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Abstract. We present a new pivot-based algorithm which can be used with minor 
modification for the enumeration of the facets of the convex hull of a set of points, 
or for the enumeration of the vertices of an arrangement or of a convex polyhedron, 
in arbitrary dimension. The algorithm has the following properties: 

(a) Virtually no additional storage is required beyond the input data. 
(b) The output list produced is free of duplicates. 
(c) The algorithm is extremely simple, requires no data structures, and handles 

all degenerate cases. 
(d) The running time is output sensitive for nondegenerate inputs. 
(e) The algorithm is easy to paraUelize efficiently. 

For example, the algorithm finds the v vertices of a polyhedron in R d defined by a 
nondegenerate system of n inequalities (or, dually, the v facets of the convex hull of 
n points in R a, where each facet contains exactly d given points) in time O(ndv) and 
O(nd) space. The v vertices in a simple arrangement of n hyperplanes in R d can be 
found in O(n2dv) time and O(nd) space complexity. The algorithm is based on inverting 
finite pivot algorithms for linear programming. 

1. Introduction 

In this paper  we give an a lgor i thm,  which with minor  var ia t ions  can be used to 

solve three basic enumera t ion  p rob lems  in compu ta t iona l  geometry:  facets of the 
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Kojima of Tokyo Institute of Technology, supported by the JSPS/NSERC bilateral exchange programs. 
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convex hull of a set of points, vertices of a convex polyhedron given by a system 
of linear inequalities, and vertices of an arrangement of hyperplanes. The algorithm 
is based on pivoting and has many nice properties. Among these are that virtually 
no additional space is required apart from that required to store the input, and 
that the algorithm produces a list that is free of duplicates even for degenerate 
inputs. The algorithm is based on "inverting" finite pivoting algorithms for linear 
programming. No special knowledge of linear programming or arrangements is 
assumed, and necessary terminology is defined here. For additional information 
the reader is referred to [5"1 for linear programming and [7] for arrangements. In 
the rest of this section we give an informal description of the algorithm beginning 
with the vertex enumeration problem for convex polyhedra. 

Suppose we have a system of linear inequalities defining a polyhedron in R d 

and a vertex of that polyhedron. A vertex is specified by giving the indices of d 
half-spaces whose bounding hyperplanes intersect at the vertex. For any given 
linear objective function, the simplex method generates a path along the edges of 
the polyhedron until a vertex maximizing this objective function is found. For 
simplicity, let us assume for the moment that the polyhedron is simple, which 
means that each vertex is contained on exactly d bounding hyperplanes. The path 
is found by pivoting, which involves interchanging one of the equations defining 
the vertex with one not currently used. The path chosen from an initial given 
vertex depends on the pivot rule used. In fact, care must be taken because some 
pivot rules generate cycles and do not lead to the optimum vertex. However, a 
particularly simple rule, known as Bland's rule or the least subscript rule [2], 
guarantees a unique path from any starting vertex to the optimum vertex. If we 
look at the set of all such paths from all vertices of the polyhedron, we get a 
spanning tree of the edge graph of the polyhedron rooted at the optimum vertex. 
Our algorithm simply starts at an "optimum vertex" and traces out the tree in 
depth-first order by "reversing" Bland's rule. Even if the polyhedron is not simple, 
the same basic idea works. A vertex lying on more than d bounding hyperplanes 
is called degenerate. Care must be taken to output a degenerate vertex only once, 
and additional procedures are required if the optimum vertex is itself degenerate. 
An example of the execution of the algorithm is given in Section 5. 

A remarkable feature is that no additional storage is needed at intermediate 
nodes in the tree. Going down the tree we explore all valid "reverse" pivots in 
lexicographical order from any given intermediate node. Going back up the tree, 
we simply use Bland's rule to return to the parent node along with the current 
pivot indices. From there it is simple to continue by considering the next 
lexicographic "reverse" pivot, etc. The algorithm is therefore nonrecursive and 
requires no stack or other data structure. One possible difficulty arises at so-called 
degenerate vertices, vertices which lie on more than d bounding hyperplanes. It is 
desirable to report each vertex once only, and this can be achieved without storing 
the output and searching. By using duality, we can also use this algorithm for 
enumerating the facets of the convex hull of a set of points in R d. It can also 
be used for enumerating all of the vertices of the Voronoi diagram of a set of 
points in R d, since this can be reformulated as a convex hull problem in R a+l 

(see [7]). 
A variant of this method can be used for vertex enumeration of arrangements 
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of n hyperptanes in R a. For the case of simple arrangements, where each vertex is 
contained on exactly d hyperplanes, the method is of no interest. Here we simply 
need to calculate all d subsets of the n hyperplanes and compute their intersection, 
which can easily be done without additional storage. Even for nonsimple arrange- 
ments with no parallel planes, this simple method can be modified to work well. 
Our method is only of practical interest when the arrangement contains many 
parallel hyperplanes. Again consider the linear programming problem discussed 
above. Each inequality defining the polyhedron is bounded by a hyperplane. The 
corresponding arrangement of hyperplanes contains many vertices, some of which 
are vertices of the polyhedron, known as feasible vertices. The others are known 
as infeasible vertices. A recent development in linear programming is a pivot rule 
that starts at any vertex of this arrangement, feasible or infeasible, and finds a 
unique path to the optimum solution of the linear program. This is known as the 
criss-cross method and was developed independently by Terlaky [19], [20] and 
Wang [22]. Reversing this algorithm along the lines described above yields our 
algorithm for enumerating vertices of arrangements. 

