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Abstract
Background: Increasingly, drug and device clinical trials are tracking activity levels and oth-
er quality of life indices as endpoints for therapeutic efficacy. Trials have traditionally re-
quired intermittent subject visits to the clinic that are artificial, activity-intensive, and infre-
quent, making trend and event detection between visits difficult. Thus, there is an unmet 
need for wearable sensors that produce clinical quality and medical grade physiological data 
from subjects in the home. The current study was designed to validate the BioStamp nPoint® 
system (MC10 Inc., Lexington, MA, USA), a new technology designed to meet this need. Ob-
jective: To evaluate the accuracy, performance, and ease of use of an end-to-end system 
called the BioStamp nPoint. The system consists of an investigator portal for design of trials 
and data review, conformal, low-profile, wearable biosensors that adhere to the skin, a com-
panion technology for wireless data transfer to a proprietary cloud, and algorithms for ana-
lyzing physiological, biometric, and contextual data for clinical research. Methods: A pro-
spective, nonrandomized clinical trial was conducted on 30 healthy adult volunteers over the 
course of two continuous days and nights. Supervised and unsupervised study activities 
enabled performance validation in clinical and remote (simulated “at home”) environments. 
System outputs for heart rate (HR), heart rate variability (HRV) (including root mean square 
of successive differences [RMSSD] and low frequency/high frequency ratio), activity classifi-
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cation during prescribed activities (lying, sitting, standing, walking, stationary biking, and 
sleep), step count during walking, posture characterization, and sleep metrics including on-
set/wake times, sleep duration, and respiration rate (RR) during sleep were evaluated. Out-
puts were compared to FDA-cleared comparator devices for HR, HRV, and RR and to ground 
truth investigator observations for activity and posture classifications, step count, and sleep 
events. Results: Thirty participants (77% male, 23% female; mean age 35.9 ± 10.1 years; 
mean BMI 28.1 ± 3.6) were enrolled in the study. The BioStamp nPoint system accurately 
measured HR and HRV (correlations: HR = 0.957, HRV RMSSD = 0.965, HRV ratio = 0.861) 
when compared to ActiheartTM. The system accurately monitored RR (mean absolute error 
[MAE] = 1.3 breaths/min) during sleep when compared to a Capnostream35TM end-tidal CO2 
monitor. When compared with investigator observations, the system correctly classified ac-
tivities and posture (agreement = 98.7 and 92.9%, respectively), step count (MAE = 14.7,  
< 3% of actual steps during a 6-min walk), and sleep events (MAE: sleep onset = 6.8 min, 
wake = 11.5 min, sleep duration = 13.7 min) with high accuracy. Participants indicated “good” 
to “excellent” usability (average System Usability Scale score of 81.3) and preferred the Bio-
Stamp nPoint system over both the Actiheart (86%) and Capnostream (97%) devices. Con-
clusions: The present study validated the BioStamp nPoint system’s performance and ease 
of use compared to FDA-cleared comparator devices in both the clinic and remote (home) 
environments. © 2019 The Author(s)

Published by S. Karger AG, Basel

Introduction

Clinical trials are continuously evolving and incorporating new technologies that allow 
for increased efficiency and insight into the status and progress of the participant. Increas-
ingly, “efficacy” and “outcome” are being viewed in terms of quality of life metrics, including 
activity levels, sleep quality, vital signs, and patient-reported outcomes.

Recent studies have shown that data gathered from participants in the home environment 
show significant differences from brief and intermittent assessments made in controlled 
clinical environments. Data from the home setting have the potential to better represent 
disease status, progression, and response to therapy [1].

“Wearable” health-monitoring devices have been developed to extend disease moni-
toring beyond infrequent clinic visits and subjective assessments to provide continuous and 
objective data. Physiological and activity monitoring have revealed important insights across 
many therapeutic areas, including neurodegenerative diseases [2], oncology [3], orthopedics 
[4], cardiology [5–8], pulmonary disease [9], behavioral science [10], and sleep medicine (e.g., 
periodic limb movements, respiration) [11].

