
Discrete Comput Geom 8: 295-313 (1992)

© 1992 Springer-Ver|ag New York Inc.

A Pivoting Algorithm for Convex Hulls and

Vertex Enumeration of Arrangements and Polyhedra*

David Avis 1 and K o m e i F u k u d a z

l School of Computer Science, McGill University, 3480 University Street,
Montreal, Quebec H3A 2A7, Canada
avis@cs.mcgill.ca

2 Graduate School of Systems Management, University of Tsukuba,
Otsuka, Bunkyo-ku, Tokyo 112, Japan
fukuda@gssm.otsuka.tsukuba.ac.jp

Abstract. We present a new pivot-based algorithm which can be used with minor
modification for the enumeration of the facets of the convex hull of a set of points,
or for the enumeration of the vertices of an arrangement or of a convex polyhedron,
in arbitrary dimension. The algorithm has the following properties:

(a) Virtually no additional storage is required beyond the input data.
(b) The output list produced is free of duplicates.
(c) The algorithm is extremely simple, requires no data structures, and handles

all degenerate cases.
(d) The running time is output sensitive for nondegenerate inputs.
(e) The algorithm is easy to paraUelize efficiently.

For example, the algorithm finds the v vertices of a polyhedron in R d defined by a
nondegenerate system of n inequalities (or, dually, the v facets of the convex hull of
n points in R a, where each facet contains exactly d given points) in time O(ndv) and
O(nd) space. The v vertices in a simple arrangement of n hyperplanes in R d can be
found in O(n2dv) time and O(nd) space complexity. The algorithm is based on inverting
finite pivot algorithms for linear programming.

1. Introduction

In this paper we give an a lgor i thm, which with minor var ia t ions can be used to

solve three basic enumera t ion p rob lems in compu ta t iona l geometry: facets of the

* The work of David Avis was performed while visiting the laboratory of Professor Masakazu
Kojima of Tokyo Institute of Technology, supported by the JSPS/NSERC bilateral exchange programs.

296 D. Avis and K. Fukuda

convex hull of a set of points, vertices of a convex polyhedron given by a system
of linear inequalities, and vertices of an arrangement of hyperplanes. The algorithm
is based on pivoting and has many nice properties. Among these are that virtually
no additional space is required apart from that required to store the input, and
that the algorithm produces a list that is free of duplicates even for degenerate
inputs. The algorithm is based on "inverting" finite pivoting algorithms for linear
programming. No special knowledge of linear programming or arrangements is
assumed, and necessary terminology is defined here. For additional information
the reader is referred to [5"1 for linear programming and [7] for arrangements. In
the rest of this section we give an informal description of the algorithm beginning
with the vertex enumeration problem for convex polyhedra.

Suppose we have a system of linear inequalities defining a polyhedron in R d

and a vertex of that polyhedron. A vertex is specified by giving the indices of d
half-spaces whose bounding hyperplanes intersect at the vertex. For any given
linear objective function, the simplex method generates a path along the edges of
the polyhedron until a vertex maximizing this objective function is found. For
simplicity, let us assume for the moment that the polyhedron is simple, which
means that each vertex is contained on exactly d bounding hyperplanes. The path
is found by pivoting, which involves interchanging one of the equations defining
the vertex with one not currently used. The path chosen from an initial given
vertex depends on the pivot rule used. In fact, care must be taken because some
pivot rules generate cycles and do not lead to the optimum vertex. However, a
particularly simple rule, known as Bland's rule or the least subscript rule [2],
guarantees a unique path from any starting vertex to the optimum vertex. If we
look at the set of all such paths from all vertices of the polyhedron, we get a
spanning tree of the edge graph of the polyhedron rooted at the optimum vertex.
Our algorithm simply starts at an "optimum vertex" and traces out the tree in
depth-first order by "reversing" Bland's rule. Even if the polyhedron is not simple,
the same basic idea works. A vertex lying on more than d bounding hyperplanes
is called degenerate. Care must be taken to output a degenerate vertex only once,
and additional procedures are required if the optimum vertex is itself degenerate.
An example of the execution of the algorithm is given in Section 5.

A remarkable feature is that no additional storage is needed at intermediate
nodes in the tree. Going down the tree we explore all valid "reverse" pivots in
lexicographical order from any given intermediate node. Going back up the tree,
we simply use Bland's rule to return to the parent node along with the current
pivot indices. From there it is simple to continue by considering the next
lexicographic "reverse" pivot, etc. The algorithm is therefore nonrecursive and
requires no stack or other data structure. One possible difficulty arises at so-called
degenerate vertices, vertices which lie on more than d bounding hyperplanes. It is
desirable to report each vertex once only, and this can be achieved without storing
the output and searching. By using duality, we can also use this algorithm for
enumerating the facets of the convex hull of a set of points in R d. It can also
be used for enumerating all of the vertices of the Voronoi diagram of a set of
points in R d, since this can be reformulated as a convex hull problem in R a+l

(see [7]).
A variant of this method can be used for vertex enumeration of arrangements

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 297

of n hyperptanes in R a. For the case of simple arrangements, where each vertex is
contained on exactly d hyperplanes, the method is of no interest. Here we simply
need to calculate all d subsets of the n hyperplanes and compute their intersection,
which can easily be done without additional storage. Even for nonsimple arrange-
ments with no parallel planes, this simple method can be modified to work well.
Our method is only of practical interest when the arrangement contains many
parallel hyperplanes. Again consider the linear programming problem discussed
above. Each inequality defining the polyhedron is bounded by a hyperplane. The
corresponding arrangement of hyperplanes contains many vertices, some of which
are vertices of the polyhedron, known as feasible vertices. The others are known
as infeasible vertices. A recent development in linear programming is a pivot rule
that starts at any vertex of this arrangement, feasible or infeasible, and finds a
unique path to the optimum solution of the linear program. This is known as the
criss-cross method and was developed independently by Terlaky [19], [20] and
Wang [22]. Reversing this algorithm along the lines described above yields our
algorithm for enumerating vertices of arrangements.