The problems discussed in this paper have a long history, which we briefly 
mention here. The problem of enumerating all of the vertices of a polyhedron is 
surveyed by Mattheiss and Rubin in [13] and by Dyer in [6]. There are essentially 
two classes of deterministic methods. One class is based on pivoting and is 
discussed in detail in [6] and [5]. In this method a depth-first search is initiated 
from a vertex by trying all possible simplex pivots. The difficulty is in determining 
whether or not a vertex has already been visited. For this all vertices must be 
stored in a balanced AVL-tree. An implementation that takes O(nd2v) time and 
O(dv) space for a polyhedron with v vertices defined by a nondegenerate system 
of n inequalities in R a is given in [6]. A dual version that computes convex hulls 
was discovered by Chand and Kapur [3] and has similar complexity. Using 
sophisticated data structures, Seidel [18] was able to achieve a running time of 
O(d3v log n + nf (d  - 1, n - 1)) for sets of n points in R d, when each facet contains 
exactly d given points. Here f(d,  n) is the time to solve a linear program with n 
constraints in d variables, and v is the number of facets of the convex hull. The 
space required for this algorithm is O(nLd/2J). The algorithm presented in this paper 
fits into this class. It achieves O(dvn) time and O(dn) space complexity for facet 
enumeration of the convex hull of n points in R d, when each facet contains exactly 
d given points. 

A second class of methods for computing the vertices of a convex polyhedron 
is the "double description" method of Motzkin et al. [14] that dates back to 1953. 
In fact the origin of these methods is even earlier, as the double description method 
is dual to the Fourier-Motzkin method for the solution of linear inequality 
systems. In the double description method the polyhedron is constructed sequenti- 
ally by adding a constraint at a time. All new vertices produced must tie on the 
hyperplane bounding the constraint currently being inserted. A dual version for 
constructing convex hulls is known as the "beneath and beyond" method. 
Assuming the dimension d is fixed, an algorithm of this class that is optimal in 
even dimensions is due to Seidel [17] (also see [7]). Chazelle [4] has recently 
presented an algorithm that is optimal in all dimensions, hence requiring O(n La/2J) 

time and space, in dimension d > 3. 
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With d fixed, the complete facial structure of a hyperplane arrangement can be 
constructed by an algorithm due to Edelsbrunner et al. [9] in optimal time and 
space O(nd). The algorithm works by inserting the hyperplanes one at a time and 
can handle degenerate cases. Again with d fixed, a method for enumerating just 
the edges and vertices (with repetitions) in O(n a) time and O(n) space is given by 
Edelsbrunner and Guibas [8]. Houle et al. [12] give several applications in data 
approximation where it is required to enumerate all vertices of an arrangement. 

In the next section we begin by introducing the notion of a dictionary for a 
system of equations. Next we show how the problems mentioned in the title can 
be transformed into the enumeration of certain types of dictionaries. In the third 

section we give the algorithm for enumeration of dictionaries. Finally, in the last 
section we discuss complexity issues and other properties of the algorithm 

proposed. 

2. Dictionaries 

Let A be an m x n matrix, with columns indexed by the set E = {1, 2 . . . .  , n}. Fix 

distinct indices f and 9 of E. Consider the system of equations 

Ax = 0, x o = 1. (2.1) 

For any J c E, x s denotes the subvector of x indexed by J, and A s denotes the 
submatrix of A consisting of columns indexed by J. A basis B for (2.1) is a subset 

of E of cardinality m containing f but not 9, for which A B is nonsingular. We are 
only concerned with systems (2.1) that have at least one basis, and assume this for 

the rest of the paper. Given any basis B, we can transform (2.1) into the dictionary 

xB = --AB1ANXN = AXN, (2.2) 

where N = E - B is the co-basis and A denotes - A ~  XAN. A is called the coefficient 

matrix of the dictionary, with rows indexed by B and columns indexed by N, so 
that .~ = (~i~: i e B, j ~ N). Note that the co-basis always contains the index O. 

A variable xi is primal feasible if i ~ B - f and '~ig > 0. A variable x i is dual 

feasible if j e N -- 9 and aj-j < 0. A dictionary is primal feasible if xi is primal 

feasible for all i~ B - f  and dual feasible if x i is dual feasible for all j ~ N - O .  A 
dictionary is optimal if it is both primal and dual feasible. An optimal dictionary 
is shown schematically in Fig. 2.1. A basic solution to (2.1) is obtained from a 
dictionary by setting of XN-g = 0, Xg = 1. If any basic variable has value zero, we 
call the basic solution and corresponding dictionary deoenerate. In Section 3 of 
this paper we give an algorithm for enumerating all distinct basic solutions of the 
system (2.1) without repetition, using only the space required to store the input. 
The algorithm is initiated with an optimal dictionary. A variant of the algorithm 

enumerates all primal feasible dictionaries reporting the corresponding basic 

feasible solutions without repetition. 
In the following subsections we show how the problems mentioned in the title 
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An optimal dictionary ( 0  = nonnegative entry, ~ = nonpositive entry), 

can be t ransformed into the problem of enumerat ing basic (feasible) solutions of 

a system of equations in the form (2.1). 