Currently available wearable devices, however, lack the combination of subject comfort 
and clinical data quality [11]. Often their form factor, size, and wear locations impede 
continuous wear, interfere with daily activities, make them conspicuous, and compromise 
sleep. Recent studies have shown that lightweight, conformal sensors provide an alter-
native in studies focused on Huntington disease [12], multiple sclerosis [13], physical reha-
bilitation [14], and cardiac monitoring [15]. Here, we present a validation study conducted 
with a novel wireless remote monitoring system (BioStamp nPoint®; MC10 Inc., Lexington, 
MA, USA) that includes lightweight, conformal, multimodal biosensors to capture continuous 
physiological data in simulated home and clinical settings. The study was conducted to 
validate data quality, algorithm performance and accuracy, participant preference, and 
general ease of use.
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Materials and Methods

Device Description
The BioStamp nPoint system, the next-generation BioStampTM system [16–18], comprises 

an investigator web portal, conformal wearable sensors (BioStamp), a docking station (Link 
Hub), a mobile smartphone containing proprietary software (Link App for communication 
and data upload), two-sided adhesives, and an adhesive alignment-assist applicator. The 
system is designed to gather raw physiological data from accelerometers, gyroscopes, and 
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Fig. 1. Investigator portal dashboard displaying representative examples of participant data from one day of 
wear including daily summary outputs associated with sleeping, resting, and moving activities (a), longitu-
dinal view of color-coded actigraphy during sensor wear (b), RR, HR, HRV ratio, and HRV RMSSD during sleep 
(c), and instances of annotated study activities (d). Graphs for HR, HRV ratio, and HRV RMSSD are auto-scaled 
for display purposes and for representing data for an approximate 24-h recording. HR, heart rate; HRV, heart 
rate variability; RMSSD, root mean square of successive differences; RR, respiration rate.
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biopotential electrodes integrated into each sensor (see online supplementary Fig. 1; www.
karger.com/doi/10.1159/000493642). These raw data are processed by proprietary algo-
rithms to provide standard clinical metrics: heart rate (HR), heart rate variability (HRV) (by 
root mean square of successive differences [RMSSD] and HRV low frequency/high frequency 
ratio), activity classification, step count during walking, posture classification, sleep onset 
and wake times, respiration rate (RR) during sleep, and total sleep duration. The algorithms 
are based on seminal work in the public domain [19], published recent research, and propri-
etary machine learning [17]. Collected raw data stored on the sensors are transferred through 
the Link Hub to a secure Medical Device Data System where the data are analyzed by nPoint 
algorithms and displayed in the Investigator Portal (Fig. 1).

Study Overview
The present study was performed in part to support a Premarket Notification to the FDA. 

Comparator devices were selected to reproduce the identical validation previously published 
by the predicate device [20].

The study was a prospective, nonrandomized clinical investigation on healthy volunteers 
physically and cognitively able to perform activities of daily living without assistance, as 
assessed by the investigator. After obtaining informed consent, participants were enrolled for 
two continuous days and nights at the clinical site allowing for supervised (days 0–1, 
“in-clinic”) and unsupervised (days 1–2, “remote”) study segments. The study objectives 
were to evaluate system performance against FDA-cleared comparators’ (Fig. 2) ability to 
calculate HR, HRV RMSSD, HRV ratio, and RR during sleep. Additionally, algorithmic outputs 
for step count, activity classification, posture classification, and sleep parameters were 
compared to ground truth investigator observations. The ease of use of the system for research 
participants was also assessed.

ActiheartTM (CamNtech, Boerne, TX, USA) was used as the comparator device for HR and 
HRV, and Capnostream35TM Portable Respiratory Monitor (Medtronic, Minneapolis, MN, 
USA) was used to compare RR. A manual counter was used as ground truth for step counting. 
Independent investigator observation provided ground truth data for activity and posture 
classifications.