The problems discussed in this paper have a long history, which we briefly
mention here. The problem of enumerating all of the vertices of a polyhedron is
surveyed by Mattheiss and Rubin in [13] and by Dyer in [6]. There are essentially
two classes of deterministic methods. One class is based on pivoting and is
discussed in detail in [6] and [5]. In this method a depth-first search is initiated
from a vertex by trying all possible simplex pivots. The difficulty is in determining
whether or not a vertex has already been visited. For this all vertices must be
stored in a balanced AVL-tree. An implementation that takes O(nd2v) time and
O(dv) space for a polyhedron with v vertices defined by a nondegenerate system
of n inequalities in R a is given in [6]. A dual version that computes convex hulls
was discovered by Chand and Kapur [3] and has similar complexity. Using
sophisticated data structures, Seidel [18] was able to achieve a running time of
O(d3v log n + nf (d - 1, n - 1)) for sets of n points in R d, when each facet contains
exactly d given points. Here f(d, n) is the time to solve a linear program with n
constraints in d variables, and v is the number of facets of the convex hull. The
space required for this algorithm is O(nLd/2J). The algorithm presented in this paper
fits into this class. It achieves O(dvn) time and O(dn) space complexity for facet
enumeration of the convex hull of n points in R d, when each facet contains exactly
d given points.

A second class of methods for computing the vertices of a convex polyhedron
is the "double description" method of Motzkin et al. [14] that dates back to 1953.
In fact the origin of these methods is even earlier, as the double description method
is dual to the Fourier-Motzkin method for the solution of linear inequality
systems. In the double description method the polyhedron is constructed sequenti-
ally by adding a constraint at a time. All new vertices produced must tie on the
hyperplane bounding the constraint currently being inserted. A dual version for
constructing convex hulls is known as the "beneath and beyond" method.
Assuming the dimension d is fixed, an algorithm of this class that is optimal in
even dimensions is due to Seidel [17] (also see [7]). Chazelle [4] has recently
presented an algorithm that is optimal in all dimensions, hence requiring O(n La/2J)

time and space, in dimension d > 3.

298 D. Avis and K. Fukuda

With d fixed, the complete facial structure of a hyperplane arrangement can be
constructed by an algorithm due to Edelsbrunner et al. [9] in optimal time and
space O(nd). The algorithm works by inserting the hyperplanes one at a time and
can handle degenerate cases. Again with d fixed, a method for enumerating just
the edges and vertices (with repetitions) in O(n a) time and O(n) space is given by
Edelsbrunner and Guibas [8]. Houle et al. [12] give several applications in data
approximation where it is required to enumerate all vertices of an arrangement.

In the next section we begin by introducing the notion of a dictionary for a
system of equations. Next we show how the problems mentioned in the title can
be transformed into the enumeration of certain types of dictionaries. In the third

section we give the algorithm for enumeration of dictionaries. Finally, in the last
section we discuss complexity issues and other properties of the algorithm

proposed.

2. Dictionaries

Let A be an m x n matrix, with columns indexed by the set E = {1, 2 , n}. Fix

distinct indices f and 9 of E. Consider the system of equations

Ax = 0, x o = 1. (2.1)

For any J c E, x s denotes the subvector of x indexed by J, and A s denotes the
submatrix of A consisting of columns indexed by J. A basis B for (2.1) is a subset

of E of cardinality m containing f but not 9, for which A B is nonsingular. We are
only concerned with systems (2.1) that have at least one basis, and assume this for

the rest of the paper. Given any basis B, we can transform (2.1) into the dictionary

xB = --AB1ANXN = AXN, (2.2)

where N = E - B is the co-basis and A denotes - A ~ XAN. A is called the coefficient

matrix of the dictionary, with rows indexed by B and columns indexed by N, so
that .~ = (~i~: i e B, j ~ N). Note that the co-basis always contains the index O.

A variable xi is primal feasible if i ~ B - f and '~ig > 0. A variable x i is dual

feasible if j e N -- 9 and aj-j < 0. A dictionary is primal feasible if xi is primal

feasible for all i~ B - f and dual feasible if x i is dual feasible for all j ~ N - O . A
dictionary is optimal if it is both primal and dual feasible. An optimal dictionary
is shown schematically in Fig. 2.1. A basic solution to (2.1) is obtained from a
dictionary by setting of XN-g = 0, Xg = 1. If any basic variable has value zero, we
call the basic solution and corresponding dictionary deoenerate. In Section 3 of
this paper we give an algorithm for enumerating all distinct basic solutions of the
system (2.1) without repetition, using only the space required to store the input.
The algorithm is initiated with an optimal dictionary. A variant of the algorithm

enumerates all primal feasible dictionaries reporting the corresponding basic

feasible solutions without repetition.
In the following subsections we show how the problems mentioned in the title

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration

g N - - g

f ~ @ @ 0 0 @

@

@

B - f e

@

@

Fig. 2.1.

299

An optimal dictionary (0 = nonnegative entry, ~ = nonpositive entry),

can be t ransformed into the problem of enumerat ing basic (feasible) solutions of

a system of equations in the form (2.1).