2.1. Vertex Enumeration in Hyperplane Arrangements 

A hyperplane in R a, d >_ O, is denoted by the pair  (b, c), where b is a vector of length 

d and c is a scalar, and is the solution set of  the equat ion b y = c ,  y =  

(yi: j = 1 . . . . .  d). A hyperplane arrangement is a collection of no hyperplanes (hi, ci) 

for some integer n o. A vertex of  the ar rangement  is the unique solution to the 

system of d equat ions corresponding to d intersecting hyperplanes. The vertex 

enumeration problem for hyperplane arrangements  is to list all of  the vertices of 

an arrangement .  It is a simple mat te r  to find a vertex o f  an arrangement ,  or  show 
that none  exists, since vertices correspond to subsets of d hyperplanes whose 

normal vectors b~ are linearly independent.  We only consider ar rangements  that  

contain at least one vertex. 

We may  assume, by relabeling if necessary, that the vectors {b~o_a+ t . . . . .  b~0 } 

are linearly independent.  Consider the system of equations 

X i = c i x n o + l - b l y  , i =  1 , . . . , n  o . 

By assumption,  the last d equations are linearly independent,  and so the variables 

Yi . . . . .  Yd can be expressed in terms of xn0_a+ 1 . . . . .  x,~, and eliminated from the 
first n o - d equations.  This results in a system of the form 

X B ~ A X  N ,  

for a suitable (no - d) x (d + 1) mat r ix  4 ,  where B = {1 . . . . .  n o - d) and N = 

{no - d + 1 . . . . .  n o + 1}. Fur thermore ,  by a change of variables if necessary, we 

may assume that  each ai.no+l is nonnegative.  We augment  ,4 by adding a row of 

all - l 's. We augment  B by adding index n o + 2. Setting 

f = n o + 2 ,  g = n o +  1, m = n o - d + l ,  n = n  o + 2 ,  
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we have constructed an optimal dictionary. This dictionary is obtained from the 

following system which has the form of (2.1): 

l x  n - A x  N = 0, xg = 1. (2.3) 

It  is easy to show that, for every co-basis N of (2.3), the set of d hyperplanes 
indexed by N - g intersect at some vertex of the arrangement. The vertex can be 
computed by setting 

x i=~ig ,  i ~ B - -  f x j = O ,  j e N - g ,  

and solving for y, which was expressed in terms o! x,o_a+ 1 . . . . .  x~o. Similarly, every 
index set of d intersecting hyperplanes augmented by index f gives a co-basis for 
(2.3). We say that a vertex is degenerate if it is contained in more than d 
hyperplanes. For  such vertices, there may be many corresponding bases of (2.3), 
each giving rise to a degenerate dictionary. An essential part of our enumeration 
algorithm is to output a degenerate vertex only once. 

The linear program formulated in this section has a unique optimum vertex. If 
this vertex is degenerate, however, there will be many optimal dictionaries that 

correspond to it. The vertex enumeration algorithm must be initiated at each of 
these dictionaries, an issue that is addressed in Section 3.2. 

2.2. Vertex Enumeration for Polyhedra 

In this section we relate the vertex enumeration problem for polyhedra to the 
dictionary enumeration problem. For  a fuller discussion and proofs of the facts 
stated here, the reader is referred to any standard linear programming text, such 

as 15]. A (convex) polyhedron P is the solution set to a system of n o inequalities 

in d nonnegative variables: 

P = {y ~ RalA'y <_ b, y >_ 0}, (2.4) 

where A' is an no x d matrix and b is an n o vector. A vertex of the polyhedron is 
a vector y e P that satisfies a linearly independent set of d of the inequalities as 
equations. The vertex enumeration problem for P is to enumerate all of its vertices. 

In fact to find even a single vertex of P is computationally equivalent to linear 
programming. As we wish to separate this from the enumeration problem, we 
assume we are given an initial vertex. By transforming the problem as necessary, 
we may assume that the origin is the given vertex. This implies that the vector b 
is nonnegative. We also note that the assumption of nonnegative variables is not 
essential: a system of inequalities in unrestricted variables with known feasible 
point can be transformed into a system such as (2.4) along the lines described in 

the previous subsection. 

Let n = n o + d + 2 ,  f = n - 1 ,  g = n ,  B = { 1  . . . . .  no, n - l } ,  and N =  
{no + 1 . . . . .  no + d, n}. Consider the following system of equations in the form 
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of (2.1): 

lX N_g "~ Xf = O, 

IxB-s + A'xN-g -- bxg = O, (2.5) 

xg= 1. 

Here I is an identity matrix and T is a vector of all ones, of appropriate dimensions. 

Set m = no + 1 and let A be the m x n matrix corresponding to the coefficients in 

the first m equations of (2.5). Then (2.2) is an optimal dictionary for the system 

(2.5). It can be shown that each primal feasible dictionary for (2.5) has a basic 

solution which gives a vertex y of P: set Y1 = Xno+j, j = 1 . . . . .  d. A vertex of P is 

degenerate if it satisfies more than d inequalities of (2.4) as equations. Again, 

degenerate vertices correspond to degenerate dictionaries. In order to enumerate 
all vertices of P, it is sufficient to enumerate all primal feasible dictionaries for 

(2.5), outputting a degenerate basic solution once only. 