BioStamp sensors were applied either by clinical staff (day 0) or by the study partic-
ipant (day 1) to the left precordium (lead II orientation, accel: 31.25 Hz ± 16G, electrodes: 
250 Hz) and thigh (anterior thigh, accel: 31.25 Hz ± 16G) locations required for system 
algorithmic outputs, and to the shank and forearm to assess sensor adherence. The Acti-
heart comparator device was applied to the upper chest on day 0 and worn continuously 
throughout the study.

Supervised activities were designed to test the system’s ability to classify participant 
actigraphy (lying, sitting, standing, walking, and “other” tested via stationary biking), classify 
posture (lying: supine, left, right, prone; sitting/standing: upright, leaning left, leaning right, 
leaning forward, leaning back), and to count steps while walking. On day 1, clinical staff inter-
faced with the mobile Link App to record participant activities performed in random order, 
blinding the system to the ground truth. On day 2, participants interacted with the Link App 
to independently complete a prescribed set of activities (sitting, walking, or stationary biking 
for 22 min each). In the sleep laboratory, participants were instrumented with a nasal cannula 
connected to a Capnostream end-tidal CO2 monitor and instructed to go to sleep at a prede-
termined time. Sleep laboratory staff monitored participants during sleep, documenting sleep 
and wake times, as well as times the participant awakened or arose during the night. Data 
collected from the two nights were used to test the system’s ability to detect sleep onset and 
wake times, classify sleep, and calculate RR during sleep.
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The clinical site’s amenities allowed participants to engage in everyday indoor activities 
such as watching movies or television, lounging, playing games, and eating meals, simulating 
a home environment. Participants’ ability to set up and use the BioStamp nPoint system 
without assistance was evaluated by clinical staff during the unsupervised portion of the 
study. Participants completed a System Usability Scale (SUS) [21] survey and evaluated their 
experience and device preferences.

Data Alignment and Sampling
After data collection, BioStamp nPoint system and comparator data streams were time-

aligned and assessed for signal quality. Measurements meeting each device’s intrinsic signal 
quality standards were then paired for comparison. A random sample of qualified data pairs 
per participant was collected for each algorithmic endpoint. The resulting dataset was 
provided to an independent third party for statistical analysis and clinical study report gener-
ation. Adhesion data and subject surveys were analyzed descriptively by the sponsor.

Statistical Analysis
All clinical efficacy endpoints were obtained by comparing the BioStamp nPoint system 

to investigator observed ground truth and the data obtained from the comparator devices. 
The analysis consisted of widely used measures of agreement. Mean absolute error (MAE), 

BioStamp nPoint
sensor

Applied on day 0,
replaced morning of day 1,
removed morning of day 2

BioStamp nPoint
sensor (nonfunctional)

Applied on day 0,
removed morning of day 1 

Worn for entirety of study

Capnostream with
nasal cannula Worn each night during sleep

Actiheart

Fig.  2. Anatomical locations for 
the investigational device and 
comparators. BioStamp sensors 
were applied to the chest (lead II 
orientation) and thigh locations 
required for algorithmic outputs 
(green, n = 2), and nonrecording 
sensors (yellow, n = 2) were ap-
plied to the forearm and shank, 
representing alternate locations 
for raw data collection. Actiheart 
was applied to the chest, proximal 
to the chest BioStamp sensor. A 
Capnostream cannula was worn 
in the nostrils during sleep.
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root-mean-square error (RMSE), Lin’s concordance correlation coefficient, and Deming 
regression variables were calculated for quantitative comparison, simultaneously producing 
scatter and Bland-Altman plots. Deming regression was used as both the system and compar-
ators are subject to measurement error.