2.1. Vertex Enumeration in Hyperplane Arrangements

A hyperplane in R a, d >_ O, is denoted by the pair (b, c), where b is a vector of length

d and c is a scalar, and is the solution set of the equat ion b y = c , y =

(yi: j = 1 d). A hyperplane arrangement is a collection of no hyperplanes (hi, ci)

for some integer n o. A vertex of the ar rangement is the unique solution to the

system of d equat ions corresponding to d intersecting hyperplanes. The vertex

enumeration problem for hyperplane arrangements is to list all of the vertices of

an arrangement . It is a simple mat te r to find a vertex o f an arrangement , or show
that none exists, since vertices correspond to subsets of d hyperplanes whose

normal vectors b~ are linearly independent. We only consider ar rangements that

contain at least one vertex.

We may assume, by relabeling if necessary, that the vectors {b~o_a+ t b~0 }

are linearly independent. Consider the system of equations

X i = c i x n o + l - b l y , i = 1 , . . . , n o .

By assumption, the last d equations are linearly independent, and so the variables

Yi Yd can be expressed in terms of xn0_a+ 1 x,~, and eliminated from the
first n o - d equations. This results in a system of the form

X B ~ A X N ,

for a suitable (no - d) x (d + 1) mat r ix 4 , where B = {1 n o - d) and N =

{no - d + 1 n o + 1}. Fur thermore , by a change of variables if necessary, we

may assume that each ai.no+l is nonnegative. We augment ,4 by adding a row of

all - l 's. We augment B by adding index n o + 2. Setting

f = n o + 2 , g = n o + 1, m = n o - d + l , n = n o + 2 ,

300 D. Avis and K. Fukuda

we have constructed an optimal dictionary. This dictionary is obtained from the

following system which has the form of (2.1):

l x n - A x N = 0, xg = 1. (2.3)

It is easy to show that, for every co-basis N of (2.3), the set of d hyperplanes
indexed by N - g intersect at some vertex of the arrangement. The vertex can be
computed by setting

x i=~ig , i ~ B - - f x j = O , j e N - g ,

and solving for y, which was expressed in terms o! x,o_a+ 1 x~o. Similarly, every
index set of d intersecting hyperplanes augmented by index f gives a co-basis for
(2.3). We say that a vertex is degenerate if it is contained in more than d
hyperplanes. For such vertices, there may be many corresponding bases of (2.3),
each giving rise to a degenerate dictionary. An essential part of our enumeration
algorithm is to output a degenerate vertex only once.

The linear program formulated in this section has a unique optimum vertex. If
this vertex is degenerate, however, there will be many optimal dictionaries that

correspond to it. The vertex enumeration algorithm must be initiated at each of
these dictionaries, an issue that is addressed in Section 3.2.

2.2. Vertex Enumeration for Polyhedra

In this section we relate the vertex enumeration problem for polyhedra to the
dictionary enumeration problem. For a fuller discussion and proofs of the facts
stated here, the reader is referred to any standard linear programming text, such

as 15]. A (convex) polyhedron P is the solution set to a system of n o inequalities

in d nonnegative variables:

P = {y ~ RalA'y <_ b, y >_ 0}, (2.4)

where A' is an no x d matrix and b is an n o vector. A vertex of the polyhedron is
a vector y e P that satisfies a linearly independent set of d of the inequalities as
equations. The vertex enumeration problem for P is to enumerate all of its vertices.

In fact to find even a single vertex of P is computationally equivalent to linear
programming. As we wish to separate this from the enumeration problem, we
assume we are given an initial vertex. By transforming the problem as necessary,
we may assume that the origin is the given vertex. This implies that the vector b
is nonnegative. We also note that the assumption of nonnegative variables is not
essential: a system of inequalities in unrestricted variables with known feasible
point can be transformed into a system such as (2.4) along the lines described in

the previous subsection.

Let n = n o + d + 2 , f = n - 1 , g = n , B = { 1 no, n - l } , and N =
{no + 1 no + d, n}. Consider the following system of equations in the form

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 301

of (2.1):

lX N_g "~ Xf = O,

IxB-s + A'xN-g -- bxg = O, (2.5)

xg= 1.

Here I is an identity matrix and T is a vector of all ones, of appropriate dimensions.

Set m = no + 1 and let A be the m x n matrix corresponding to the coefficients in

the first m equations of (2.5). Then (2.2) is an optimal dictionary for the system

(2.5). It can be shown that each primal feasible dictionary for (2.5) has a basic

solution which gives a vertex y of P: set Y1 = Xno+j, j = 1 d. A vertex of P is

degenerate if it satisfies more than d inequalities of (2.4) as equations. Again,

degenerate vertices correspond to degenerate dictionaries. In order to enumerate
all vertices of P, it is sufficient to enumerate all primal feasible dictionaries for

(2.5), outputting a degenerate basic solution once only.

2.3. Facet Enumeration of the Convex Hull of a Set of Points

Let Q = {ql q~o} denote a set of n o points in R ~. A facet of the convex hull

of Q is a hyperplane containing d affinely independent points of Q and such that

all points of Q lie in one of its closed half-spaces. There is no loss of generality in

assuming that the origin is contained in the convex hull of Q. By employing a

standard duality between points and hyperplanes, we may transform this problem

into a vertex enumeration problem for a convex polyhedron.