2.3. Facet Enumeration of the Convex Hull of a Set of Points 

Let Q = {ql . . . . .  q~o} denote a set of n o points in R ~. A facet of the convex hull 

of Q is a hyperplane containing d affinely independent points of Q and such that 

all points of Q lie in one of its closed half-spaces. There is no loss of generality in 

assuming that the origin is contained in the convex hull of Q. By employing a 

standard duality between points and hyperplanes, we may transform this problem 

into a vertex enumeration problem for a convex polyhedron. 

3. Enumeration of Dictionaries 

Suppose we are given a system of equations of the form (2.1) for some m x n 

matrix A. The linear programming problem (LP) for (2.1) is to maximize x I over 

(2.1) subject to the additional constraint that each variable except x I and xg is 
nonnegative. Each optimal dictionary is a solution to (LP). To begin with, we 

assume that there is a unique optimal dictionary. A pivot (r, s) on a basis B, and 

corresponding dictionary x B = ,'/xs, is an interchange of some r e B - fw i th  some 
index s e N - g giving a new basis B'. The new coefficient matrix A' = (a;l) is given 

by 

1 ai, -,j ais~,j 
t _ _  / l ! 

asr - -  - 2 " - ,  a i r  = Z - - ,  a s j  = - -  - - ,  a i j  = ( l i j  ~ - -  

ars ars Ctr, Ctrs 

( i ~ B - - r , j ~ N - s ) .  (3.1) 

The pivot is primal feasible (resp. dual feasible) if both of the dictionaries corre- 

sponding to B and B' are primal (resp. dual) feasible. The simplex method is a 
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method of solving (LP) by beginning with an initial dictionary and pivoting until 
an optimal dictionary is found. We consider two rules for choosing a pivot. 

The first rule, known as Bland's rule, performs primal feasible pivots. Let B be 
a basis such that the dictionary (2.2) is primal feasible. 

Bland's Rule. 

(1) Let s be the smallest index such that x~ is dual infeasible, that is, t~ss > 0. 
(2) Set 2 = min{ - (afg/ai,): i ~ B - f, fii~ < 0}. Let r be the smallest index obtain- 

ing this minimum. 

The pivot (r, s) maintains the primal feasibility of the dictionary. If step (1) does 
not apply, the dictionary is also dual feasible and hence optimal. 

The second rule, known as the criss-cross rule, starts with any basis. 

Criss-Cross Rule. 

(1) Let i # f ,  g be the smallest index such that x i is (primal or dual) infeasible. 
(2) If i e B, let r = i and let s be the minimum index such that fir~ > 0, otherwise 

let s = i and let r be the minimum index such that ~rs < 0. 

The criss-cross pivot (r, s) interchanges x, and xs and may not preserve either 
primal or dual feasibility. If step (1) does not apply, then the dictionary is optimal. 

In both cases, if step (1) applies, then step (2) can always be executed. The 
validity of these rules is given by the following proposition. Part (a) is proved in 
[2] and part (b) in [19] for linear programs and in [20] and [22] in the more 
general setting of oriented matroids. A simple proof of part (b) also appears in [11]. 

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary and let B 

be any basis. 

(a) I f  B is primalfeasible, then repeated application of  Bland's rule leads to an 

optimal dictionary, and each basis generated is primal feasible. 

(b) Repeated application of the criss-cross rule starting with basis B leads to an 

optimal dictionary. 

3.1. Unique Optimal Dictionaries 

In this subsection we give a dictionary enumeration algorithm for systems (2.1) 
that admit a unique optimal dictionary. Consider a graph where vertices are 
dictionaries and two vertices are adjacent if the corresponding two dictionaries 
differ in only one basic variable. Then part (b) of the proposition tells us that there 
is a unique path consisting of eriss-cross pivots from any dictionary to the optimal 
dictionary. The set of all such paths gives us a spanning tree in this graph. Consider 
a nonoptimal dictionary D with basis B. Let (r, s), r e B - f ,  s e N - g, be the pivot 
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obtained by applying the criss-cross rule to D giving a dictionary D'. We call (s, r) 
a reverse criss-cross pivot  for D'. Suppose we start at the optimal dictionary and 

explore reverse criss-cross pivots in lexicographic order. This corresponds to a 

depth-first search of the spanning tree defined above. When moving down the 

tree, each dictionary is encountered exactly once. 

A similar analysis applies to part (a) of the proposition. We form a similar 

graph, except that vertices are just the primal feasible dictionaries. We define a 

reverse Bland pivot  in the analogous way. A depth-first search of this graph 

provides all primal feasible dictionaries. 