Results

Study Population
The population was selected to be consistent with previous device performance validation 

studies [20] (K152139). Forty-four subjects were recruited with 30 participants enrolled: 77% 
male, 23% female, mean age of 35.9 ± 10.1 years (range 21–52), and a mean BMI of 28.1 ± 3.6 
(range 20.1–34.1). There were no withdrawals and all participants completed all scheduled activ-
ities. All possible data were obtained from BioStamp and Capnostream devices. Five BioStamp 
sensors deadhered prior to or during a night of sleep; thus, data from those nights could not be 
analyzed. Due to a single Actiheart malfunction, only 29 of 30 Actiheart datasets were obtained. 
There was one adverse event (nasal congestion) unrelated to the investigational device.

Results
Multimodal sensor data were captured from 30 participants using the BioStamp nPoint 

system. Table 1 and Figure 3 summarize the physiological measurements and results for all 
participants. MAE and concordance correlation coefficient were used to evaluate all quanti-
tative measurements. For qualitative comparisons, tables of agreement were constructed 
with percent agreement and uncertainty coefficients computed. The uncertainty coefficient 
was computed for the true state given the BioStamp classification.

Device Activity 
Classification

Observed Activity

Sleeping
Resting Moving

Lying Sitting Standing Walking Other

Sleeping 148 
(98.7%)

0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

Resting

Lying 0 
(0.0%)

150 
(100.0%)

0 
(0.0%)

1 
(0.7%)

0 
(0.0%)

0 
(0.0%)

Sitting 2 
(1.3%)

0 
(0.0%)

150 
(100.0%)

0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

Standing 0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

149 
(99.3%)

0 
(0.0%)

0 
(0.0%)

Moving

Walking 0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

141 
(94.0%)

0 
(0.0%)

Other 0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

0 
(0.0%)

9 
(6.0%)

150 
(100.0%)

Correct 148 
(98.7%)

150
(100.0%)

150 
(100.0%)

149 
(99.3%)

141 
(94.0%)

150 
(100.0%)

Incorrect 2 
(1.3%)

0 
(0.0%)

0 
(0.0%)

1 
(0.7%)

9 
(6.0%)

0 
(0.0%)

Device Posture 
Classification

Observed Posture
gnitseR)gniyL(gnipeelS

Lying 
Left

Lying 
Right

Lying 
Prone

Lying 
Supine Upright Lean 

Left
Lean 
Right

Lean 
Forward

Lean 
Back

Sleeping 
(Lying)

Lying Left 114
(76.0%)

1
(0.7%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

Lying Right 2
(1.3%)

148
(98.7%)

0
(0.0%)

0
(0.00%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

Lying Prone 0
(0.0%)

0
(0.0%)

149
(99.3%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

3
(1.0%)

0
(0.0%)

Lying Supine 0
(0.0%)

0
(0.0%)

0
(0.0%)

150
(100.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

2
(0.7%)

Resting
(Sitting 

and 
Standing)

Upright 0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

257
(85.7%)

7
(2.3%)

23
(7.7%)

14
(4.7%)

15
(5.0%)

Lean Left 23
(15.3%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

1
(0.3%)

291
(97.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

Lean Right 0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

1
(0.3%)

2
(0.7%)

277
(92.3%)

0
(0.0%)

0
(0.0%)

Lean Forward 0
(0.0%)

0
(0.0%)

1
(0.7%)

0
(0.0%)

26
(8.7%)

0
(0.0%)

0
(0.0%)

281
(93.7%)

0
(0.0%)

Lean Back 0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

2
(0.7%)

0
(0.0%)

0
(0.0%)

1
(0.3%)

283
(94.3%

)

Other Posture 11
(7.3%)

1
(0.7%)

0
(0.0%)

0
(0.0%)

2
(0.7%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

Unknown Posture 0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

1
(0.3%)

0
(0.0%)

Correct 114
(76.0%)

148
(98.7%)

149
(99.3%)

150
(100.0%)

257
(85.7%)

291
(97.0%)

277
(92.3%)

281
(93.7%)

283
(94.3%)

Incorrect 36
(24.0%)

2
(1.3%)

1
(0.7%)

0
(0.0%)

43
(14.3%)

9
(3.0%)

23
(7.7%)

19
(6.3%)

