNS
induce the constant stimulation of the signaling pathways. Since it was revealed that Nrf2
is a major regulator of oxidant resistance, it has been associated with a range of chronic
diseases such as neurodegenerative disorders that are characteristically related to OS.

By modifying the oxidant system, Nrf2 contributes to the managing of several vital
functions, such as ferroptosis, inflammasome, and autophagy opening new approaches for
drug discovery

Since OS, together with neuroinflammation and mitochondrial dysfunction, is the
most important hallmark of neurodegenerative conditions, a molecular involvement in
Nrf2/ARE signaling and the development of the transcriptional action of specific genes are
targets for avoidance or suspending the beginning of age-associated and genetic neurogen-
erative disorders [190].
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Studies have been dedicated to recognizing the processes that control the relationship
between Nrf2 and Keap1 and there are some molecules described as Nrf2 activators in
neuroinflammation [106]. Dimethyl fumarate (DMF) is the only drug approved by FDA
as an effective molecule in MS [191]. Nrf2 is the main modulator for the two essential
cytoprotective pathways, anti-inflammation and antioxidation. Even though numerous
studies are now pointing to Keap1—the main controller of Nrf2—it is still not clear enough
to develop these agents pointedly against neurodegenerative conditions. Recent data pro-
pose that antioxidant molecules power for triggering Nrf2/ARE pathways and autophagy
signaling, revealed to increase the expression of Nrf2/ARE, evidence protecting in many
studies [192].

At present, the trouble related to the management of neurodegenerative disorders is
their multifaceted pathogenesis. Monitoring only one target is not sufficient for efficacious
treatment. The definition of an association between activity and physicochemical property
of Nrf2/ARE is significantly important. Ensuring satisfactory BBB penetration, reducing the
activity of the Keap1-Nrf2. Due to the extensive dissemination of Nrf2 in vivo, Nrf2 activa-
tors with a high BBB penetration and CNS directing capability are beneficial for the cure of
neurodegeneration [193]. Comprehensive studies are essential for rationally activating Nrf2
to deliver, active, harmless, and manageable approaches for neurodegenerative disorders.

It is clear that ROS work as serious intracellular signaling agents but overproduction
can lead to OS and impairment of vital macromolecules, ultimately causing cell death. Nrf2
is significant protection, especially for neurons. Nrf2 expression and action are lessened in
humans and animals which were observed from numerous experimental data. Triggering
the activation of Nrf2 displays favorable outcomes in many animal models of neurode-
generative conditions. Stimulation of Nrf2 has been connected with neuroprotection. A
better understanding of the regulatory processes of Nrf2 action will help to discover novel
compounds to avoid, slow down, or perhaps cure many neurodegenerative diseases.
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