Our enumeration algorithm search for dictionaries is given in Fig. 3.1. For a 

procedure search (B, N, A); 

/* B = {1 . . . . .  m}, N = {m + 1 . . . . .  n}, f = 1, O = n, xB =-~xN is a unique optimal 
dictionary for a system (2.1)*/ 

hegin 
i :=  2 ; j : =  1; 
repeat 

while (i < m and not reverse (B, N, 4,  i, 3")) increment (i, j); 
if (i < m) then /* reverse pivot found */ 

begin 
pivot (B, N, 4, i,j); 
if lex-min (B, N, 4) then print (B); 
i :=  2 ; j : =  1; 

end; 

else /* go back to previous dictionary */ 
begin 

select-pivot (4, i, j); 
pivot (B, N, 71, i, j); 

increment (i, j); 
end; 

until (i > m and B[m] = m) 
end; /* search */ 

function reverse (B, N, 4, i, j): boolean; 

/* true if (s, r), with s = B[0,  r = N[j], is a valid reverse cross pivot (resp. Bland pivot) 
for A, otherwise false */ 

procedure pivot (B, N, A, i, j); 
/* p i v o t / / o n  row i and column j, update B and N. Reorder as necessary and set i and 
j to be the indices of the interchanged B[i] and N[j]. */ 

function lex-min (B, N, .~): boolean; 

/* true if .4 is nondegenerate or degenerate and B is the lexicographically minimum 
basis for this basic solution, else false */ 

procedure select-pivot (4, i, j); 
/* Find criss-cross (resp. Bland) pivot for coefficient matrix 4. Return the index i of the 
pivot row and index j of the pivot column */ 

procedure increment (i, j); 

j : = j  + 1; i f ( j  = n - m) then hegin j : =  1; i :=  i + 1; end; 

end; /* increment */ 

Fig. 3.1. The enumeration algorithm search for dictionaries. 
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given system (2.1) we have an initial basis B = {1 . . . . .  m}, co-basis N =  
{m + 1 . . . . .  n}, and optimal dictionary xB = AxN. We further assume that f = 1, 
9 = n, and that m and n are global constants. The efficiency of the procedure 

depends greatly on the procedure reverse. The simplest way to check if (r, s), r 
B - f ,  s e N - g ,  is a reverse pivot is actually to perform the pivot, then use 
procedure select-pivot on the new dictionary. If this produces the same pair of 
variables, then (r, s) is a valid reverse pivot. Since a pivot involves O ( m ( n -  m)) 

operations, a faster method is desirable. In fact to determine the pivot by the 
criss-cross or Bland's rules, procedure select-pivot does not require the entire 
dictionary. To test whether ~/arises from a coefficient matrix A' by a criss-cross 

(resp. Bland) pivot interchanging B[i] with N[j], it is only necessary to examine 
rows f ,  i and columns j, 9 of A'. These can be computed from/1 in O(n) time, and 
checked to see if (B[i], N[j]) is a criss-cross (resp. Bland) pivot. Further savings 
are possible, as certain potential reverse pivots can be eliminated without any 
pivoting. For the criss-cross rule we have the following necessary condition for a 

reverse pivot. 

Proposition 3.2. I f (s ,  r), s e B - f and r e N - O, is a valid reverse criss-cross pivot 

fo r  a dictionary xn = AxN, then either 

(a) fi~g > 0, ~ > 0, a~i > 0 f o r  j e N - g, j < s, or 

(19) fly, < 0, fi,~ < 0, ~,  < 0 for  i e B - f i < r. 

Proo f  Let A' = (a~), with basis B' and co-basis N', be a dictionary that yields A 
after the valid criss-cross pivot (r, s), with r e B ' - f  and s ¢ N ' - 9 .  One of the 
indices r, s must be the smallest infeasible index in A'. Suppose first that it is r. 

By the criss-cross rule we must therefore have a',0 < 0, a',, > 0, and a'rj < 0 for all 
j ~  N' - 9, J < s. Now applying the pivot formula (3.1) to the pivot row of A' we 
obtain the signs indicated in part (a) of the proposition in .4. A similar analysis 
applies to the case where s is the smallest infeasible index in A', giving the sign 

pattern of part (b) of the proposition. [] 

For  reversing Bland's rule, we can exploit the fact that the reverse pivot must 

maintain primal feasibility. 

Proposition 3.3. Let  XB = AXN be a dictionary, let r e  N - 9 ,  and set 2 = 

min{-(alJt~ir): ie  B - f, di, < 0}. I f ( s ,  r), s e B - f , is a valid reverse Bland's rule 

pivot, then s must be an index that obtains this minimum. 

Proo f  Under the conditions of the proposition, if s is not an index realizing the 
minimum, then the dictionary obtained after the pivot (s, r) is not primal feasible. [] 

In the next section we see how this simple observation reduces the complexity of 

search in nondegenerate situations. 
The procedure lex-min is used to ensure that each basic solution is output 

exactly once, when the lexicographically minimum basis for that basic solution is 
reached. The correctness of the procedure is based on the following proposition. 
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Proposition 3.4. Le t  B be a basis f o r  a degenerate dictionary x s = AxN. B is not 

lexicographically minimum for  the corresponding basic solution i f  and only i f  there 

exists r ~ B - f and s e n  - g such that r > s, ?tra= 0 and a,s ~ O. 

Proof. For the sufficiency of the condition, let r and s have the above properties. 