17
(5.7%)ba

Fig. 3. Activity (a; sleeping, resting, moving activities) and posture (b; sleeping, resting postures) tables of 
agreement between investigational device classification and independent observation. Activity grouping is 
derived from sleeping (sleep activity only), resting (lying, sitting, and standing), and moving (walking and 
other) activities. Aggregate of all activity classifications resulted in a percent agreement of 98.7% (sleeping 
activity 98.7%, resting activities 100.0%, and moving activities 100.0%). Aggregate of all posture classifica-
tions resulted in a percent agreement of 92.9% (sleeping postures 94.0% and resting postures 99.5%). Activ-
ity classifications compared against independent observer ground truth activity.
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Fig. 4. HR and HRV: Deming (orthogonal) regression plots, with population (N), qualified data pairs (n), 
RMSE, intercept, and slope, and Bland-Altman plots of the randomly sampled qualified data pairs encompass-
ing sleeping, resting, and moving activities for HR (a, b), HRV RMSSD (c, d), and HRV ratio (e, f). All HR pa-
rameter outputs were compared against Actiheart HR parameter measurements (sampling rate 128 Hz). 
Interbeat intervals from the Actiheart device were processed by BioStamp nPoint HRV algorithms in order 
to produce nPoint HRV measurements according to the identical interbeat interval input. HF, high frequency; 
HR, heart rate; HRV, heart rate variability; LF, low frequency; LLA, lower limit of agreement; LOA, line of 
agreement; RMSE, root-mean-square error; RMSSD, root mean square of successive differences; ULA, upper 
limit of agreement.
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Endpoint Analysis
System measurements for HR (bpm), HRV RMSSD (ms), and HRV ratio were calculated 

from interbeat intervals [19, 22] derived from the Actiheart device (Fig. 4). The intent was 
to compare algorithmic performance based on identical raw data. Data from 29 of 30 par-
ticipants were analyzed (one Actiheart dataset was irretrievable). HR ranged from 38 to 
136 bpm (both BioStamp and Actiheart); the concordance correlation coefficient was > 0.95 
for HR and HRV RMSSD and 0.86 for HRV ratio. The Deming regression line was nearly coin-
cident with the line of identity for all three parameters. Additionally, MAE values (HR =  
2.0 bpm, HRV RMSSD = 5.1 ms, and HRV ratio = 1.1) yielded high agreement between device 
measurements. MAEs may further improve when the nPoint algorithm processes its own 
calculated interbeat interval and the investigator selects a higher digital sampling rate 
(which is available).

 BioStamp activity and posture classification were analyzed using tables of agreement 
(Fig. 3). The system correctly classified activity for 98.67% (888 of 900) of tested activities, 
with an uncertainty coefficient of 0.968. The system correctly classified participant posture 
for 92.86% (1,950 of 2,100) of tested lying, sitting, and standing postures, with an uncertainty 
coefficient of 0.879.

RR was calculated during sleep using accelerometer data from the BioStamp chest sensor 
[23] and was compared with the rates measured by the Capnostream device. Overall, the 
Deming regression line for RR was very close to the line of identity (Fig. 3), and MAE and 
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RMSE (1.3 breaths/min and 2.50, respectively) demonstrated agreement between simulta-
neous measurements. Analyzed RRs ranged from 7.2 to 25.4 breaths/min (BioStamp) and 
from 3 to 24 breaths/min (Capnostream). The stepwise nature of comparator measurements 
observed in Figure 5 is due to the limited resolution of RR values of the comparator device 
(Capnostream = 0.5 breaths/min) against raw RR values output from the nPoint system.

The BioStamp nPoint system records step count when a subject is classified as “walking” 
(correctly classified 94% of the time). Participants performed a 6-min walk at their own pace 
on a treadmill, and the system calculated step count with an error < 3% of actual steps taken 
(MAE = 14.72 steps, average ground truth count = 598.7 steps).