3. Enumeration of Dictionaries

Suppose we are given a system of equations of the form (2.1) for some m x n

matrix A. The linear programming problem (LP) for (2.1) is to maximize x I over

(2.1) subject to the additional constraint that each variable except x I and xg is
nonnegative. Each optimal dictionary is a solution to (LP). To begin with, we

assume that there is a unique optimal dictionary. A pivot (r, s) on a basis B, and

corresponding dictionary x B = ,'/xs, is an interchange of some r e B - fw i th some
index s e N - g giving a new basis B'. The new coefficient matrix A' = (a;l) is given

by

1 ai, -,j ais~,j
t _ _ / l !

asr - - - 2 " - , a i r = Z - - , a s j = - - - - , a i j = (l i j ~ - -

ars ars Ctr, Ctrs

(i ~ B - - r , j ~ N - s) . (3.1)

The pivot is primal feasible (resp. dual feasible) if both of the dictionaries corre-

sponding to B and B' are primal (resp. dual) feasible. The simplex method is a

302 D. Avis and K. Fukuda

method of solving (LP) by beginning with an initial dictionary and pivoting until
an optimal dictionary is found. We consider two rules for choosing a pivot.

The first rule, known as Bland's rule, performs primal feasible pivots. Let B be
a basis such that the dictionary (2.2) is primal feasible.

Bland's Rule.

(1) Let s be the smallest index such that x~ is dual infeasible, that is, t~ss > 0.
(2) Set 2 = min{ - (afg/ai,): i ~ B - f, fii~ < 0}. Let r be the smallest index obtain-

ing this minimum.

The pivot (r, s) maintains the primal feasibility of the dictionary. If step (1) does
not apply, the dictionary is also dual feasible and hence optimal.

The second rule, known as the criss-cross rule, starts with any basis.

Criss-Cross Rule.

(1) Let i # f , g be the smallest index such that x i is (primal or dual) infeasible.
(2) If i e B, let r = i and let s be the minimum index such that fir~ > 0, otherwise

let s = i and let r be the minimum index such that ~rs < 0.

The criss-cross pivot (r, s) interchanges x, and xs and may not preserve either
primal or dual feasibility. If step (1) does not apply, then the dictionary is optimal.

In both cases, if step (1) applies, then step (2) can always be executed. The
validity of these rules is given by the following proposition. Part (a) is proved in
[2] and part (b) in [19] for linear programs and in [20] and [22] in the more
general setting of oriented matroids. A simple proof of part (b) also appears in [11].

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary and let B

be any basis.

(a) I f B is primalfeasible, then repeated application of Bland's rule leads to an

optimal dictionary, and each basis generated is primal feasible.

(b) Repeated application of the criss-cross rule starting with basis B leads to an

optimal dictionary.

3.1. Unique Optimal Dictionaries

In this subsection we give a dictionary enumeration algorithm for systems (2.1)
that admit a unique optimal dictionary. Consider a graph where vertices are
dictionaries and two vertices are adjacent if the corresponding two dictionaries
differ in only one basic variable. Then part (b) of the proposition tells us that there
is a unique path consisting of eriss-cross pivots from any dictionary to the optimal
dictionary. The set of all such paths gives us a spanning tree in this graph. Consider
a nonoptimal dictionary D with basis B. Let (r, s), r e B - f , s e N - g, be the pivot

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 303

obtained by applying the criss-cross rule to D giving a dictionary D'. We call (s, r)
a reverse criss-cross pivot for D'. Suppose we start at the optimal dictionary and

explore reverse criss-cross pivots in lexicographic order. This corresponds to a

depth-first search of the spanning tree defined above. When moving down the

tree, each dictionary is encountered exactly once.

A similar analysis applies to part (a) of the proposition. We form a similar

graph, except that vertices are just the primal feasible dictionaries. We define a

reverse Bland pivot in the analogous way. A depth-first search of this graph

provides all primal feasible dictionaries.

Our enumeration algorithm search for dictionaries is given in Fig. 3.1. For a

procedure search (B, N, A);

/* B = {1 m}, N = {m + 1 n}, f = 1, O = n, xB =-~xN is a unique optimal
dictionary for a system (2.1)*/

hegin
i := 2 ; j : = 1;
repeat

while (i < m and not reverse (B, N, 4, i, 3")) increment (i, j);
if (i < m) then /* reverse pivot found */

begin
pivot (B, N, 4, i,j);
if lex-min (B, N, 4) then print (B);
i := 2 ; j : = 1;

end;

else /* go back to previous dictionary */
begin

select-pivot (4, i, j);
pivot (B, N, 71, i, j);

increment (i, j);
end;

until (i > m and B[m] = m)
end; /* search */

function reverse (B, N, 4, i, j): boolean;

/* true if (s, r), with s = B[0, r = N[j], is a valid reverse cross pivot (resp. Bland pivot)
for A, otherwise false */

procedure pivot (B, N, A, i, j);
/* p i v o t / / o n row i and column j, update B and N. Reorder as necessary and set i and
j to be the indices of the interchanged B[i] and N[j]. */

function lex-min (B, N, .~): boolean;

/* true if .4 is nondegenerate or degenerate and B is the lexicographically minimum
basis for this basic solution, else false */

procedure select-pivot (4, i, j);
/* Find criss-cross (resp. Bland) pivot for coefficient matrix 4. Return the index i of the
pivot row and index j of the pivot column */

procedure increment (i, j);

j : = j + 1; i f (j = n - m) then hegin j : = 1; i := i + 1; end;

end; /* increment */

Fig. 3.1. The enumeration algorithm search for dictionaries.