Let B' = B - r + s. Since fi,~ ¢: 0, B' is a basis, and it is lexicographically smaller 

than B. 
On the other hand, suppose B' is a basis lexicographically smaller than B with 

the same basic solution. Let s be the smallest index in B' but not in B. Since both 

bases have the same basic solution, fi,g = 0. If we augment B by s, there must exist 

some index r such that B = B - r + s is a basis. Now r > s for otherwise r e B', 

by the choice of s, and there is a linear dependence among the set of columns 

{ A j : j e B ' , j  < s}. Also fi~s ~ 0, otherwise B would not be a basis. Finally, since 

a~g = 0, we have ti,0 = 0 and B has the same basic solution as B. [] 

3.2. Degenerate Optimal Dictionaries 

Procedure search as given in the previous subsection will only generate all (feasible) 

dictionaries if the system (2.1) has a unique optimal dictionary. Suppose there are 
many optimal dictionaries. This situation arises when one of the basic variables 

has value zero, i.e., the dictionary is degenerate. Then instead of a spanning tree 

in the graph described after Proposition 3.1, we obtain a spanning forest. Each of 

the two pivot algorithms terminates when any optimal solution is found. Therefore, 
procedure search must be applied to each optimal dictionary. Fortunately, from 

any optimal dictionary we can generate all optimal" dictionaries by a procedure 

very similar to search. We can and will assume that there is a unique optimal 

basic solution. This corresponds to the condition that all of the coefficients fizJ, 

j e N - g, are nonzero in the optimal dictionary. We are free to assume this since 

in our applications we are free to choose this row, which corresponds to the 

"objective function" of the linear program. 
Let xn = A x s  be a degenerate optimal dictionary. Let B' ~_ B denote the indices 

of the variables with value zero in the corresponding basic solution and the index 

f.  We augmen t / i  by a column with index g' = n + 1, consisting of all ones. This 

column temporarily replaces column g. Let N ' =  N - g  + g'. This augmented 

dictionary is shown schematically in Fig. 3.2. 

f i  

B ' - f  

B - B ' - f  

g' g N '  - g' 

+ 0 
+ 0 
+ 0 

+ + 
+ + 
+ + 

= 4  

Fig. 3.2. An augmented degenerate optimal dictionary. 
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We now consider the subdictionary consisting of rows indexed by B' and 
columns by N'. This is a nondegenerate optimum dictionary. To obtain all optimal 
dictionaries for the original problem, we apply a variant of procedure search to 
the subdictionary using a dual form of Bland's rule in procedures reverse and 
lex-min. This form takes any dual feasible dictionary and gives a dual feasible pivot. 

Dual Bland's Rule. 

(1) Let r ~ B' - f be the smallest index that is primal infeasible, that is, a,g, < 0. 
(2) Set 2 = min{- (~I3 /? t r j ) : j~N' -g ' ,  d o > 0}. Let r be the smallest index 

attaining this minimum. 

The pivot (r, s) maintains the dual feasibility of the dictionary. If step (1) does not 
apply, the dictionary is optimal. Proposition 3. l(a) applies with "primal" replaced 

by "dual." 

We initiate the procedure search on the augmented dictionary with basis 
B' and co-basis N'. Although only rows indexed by B' are considered for 
pivots, we manipulate the entire coefficient matrix A in procedure pivot, and 
update the vectors B and N. Now each reverse pivot found by search applied 
to the modified problem yields a new optimal dictionary for the original problem. 
After the call to procedure pivot in search, we now insert a call to the original 
procedure search, with the dictionary A and the updated vectors B and N. 

The validity of this approach is based on the following observations. Again let 
x B = .4x N be a degenerate optimal dictionary for a system (2.1) with a unique 
optimum basic solution. Let B' and N' be defined as above. Each optimal basis 
for (2.1) contains the indices B - B' augmented by a linearly independent set from 
N - g + B'. Such bases will always be primal feasible for 4, if they are also dual 
feasible, then they correspond to an optimal dictionary for the original system. 
Using the dual form of Bland's rule, this latter condition is always satisfied. Since 
the modified problem has a unique optimal dictionary, each dual feasible dic- 
tionary for the modified problem must be connected by a unique path by dual 
Bland pivots to this optimum dictionary. Reversing the pivots allows us to visit 
each optimal dictionary for the original problem. 

4. Complexity 

In this section we discuss the complexity of the dictionary enumeration algorithm, 
and apply the results to the geometric applications described in Section 2. Suppose 
we have a system (2.1) for some m x n matrix A. Let f (A)  denote the number of 
dictionaries that can represent (2.1). f (A)  is just the number of linearly independent 
subsets of m columns of A, with the condition that the column with index f is 

always included, and index # is always excluded. This is at most (ran--21) , 

but may be much smaller. For each dictionary, we may evaluate ( m -  1)x 
( n -  m -  2) candidates_for reverse pivots, each candidate requiring O(n) time 
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as shown in the previous section. Procedure pivot requires O(m(n - m)) time per 

execution as does procedure lex-min. These complexities are valid for the case of 
multiple optimal solutions. Therefore the overall time-complexity of search is 

O(mn(n -- m)f(A)) = O(mn(n - m)( n - 2  ~ .  
\ m  - I , : , /  

(4.1) 

Apart from a few indices, no additional space is required other than that 
required to represent the input. 

We now consider the complexity of evaluating all feasible dictionaries. Let g(A) 
denote the number of primal feasible dictionaries representing (2.1). The above 

analysis and (4.1) hold, with g(A) replacing f(A). In the nondegenerate case we 

can do better. Recalling Proposition 3.3, we see that we only need to consider one 

candidate reverse pivot per column of the dictionary: if there are two or more 

indices realizing the minimum, then a pivot would give a degenerate dictionary. 