The system’s activity-based sleep onset and wake time detection [24–26] demonstrated 
alignment with ground truth recorded by independent observers. Sleep onset (participant 
instructed to go to sleep) MAE was 6.8 ± 8.43 min, wake time MAE was 11.5 ± 28.5 min, and 
sleep duration MAE was 13.7 ± 22.7 min.

BioStamp nPoint sensor adhesion was visually assessed by independent observers. 
Acceptable adhesion (> 75% of sensor adhered at the end of wear) was observed at chest and 
thigh locations mandated for algorithm analytics for 91.7% of sensor wears (110 of 120). 
More than 75% deadhesion makes electrode contact potentially unreliable. All but one 
adhesion failure was on an investigational location, not required for algorithmic output. 
Subject-facing surveys, including a SUS evaluation, and independent observer assessments 
were used to characterize participants’ ability to use the system. The system received a rating 
of “good” to “excellent,” with an average SUS score of 81.3 [27]. Additionally, participants 
preferred the BioStamp sensors to both the Actiheart (87%, 26 of 30) and Capnostream (97%, 
29 of 30) devices.

Discussion and Conclusion

The study (NCT 03257189 and reported within K173510) was intentionally limited to 
healthy volunteers and did not directly test individuals with disabilities, recognizable condi-
tions, or specific disease states. Generalizability to impaired populations will require further 
validation. Other limitations of the study include combining data from both the supervised and 
unsupervised settings for analysis and not comparing the two datasets. The results suggest that 
the data from both settings were comparable. We also recognize that usability from the inves-
tigator’s perspective would have been valuable. Only participants were formally surveyed 
because investigators had been so thoroughly trained and experienced before the trial was 
initiated.

Earlier generations (BioStamp RCTM and investigational prototypes) of the technology 
have been used in academic research, including motor assessments in Parkinson disease [28], 
gait assessment in multiple sclerosis [13], posture classification in Huntington disease [12], 
postural sway in multiple sclerosis [29], and periodic leg movements in sleep (unpublished 
data). Additional independent research with BioStamp technology has looked at ambulatory 
vectorcardiography [30], spasticity [31], and more granular activities of daily living (unpub-
lished data). This is the first report of clinical validation with the new nPoint system. Recently, 
wearable biosensing in some form has become nearly ubiquitous, predominantly through the 
adoption of consumer health and wellness devices [32–34]. Regulated medical devices have 
been adopted more slowly, especially in the outpatient environment. Many of these devices 
are still best used in the clinic or laboratory. Some devices rely on complex and expensive 
visual tracking technology or lack the form factor and comfort needed for continuous outpa-
tient wear. Because of limited available technology, lack of validated digital endpoints, and 
financial drivers, clinicians still assess study participant status episodically, even during 
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rigorous clinical trials. Unfortunately, these assessments are too often rater-dependent and 
are performed in an artificial environment [12]. Gathering objective, clinically meaningful 
data from the study participants in their own environment between clinic assessments, 
perhaps minimizing their frequency and intensity, represents one potential of cogently 
designed wearable devices.

In a 2016 survey of medical product industry professionals [35], more than 60% stated 
that they had already used digital health technology in clinical trials, and more than 97% 
intended to use digital technology in future trials. Currently there are over 100 industry-
sponsored clinical trials registered on clinicaltrials.gov using actigraphy endpoints, and more 
than 8,000 looking at some form of quality of life endpoint. The nPoint system was designed 
to meet this need.

The BioStamp nPoint system has the potential to enhance clinical trials and patient 
management by providing objective longitudinal measures of treatment response through 
remote monitoring, data trends, and quality of life metrics. This pivotal study demonstrated 
the nPoint system’s ability to accurately characterize posture, activity, vital signs, and sleep 
metrics with results equivalent to currently available devices. The multimodal and conformal 
nature of the sensors facilitates gathering of physiological data from ambulatory subjects in 
the home setting. The technology is designed to support the evolving clinical trials’ design 
trends and endpoints. The present study supports the nPoint system’s accuracy and usability 
for that purpose.
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