304 D. Avis and K. Fukuda

given system (2.1) we have an initial basis B = {1 m}, co-basis N =
{m + 1 n}, and optimal dictionary xB = AxN. We further assume that f = 1,
9 = n, and that m and n are global constants. The efficiency of the procedure

depends greatly on the procedure reverse. The simplest way to check if (r, s), r
B - f , s e N - g , is a reverse pivot is actually to perform the pivot, then use
procedure select-pivot on the new dictionary. If this produces the same pair of
variables, then (r, s) is a valid reverse pivot. Since a pivot involves O (m (n - m))

operations, a faster method is desirable. In fact to determine the pivot by the
criss-cross or Bland's rules, procedure select-pivot does not require the entire
dictionary. To test whether ~/arises from a coefficient matrix A' by a criss-cross

(resp. Bland) pivot interchanging B[i] with N[j], it is only necessary to examine
rows f , i and columns j, 9 of A'. These can be computed from/1 in O(n) time, and
checked to see if (B[i], N[j]) is a criss-cross (resp. Bland) pivot. Further savings
are possible, as certain potential reverse pivots can be eliminated without any
pivoting. For the criss-cross rule we have the following necessary condition for a

reverse pivot.

Proposition 3.2. I f (s , r), s e B - f and r e N - O, is a valid reverse criss-cross pivot

fo r a dictionary xn = AxN, then either

(a) fi~g > 0, ~ > 0, a~i > 0 f o r j e N - g, j < s, or

(19) fly, < 0, fi,~ < 0, ~, < 0 for i e B - f i < r.

Proo f Let A' = (a~), with basis B' and co-basis N', be a dictionary that yields A
after the valid criss-cross pivot (r, s), with r e B ' - f and s ¢ N ' - 9 . One of the
indices r, s must be the smallest infeasible index in A'. Suppose first that it is r.

By the criss-cross rule we must therefore have a',0 < 0, a',, > 0, and a'rj < 0 for all
j ~ N' - 9, J < s. Now applying the pivot formula (3.1) to the pivot row of A' we
obtain the signs indicated in part (a) of the proposition in .4. A similar analysis
applies to the case where s is the smallest infeasible index in A', giving the sign

pattern of part (b) of the proposition. []

For reversing Bland's rule, we can exploit the fact that the reverse pivot must

maintain primal feasibility.

Proposition 3.3. Let XB = AXN be a dictionary, let r e N - 9 , and set 2 =

min{-(alJt~ir): ie B - f, di, < 0}. I f (s , r), s e B - f , is a valid reverse Bland's rule

pivot, then s must be an index that obtains this minimum.

Proo f Under the conditions of the proposition, if s is not an index realizing the
minimum, then the dictionary obtained after the pivot (s, r) is not primal feasible. []

In the next section we see how this simple observation reduces the complexity of

search in nondegenerate situations.
The procedure lex-min is used to ensure that each basic solution is output

exactly once, when the lexicographically minimum basis for that basic solution is
reached. The correctness of the procedure is based on the following proposition.

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 305

Proposition 3.4. Le t B be a basis f o r a degenerate dictionary x s = AxN. B is not

lexicographically minimum for the corresponding basic solution i f and only i f there

exists r ~ B - f and s e n - g such that r > s, ?tra= 0 and a,s ~ O.

Proof. For the sufficiency of the condition, let r and s have the above properties.

Let B' = B - r + s. Since fi,~ ¢: 0, B' is a basis, and it is lexicographically smaller

than B.
On the other hand, suppose B' is a basis lexicographically smaller than B with

the same basic solution. Let s be the smallest index in B' but not in B. Since both

bases have the same basic solution, fi,g = 0. If we augment B by s, there must exist

some index r such that B = B - r + s is a basis. Now r > s for otherwise r e B',

by the choice of s, and there is a linear dependence among the set of columns

{ A j : j e B ' , j < s}. Also fi~s ~ 0, otherwise B would not be a basis. Finally, since

a~g = 0, we have ti,0 = 0 and B has the same basic solution as B. []

3.2. Degenerate Optimal Dictionaries

Procedure search as given in the previous subsection will only generate all (feasible)

dictionaries if the system (2.1) has a unique optimal dictionary. Suppose there are
many optimal dictionaries. This situation arises when one of the basic variables

has value zero, i.e., the dictionary is degenerate. Then instead of a spanning tree

in the graph described after Proposition 3.1, we obtain a spanning forest. Each of

the two pivot algorithms terminates when any optimal solution is found. Therefore,
procedure search must be applied to each optimal dictionary. Fortunately, from

any optimal dictionary we can generate all optimal" dictionaries by a procedure

very similar to search. We can and will assume that there is a unique optimal

basic solution. This corresponds to the condition that all of the coefficients fizJ,

j e N - g, are nonzero in the optimal dictionary. We are free to assume this since

in our applications we are free to choose this row, which corresponds to the

"objective function" of the linear program.
Let xn = A x s be a degenerate optimal dictionary. Let B' ~_ B denote the indices

of the variables with value zero in the corresponding basic solution and the index

f. We augmen t / i by a column with index g' = n + 1, consisting of all ones. This

column temporarily replaces column g. Let N ' = N - g + g'. This augmented

dictionary is shown schematically in Fig. 3.2.

f i

B ' - f

B - B ' - f

g' g N ' - g'

+ 0
+ 0
+ 0

+ +
+ +
+ +

= 4

Fig. 3.2. An augmented degenerate optimal dictionary.

306 D. Avis and K. Fukuda

We now consider the subdictionary consisting of rows indexed by B' and
columns by N'. This is a nondegenerate optimum dictionary. To obtain all optimal
dictionaries for the original problem, we apply a variant of procedure search to
the subdictionary using a dual form of Bland's rule in procedures reverse and
lex-min. This form takes any dual feasible dictionary and gives a dual feasible pivot.

Dual Bland's Rule.

(1) Let r ~ B' - f be the smallest index that is primal infeasible, that is, a,g, < 0.
(2) Set 2 = min{- (~I3 /? t r j) : j~N' -g ' , d o > 0}. Let r be the smallest index

attaining this minimum.