For each column, the candidate basic variable can be found by computing the 

minimum ratio 2 in O(m) time. To check if a candidate is in fact a reverse pivot, 

we need to construct the objective row of the dictionary after the pivot, taking 

O(n - m) time. Therefore since there are n - m - 2 candidate columns, all reverse 
Bland pivots from the given dictionary can be found in O((n - m)n) time, in the 

nondegenerate case. This gives an overall complexity of O((n-  m)ng(A)) for 
the nondegenerate case. 

We now return to the geometric problems mentioned in Section 2. Suppose we 

have a collection of no hyperplanes in R d. For this problem, m = no - d + 1 and 
n = n o + 2. The time-complexity of enumerating all vertices of a hyperplane 

arrangement by this method becomes 

In the case of simple arrangements, f(A) is the number of the vertices, i.e., 

the size of the output. This method should be particularly useful for simple 

arrangements with few vertices. This could occur if many hyperplanes are parallel. 

In any event, the simplicity of the arrangement does not have to be known in 
advance. 

Consider now the enumeration of the vertices of a polyhedron given by 

a list of no inequalities in d variables. We have m = no + 1 and n = no + d + 2. 

The time-complexity of enumerating all of the vertices is 

Again the complexity is output sensitive for nondegenerate polyhedra, for which 

g(A) is just the number of vertices. If  the polyhedron is simple (i.e., all dictionaries 

are nondegenerate), then we get an improved complexity bound. The algorithm 
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produces vertices at a cost of O(d(no + d)) per vertex with no repetitions and no 

additional space. 
The complexities in the previous paragraph apply to the convex hull problem, 

where n o is the number of input points. In the nondegenerate case where no more 

than d points tie on any facet (i.e., the facets are simpliciat), we can enumerate the 

v facets in time O(nodv) and space O(nod). 

5. E x a m p l e  

In this section we given an example of the operation of procedure search 
for the vertex enumeration of the set of no = 5 lines shown in Fig. 5.1. This 

arrangement is generated by the coefficients: 

bl = (1,3), b2 = (5, 1), b 3 = (3,2), b4 = ( - t , - 3 ) ,  b 5 = ( - 2 ,  1), 

c 1 = 4 ,  c 2 = 5 ,  c 3 = 2 ,  c , =  1, c 5 = 2 .  

Proceeding as described in Section 2.1, we add variables xl . . . . .  x5 obtain- 

ing the system 

x 1 = 4 -  Y l - 3 Y 2 ,  

x 2 = 5 - 5 y l -  Y2, 

x 3 = 2 -  3y 1 - 2y 2, 

x , = l  + Yl +3y2 ,  

x s = 2 + 2 y l -  Y2. 

Since the last two equations are linearly independent, we may solve for yt and Y2 

6 

\ 

4 

0 

Y2 

t 5 

Yl 

Fig. 5.1. Line arrangement. 
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in terms of  x4 and x 5, getting 

X 4  X5  

y l =  -- 1 + - f  + 3 -~--, 

Y2 = 2 x4 xs. 
7 7 

Eliminating variables Yl, Y2 from the first three equations we obtain the system 

X 1 = 5 - -  X 4 ,  

x2 = 10 - x4 - 2x5, 

X 3 ~ 5 ~ X 4 - -  X 5.  

These are plotted with x4,  x5 as axes in Fig. 5.2. Adding the special variables x I 

and x 0 and the additional row representing the "objective function," we obtain 

our initial optimal dictionary: 

X 1 -= 5 X g  ~ X 4 ,  

X 2 = lOxg - x4 - 2x5, 
(5.1) 

g 3 = 5 X  a -  X 4 -  X 5 ,  

X f  = - -  X 4 - -  2 5 .  

Starting at this dictionary we consider in turn each of  the candidate reverse 

pivots: (1, 4), (2, 4), (2, 5), (3, 4), (3, 5). The candidate pivot (1, 4) yields the dictionary 

x 2 = 5X o + Xl -- 2X5, 

x3 = x l -  xs, (5.2) 

x 4 = 5X O - -  X 1,  

x f =  - - 5 x ~ + x  l - x  5. 

- 4  

P 

2 

12 

0 P 

Fig. 5.2. Transformed line arrangement. 
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Checking this dictionary, we discover that the criss-cross rule does generate 
the pivot (4, 1), so we continue from this dictionary. Note that in determining 
this, we do not need the entire dictionary. In this example we need only the 
column of coefficients for x~. The possible candidates are: (2, 1), (2, 5), (3, 1), 
(3, 5), (4, 1). We start with (2, 1), which leads to the dictionary 

xl = - 5 x  o + x2 + 2xs, 

x 3 = - - 5 x g + x  2 + Xs,  

x# = t0xg-- x z -  2xs, 

X f  : - -  lOxg + x2 + xs .  

(5.3) 

Again the criss-cross rule applied to this dictionary generates the required 
pivot (1, 2). In this case we need only check the coefficients of xg and x2 in 

the row for xl.  
Continuing from this dictionary, the first candidate pivot is (1, 2). This leads us 

back to (5.2), for which the criss-cross rule generates the pivot (4, 1) which is not 
the same. Therefore (1, 2) is not a valid reverse pivot from (5.3). Next we try the 
pivot (1, 5) on dictionary (5.3). This gives the dictionary 

5 x l  x2 

X 4 : 5 Xg - -  X1, 

5 X 1 X 2 
x , =  x g + 7 -  7 ,  

15 xl x2 
Xs = 

The criss-cross rule applied to this dictionary yields the pivot (4, 1), so (1, 5) is not 
a reverse pivot. Continuing in this way we discover that no dictionaries lead to 
(5.3) by the criss-oross rule. We therefore backtrack to the parent dictionary of 

Fig. 5.3. Enumeration tree. 
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(5.3), which we do by performing the criss-cross pivot (1, 2) leading back to (5.2). 
Note that no storage is required to determine the parent of a dictionary. 