The pivot (r, s) maintains the dual feasibility of the dictionary. If step (1) does not
apply, the dictionary is optimal. Proposition 3. l(a) applies with "primal" replaced

by "dual."

We initiate the procedure search on the augmented dictionary with basis
B' and co-basis N'. Although only rows indexed by B' are considered for
pivots, we manipulate the entire coefficient matrix A in procedure pivot, and
update the vectors B and N. Now each reverse pivot found by search applied
to the modified problem yields a new optimal dictionary for the original problem.
After the call to procedure pivot in search, we now insert a call to the original
procedure search, with the dictionary A and the updated vectors B and N.

The validity of this approach is based on the following observations. Again let
x B = .4x N be a degenerate optimal dictionary for a system (2.1) with a unique
optimum basic solution. Let B' and N' be defined as above. Each optimal basis
for (2.1) contains the indices B - B' augmented by a linearly independent set from
N - g + B'. Such bases will always be primal feasible for 4, if they are also dual
feasible, then they correspond to an optimal dictionary for the original system.
Using the dual form of Bland's rule, this latter condition is always satisfied. Since
the modified problem has a unique optimal dictionary, each dual feasible dic-
tionary for the modified problem must be connected by a unique path by dual
Bland pivots to this optimum dictionary. Reversing the pivots allows us to visit
each optimal dictionary for the original problem.

4. Complexity

In this section we discuss the complexity of the dictionary enumeration algorithm,
and apply the results to the geometric applications described in Section 2. Suppose
we have a system (2.1) for some m x n matrix A. Let f (A) denote the number of
dictionaries that can represent (2.1). f (A) is just the number of linearly independent
subsets of m columns of A, with the condition that the column with index f is

always included, and index # is always excluded. This is at most (ran--21) ,

but may be much smaller. For each dictionary, we may evaluate (m - 1)x
(n - m - 2) candidates_for reverse pivots, each candidate requiring O(n) time

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 307

as shown in the previous section. Procedure pivot requires O(m(n - m)) time per

execution as does procedure lex-min. These complexities are valid for the case of
multiple optimal solutions. Therefore the overall time-complexity of search is

O(mn(n -- m)f(A)) = O(mn(n - m)(n - 2 ~ .
\ m - I , : , /

(4.1)

Apart from a few indices, no additional space is required other than that
required to represent the input.

We now consider the complexity of evaluating all feasible dictionaries. Let g(A)
denote the number of primal feasible dictionaries representing (2.1). The above

analysis and (4.1) hold, with g(A) replacing f(A). In the nondegenerate case we

can do better. Recalling Proposition 3.3, we see that we only need to consider one

candidate reverse pivot per column of the dictionary: if there are two or more

indices realizing the minimum, then a pivot would give a degenerate dictionary.

For each column, the candidate basic variable can be found by computing the

minimum ratio 2 in O(m) time. To check if a candidate is in fact a reverse pivot,

we need to construct the objective row of the dictionary after the pivot, taking

O(n - m) time. Therefore since there are n - m - 2 candidate columns, all reverse
Bland pivots from the given dictionary can be found in O((n - m)n) time, in the

nondegenerate case. This gives an overall complexity of O((n- m)ng(A)) for
the nondegenerate case.

We now return to the geometric problems mentioned in Section 2. Suppose we

have a collection of no hyperplanes in R d. For this problem, m = no - d + 1 and
n = n o + 2. The time-complexity of enumerating all vertices of a hyperplane

arrangement by this method becomes

In the case of simple arrangements, f(A) is the number of the vertices, i.e.,

the size of the output. This method should be particularly useful for simple

arrangements with few vertices. This could occur if many hyperplanes are parallel.

In any event, the simplicity of the arrangement does not have to be known in
advance.

Consider now the enumeration of the vertices of a polyhedron given by

a list of no inequalities in d variables. We have m = no + 1 and n = no + d + 2.

The time-complexity of enumerating all of the vertices is

Again the complexity is output sensitive for nondegenerate polyhedra, for which

g(A) is just the number of vertices. If the polyhedron is simple (i.e., all dictionaries

are nondegenerate), then we get an improved complexity bound. The algorithm

308 D. Avis and K. Fukuda

produces vertices at a cost of O(d(no + d)) per vertex with no repetitions and no

additional space.
The complexities in the previous paragraph apply to the convex hull problem,

where n o is the number of input points. In the nondegenerate case where no more

than d points tie on any facet (i.e., the facets are simpliciat), we can enumerate the

v facets in time O(nodv) and space O(nod).

5. E x a m p l e

In this section we given an example of the operation of procedure search
for the vertex enumeration of the set of no = 5 lines shown in Fig. 5.1. This

arrangement is generated by the coefficients:

bl = (1,3), b2 = (5, 1), b 3 = (3,2), b4 = (- t , - 3) , b 5 = (- 2 , 1),

c 1 = 4 , c 2 = 5 , c 3 = 2 , c , = 1, c 5 = 2 .

Proceeding as described in Section 2.1, we add variables xl x5 obtain-

ing the system

x 1 = 4 - Y l - 3 Y 2 ,

x 2 = 5 - 5 y l - Y2,

x 3 = 2 - 3y 1 - 2y 2,

x , = l + Yl +3y2 ,

x s = 2 + 2 y l - Y2.

Since the last two equations are linearly independent, we may solve for yt and Y2

6

\

4

0

Y2

t 5

Yl

Fig. 5.1. Line arrangement.

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 309

in terms of x4 and x 5, getting

X 4 X5

y l = -- 1 + - f + 3 -~--,

Y2 = 2 x4 xs.
7 7

Eliminating variables Yl, Y2 from the first three equations we obtain the system

X 1 = 5 - - X 4 ,

x2 = 10 - x4 - 2x5,

X 3 ~ 5 ~ X 4 - - X 5.