In Fig. 5.3 we show the complete tree enumerating all dictionaries from 
(5.3). Due to degeneracy in the original arrangement, the same vertex in the 
arrangement may occur as different dictionaries in the tree. Dictionaries with bases 
{1, 2, 4}, {2, 3, 4}, {2, 4, 5} correspond to one vertex. We output this vertex when 
its lexicographically minimum basis { 1, 2, 4} is reached. 

6. Concluding Remarks 

We have presented a new algorithm that can be used to solve three important 
geometric enumeration problems without additional space. The simplicity of the 
algorithm renders it suitable for symbolic computation in a language such as 
Maple or Mathematica. Using exact arithmetic, the problem of numerical accuracy 
which occurs with most geometric algorithms is avoided. The second author and 
Ichiro Mizukoshi have in fact implemented the algorithms of this paper as a 
package in Mathematica, which is publicly available at no charge from the second 
author. 

Another useful feature of the algorithm is that it is easy to parallelize efficiently. 
Since in the enumeration no dictionary is ever reached by two different paths and 
no additional storage is required, subproblems can be scheduled arbitrarily onto 
free processors. If the enumeration tree is relatively "bushy" we would expect 
considerable speed-up from parallelization. However, in the worst case little if any 
speed-up would be achieved: consider the so-called Klee-Minty examples. It is 
known [1] that Bland's rule applied to these examples generates a path of 
exponential length from some vertex to the optimum vertex. By reordering the 
variables, this path in fact visits every vertex of the polyhedron 1-15]. In this case 
the enumeration tree generated by reverse pivoting is also a path! However, since 
the simplex method seems to work well in practice, the enumeration tree will 
normally have high fan-out and relatively shallow depth, and so substantial 
speed-up may be expected. This represents an area for future research. By 
substituting other pivot rules in our algorithm, different enumeration trees are 
generated. Study of these trees should prove useful in evaluating pivoting rules 
for the simplex method. 

The reverse pivoting approach is quite general and can be applied to a 
wide variety of enumeration problems. The algorithms in this paper can be 
extended to the setting of oriented matroids, and in particular to pseudoline 
arrangements. While the criss-cross method works correctly in the setting of 
oriented matroids, Bland's rule is not finite for oriented matroid programming 
[10]. Todd {21] has found a finite rule that can replace Bland's rule in the oriented 
matroid setting. 

We have also recently used the reverse pivoting method to develop an 
algorithm for enumerating all the cells in an arrangement of n hyperplanes. 
For enumerating all the vertices of an arrangement, a related technique gives a 
different algorithm than that presented here. The time complexity for vertex 
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enumeration in a simple arrangement is improved to O(nd2v) with space complexity 
again O(nd). In both cases, the enumeration tree has depth bounded by n, which 

should enable an efficient parallel implementation. We can also apply reverse 
enumeration to find all triangulations and spanning trees of a fixed set of points. 

These results are described in detail in I"23]. Also, in a very recent work, Rote has 
modified the technique of this paper to address degeneracy in the vertex enumera- 

tion problem more directly [16]. 
The complexity analysis presented in this paper is quite rudimentary. We 

allow a worst-case time of O(n) to determine whether a pair of indices is a reverse 
pivot. This seems certain to be an overestimate. For the ith basic variable to 
interchange with the j th nonbasic variable, at least i + j signs have to be "correct." 
We may compute these signs consecutively and stop the first time an "incorrect" 

sign is encountered. Amortizing this cost over the complete enumeration of an 
arrangement, it is possible that just a constant amount of work has to be done 
on the average to determine that a potential reverse pivot is invalid. 

Finally, we remark that our algorithm can be easily modified to enum- 

erate all of the edges of a polyhedron in the given time and space complexity. 
Initially, suppose we have a simple polyhedron and we are at a vertex a of 
the polyhedron with its associated dictionary. For  each entering basic variable we 
compute a leaving variable via the ratio test. Since the polyhedron is simple, this 
variable is unique and gives a new vertex b of the polyhedron. Then the edge ab 
is always an edge of the polyhedron and we can report it using a simple 
lexicographic rule: to avoid reporting both edge ab and edge ha, check if the basis 

for a is lexicographically less than that for b, and if so report ab. 
For nonsimple polyhedra, the situation is more complex since two endpoints 

of an edge, and even the edge itself, may be degenerate. Furthermore, the example 
of a square pyramid in R 3 can be used to show that the lexicographically minimum 

basis for one vertex may not be adjacent in the enumeration tree to the lexico- 
graphically minimum basis for an adjacent vertex in the polyhedron. Nevertheless 
we can apply a technique similar to that described at the end of Section 3.1 for 

degenerate vertices. An edge corresponds to a nondegenerate pivot (r, s) from some 

basis B. We can consider B - r - s as a basis for the edge, and output the edge 
whenever this basis is minimal. The condition can be tested in a way similar to that 

described in Proposition 3.4. 
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