These are plotted with x4, x5 as axes in Fig. 5.2. Adding the special variables x I

and x 0 and the additional row representing the "objective function," we obtain

our initial optimal dictionary:

X 1 -= 5 X g ~ X 4 ,

X 2 = lOxg - x4 - 2x5,
(5.1)

g 3 = 5 X a - X 4 - X 5 ,

X f = - - X 4 - - 2 5 .

Starting at this dictionary we consider in turn each of the candidate reverse

pivots: (1, 4), (2, 4), (2, 5), (3, 4), (3, 5). The candidate pivot (1, 4) yields the dictionary

x 2 = 5X o + Xl -- 2X5,

x3 = x l - xs, (5.2)

x 4 = 5X O - - X 1,

x f = - - 5 x ~ + x l - x 5.

- 4

P

2

12

0 P

Fig. 5.2. Transformed line arrangement.

310 D. Avis and K. Fukuda

Checking this dictionary, we discover that the criss-cross rule does generate
the pivot (4, 1), so we continue from this dictionary. Note that in determining
this, we do not need the entire dictionary. In this example we need only the
column of coefficients for x~. The possible candidates are: (2, 1), (2, 5), (3, 1),
(3, 5), (4, 1). We start with (2, 1), which leads to the dictionary

xl = - 5 x o + x2 + 2xs,

x 3 = - - 5 x g + x 2 + Xs,

x# = t0xg-- x z - 2xs,

X f : - - lOxg + x2 + xs .

(5.3)

Again the criss-cross rule applied to this dictionary generates the required
pivot (1, 2). In this case we need only check the coefficients of xg and x2 in

the row for xl.
Continuing from this dictionary, the first candidate pivot is (1, 2). This leads us

back to (5.2), for which the criss-cross rule generates the pivot (4, 1) which is not
the same. Therefore (1, 2) is not a valid reverse pivot from (5.3). Next we try the
pivot (1, 5) on dictionary (5.3). This gives the dictionary

5 x l x2

X 4 : 5 Xg - - X1,

5 X 1 X 2
x , = x g + 7 - 7 ,

15 xl x2
Xs =

The criss-cross rule applied to this dictionary yields the pivot (4, 1), so (1, 5) is not
a reverse pivot. Continuing in this way we discover that no dictionaries lead to
(5.3) by the criss-oross rule. We therefore backtrack to the parent dictionary of

Fig. 5.3. Enumeration tree.

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 311

(5.3), which we do by performing the criss-cross pivot (1, 2) leading back to (5.2).
Note that no storage is required to determine the parent of a dictionary.

In Fig. 5.3 we show the complete tree enumerating all dictionaries from
(5.3). Due to degeneracy in the original arrangement, the same vertex in the
arrangement may occur as different dictionaries in the tree. Dictionaries with bases
{1, 2, 4}, {2, 3, 4}, {2, 4, 5} correspond to one vertex. We output this vertex when
its lexicographically minimum basis { 1, 2, 4} is reached.

6. Concluding Remarks

We have presented a new algorithm that can be used to solve three important
geometric enumeration problems without additional space. The simplicity of the
algorithm renders it suitable for symbolic computation in a language such as
Maple or Mathematica. Using exact arithmetic, the problem of numerical accuracy
which occurs with most geometric algorithms is avoided. The second author and
Ichiro Mizukoshi have in fact implemented the algorithms of this paper as a
package in Mathematica, which is publicly available at no charge from the second
author.

Another useful feature of the algorithm is that it is easy to parallelize efficiently.
Since in the enumeration no dictionary is ever reached by two different paths and
no additional storage is required, subproblems can be scheduled arbitrarily onto
free processors. If the enumeration tree is relatively "bushy" we would expect
considerable speed-up from parallelization. However, in the worst case little if any
speed-up would be achieved: consider the so-called Klee-Minty examples. It is
known [1] that Bland's rule applied to these examples generates a path of
exponential length from some vertex to the optimum vertex. By reordering the
variables, this path in fact visits every vertex of the polyhedron 1-15]. In this case
the enumeration tree generated by reverse pivoting is also a path! However, since
the simplex method seems to work well in practice, the enumeration tree will
normally have high fan-out and relatively shallow depth, and so substantial
speed-up may be expected. This represents an area for future research. By
substituting other pivot rules in our algorithm, different enumeration trees are
generated. Study of these trees should prove useful in evaluating pivoting rules
for the simplex method.

The reverse pivoting approach is quite general and can be applied to a
wide variety of enumeration problems. The algorithms in this paper can be
extended to the setting of oriented matroids, and in particular to pseudoline
arrangements. While the criss-cross method works correctly in the setting of
oriented matroids, Bland's rule is not finite for oriented matroid programming
[10]. Todd {21] has found a finite rule that can replace Bland's rule in the oriented
matroid setting.

We have also recently used the reverse pivoting method to develop an
algorithm for enumerating all the cells in an arrangement of n hyperplanes.
For enumerating all the vertices of an arrangement, a related technique gives a
different algorithm than that presented here. The time complexity for vertex

312 D. Avis and K. Fukuda

enumeration in a simple arrangement is improved to O(nd2v) with space complexity
again O(nd). In both cases, the enumeration tree has depth bounded by n, which

should enable an efficient parallel implementation. We can also apply reverse
enumeration to find all triangulations and spanning trees of a fixed set of points.

These results are described in detail in I"23]. Also, in a very recent work, Rote has
modified the technique of this paper to address degeneracy in the vertex enumera-

tion problem more directly [16].
The complexity analysis presented in this paper is quite rudimentary. We

allow a worst-case time of O(n) to determine whether a pair of indices is a reverse
pivot. This seems certain to be an overestimate. For the ith basic variable to
interchange with the j th nonbasic variable, at least i + j signs have to be "correct."
We may compute these signs consecutively and stop the first time an "incorrect"

sign is encountered. Amortizing this cost over the complete enumeration of an
arrangement, it is possible that just a constant amount of work has to be done
on the average to determine that a potential reverse pivot is invalid.

Finally, we remark that our algorithm can be easily modified to enum-

erate all of the edges of a polyhedron in the given time and space complexity.
Initially, suppose we have a simple polyhedron and we are at a vertex a of
the polyhedron with its associated dictionary. For each entering basic variable we
compute a leaving variable via the ratio test. Since the polyhedron is simple, this
variable is unique and gives a new vertex b of the polyhedron. Then the edge ab
is always an edge of the polyhedron and we can report it using a simple
lexicographic rule: to avoid reporting both edge ab and edge ha, check if the basis

for a is lexicographically less than that for b, and if so report ab.
For nonsimple polyhedra, the situation is more complex since two endpoints

of an edge, and even the edge itself, may be degenerate. Furthermore, the example
of a square pyramid in R 3 can be used to show that the lexicographically minimum

basis for one vertex may not be adjacent in the enumeration tree to the lexico-
graphically minimum basis for an adjacent vertex in the polyhedron. Nevertheless
we can apply a technique similar to that described at the end of Section 3.1 for

degenerate vertices. An edge corresponds to a nondegenerate pivot (r, s) from some

basis B. We can consider B - r - s as a basis for the edge, and output the edge
whenever this basis is minimal. The condition can be tested in a way similar to that

described in Proposition 3.4.

Acknowledgments

We would like to thank Giinter Rote and two anonymous referees for a careful

reading of the paper and many helpful suggestions.

References

1. D. Avis and V. Chv/ttal, Notes on Bland's Pivoting Rule, Math. Programming Study., vol. 8,
pp. 24-34, 1978.

A Pivoting Algorithm for Convex Hulls and Vertex Enumeration 313

2. R. G. Bland, New Finite Pivoting Rules for the Simplex Method, Math. Oper. Res., vol. 2,
pp. 103-107, 1977.

3. D. R. Chand and S. S. Kapur, An Algorithm for Convex Polytopes, Z Assoc. Comput. Mach.,

vot. 17, pp. 78-86, 1970.
4. B. Chazelle, An Optimal Convex Hull Algorithm and New Results on Cuttings, Proc. 32nd Annual

IEEE Symposium on Foundations of Computer Science, pp. 29-38, 1991.
5. V. Chv~tal, Linear Programming, Freeman, San Francisco, 1983.
6. M. E. Dyer, The Complexity of Vertex Enumeration Methods, Math. Oper. Res., vol. 8,

pp. 381-402, 1983.
7. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
8. H. Edelsbrunner and L. Guibas, Topologically Sweeping an Arrangement, J. Comput. Syst. Sci.,

vol. 38, pp. 165-194, 1989.
9. H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing Arrangements of Lines and Hyperplanes

with Applications, SlAM J. Comput. Sci., vol. 15, pp. 341-363, 1986.
10. K. Fukuda, Oriented Matroid Programming, Ph.D. Thesis, University of Waterloo, 1982.
11. K. Fukuda and T. Matsui, On the Finiteness of the Criss-Cross Method, European J. Oper. Res.,

to appear.
12. M. E. Hou|e, H. Imai, K. Imai, J.-M. Robert, and P. Yamamoto, Orthogonal Weighted Linear L l

and L~o Approximation and Applications, Manuscript, September 1990.
13. T. H. Mattheiss and D. S. Rubin, A Survey and Comparison of Methods for Finding all Vertices

of Convex Polyhedral Sets, Math. Oper. Res., vol. 5, pp. 167-185, 1980.
14. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, The Double Description Method,

Annals of Mathematical Studies, vol. 8, Princeton University Press, Princeton, N J, 1953.
15. K. Paparrizos, Pivoting Rules Directing the Simplex Method Through all Feasible Vertices of

Klee-Minty Examples, OPSEARCH, vol. 26, pp. 77-95, 1989.
16. G. Rote, Degenerate Convex Hulls in High Dimensions Without Extra Storage, Proc. 8th Annual

Symposium on Computational Geometry, ACM Press, New York, pp. 26-32, 1992.

17. R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions, Report 81-14,
Department of Computer Science, University of British Columb!a, 1981.

18. R. Seidel, Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face, Proc.

1986 Symposium on the Theory of Computing, pp. 404-413.
19. T. Terlaky, A Convergent Criss-Cross Method, Math. Operationaforsch. Statist. Ser. Optim.,

vol. 16, pp. 683-690, 1985.
20. T. Terlaky, A Finite Criss-Cross Method for Oriented Matroids, J. Combin. Theory Set. B,

vol. 42, pp. 319-327, 1987.
21. M. Todd, Linear and Quadratic Programming in Oriented Matroids, J. Combin. Theory Ser. B,

vol. 39, pp. 105-133, 1985.
22. Z. Wang, A Conformal Elimination Free Algorithm for Oriented Matroid Programming, Chinese

Ann. Math., Ser. B, voL 8, p. 1, t987~
23. D. Avis and K. Fukuda, Reverse Search for Enumeration, Research Report 92-5, GSSM, University

of Tsukuba, April 1992.

Received June 14, 1991, and in revised form January, 1992.

