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(ABSTRACT) 

Interest in large flexible space structures has grown considerably over the last decade. 

These distributed parameter systems exhibit vibration characteristics such as low, closely spaced 

natural frequencies and light damping, which, when coupled with the stringent pointing accuracy 

and vibration control requirements imposed on these systems, bring about interesting control 

problems. Addressing these problems has called for the use of active vibration control. 

Up to now, two of the most popular means for active vibration control of large space 

structures have been proof mass and reaction wheel actuators. These actuators are inertial-type 

actuators in that they operate by applying forces or moments to masses whose reaction forces, im

posed on the structure, act to damp the vibrations of the structure. A new class of actuators, var

iable geometry trusses (VGT's), has been recently introduced. These actuators are actually built 

into the structure, and they operate by varying their link lengths to apply forces to the structure or 

to change the shape of the structure itself. 

This study compared the effectiveness of four actuators in controlling the planar vibrations 

of a cantilevered truss-beam. The actuators chosen for the study were a proof mass actuator, a 

reaction wheel actuator, and two VGT's, the planar truss actuator, and the planar truss proof mass 

actuator (a combination VGT/inertial type actuator). Numerical simulations of each 

beam/actuator system were performed in response to initial condition inputs. A full-state, LQR 

optimal feedback control law was used with each system. These simulations provided information 

such as time response of the closed-loop system, damping provided to the beam, and power re

quired by each actuator. This information can be used to detennine the "best" actuator for a given 

purpose. 



The results of these simulations show that the VGT's are preferable in tenns of damping 

added to the beam. The proof mass actuator is more efficient as far as power required to do the 

control, however the efficiencies for all actuators are very similar. 
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1.0 Introduction 

Over the past decade, interest in vibration control of flexible structures has shown tremen

dous growth. Flexible structures can be found in many applications, but of particular interest are 

those to be used in space. Space structures will necessarily be made of lightweight materials so they 

may be launched from earth. These materials have been developed with the objective of attaining 

a high strength-to-weight ratio. In so doing, the materials, and the structures built from them, have 

little inherent structural damping. For this reason, interest has spawned in developing methods to 

actively control vibrations of flexible structures. 

A particular area of interest is that of vibration control of truss structures built up as long 

flexible beams. Many future space applications, such as thf.' proposed spaee station, incorporate 

such truss-beams in their main structures and appendages. There have been various methods in

troduced in the literature to actively damp these truss-beams. One of the primary methods being 

studied is the use of actuators to apply controlling forces to the beam. This paper will be concerned 

with four such actuators: the proof-mass actuator, the reaction wheel actuator, the planar truss 

actuator, and the planar truss proof-mass actuator, Fig. 1. This work describes the method and 

results of a study comparing the effectiveness of these actuators in controlling the planar vibrations 

of a particular truss-beam. The study involves simulating the response of a fmite element model 

of a cantilevered truss-beam to initial conditions, with each of the actuators acting in turn to damp 

the imposed vibrations. The fmite element beam model facilitates the placing of actuators at dif

ferent locations on the beam, thus providing a more thorough analysis and comparison. 

In this paper, a description of the beam model will be discussed, as well as descriptions of 

each of the actuator models. A brief discussion of the basis used for comparing the actuators will 

follow. The simulation results will be provided as well as a discussion of their value. 
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Choosing the ''best'' actuator is a difficult task because many factors are involved, but the 

planar comparisons contained herein will provide greater insight into choosing the "best" actuator 

in terms of damping capability, power requirements, and in terms of operational considerations 

such as weight requirements and design practicality. 
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2.0 Literature Review 

Historically, space structures have been massive, stilT, heavily damped and isolated from 

sources of noise and vibration. Currently the plans for space have been focused toward lighter 

weight and more flexible structures such as the proposed space station and Space Shuttle applica

tions. This current thrust requires Large Space Structures (LSS) whose characteristics are very 

much different from space structures of the past. They are lightly damped, have lumped masses 

connected by long, slender members, and have low frequency modes of vibration. 0:ot only have 

there been dramatic changes in structural requirements of large space structures, but increased de

mands on pointing precision and vibration isolation and control have brought about the need for 

active control of these space structures. (I) 

There are several characteristics of LSS which make their study difficult. They are distrib

uted parameter systems which are infInitely dimensional in theory, leading to high dimensional 

models. They have many natural frequencies which are low and many times closely spaced. Their 

inherent damping is very light (less than 0.5 percent). Added to the above difficulties are the 

stringent requirements for shape, orientation, vibration control, and pointing accuracy. (2) Based 

on the characteristics of LSS, there are several important areas which must be addressed in the study 

of vibration control of these structures. 

1. An infmite dimensional system must be controlled with a finite dimensional controller. 

2. The effects of unmodelled system parameters, unmodelled modes, and disturbances must 

be considered. 

3. The effects of actuator and sensor location, number, and dynamics must be considered. (3) 

The frrst and third areas just mentioned receive major consideration in this paper because this work 

is concerned with different actuator configurations used in active control. 

The following paragraphs review the work that has been presented in the literature con

cerning the development of actuators for active vibration control of flexible structures. Such a 
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discussion will provide a better understanding of the purpose and results of the work described in 

this paper and will allow the reader to better see how this work contributes to the literature. 

There are two principal ways in which to act upon a structure: by applying forces and by 

applying moments. This is a relatively simple concept when fixed to a large mass such as earth, 

but it becomes somewhat more complicated when in space because there is no longer a II ground" 

to react against. To accommodate this problem, the flfst actuators developed for vibration control 

of flexible structures were reaction-type (1). They produce forces and moments on the structure 

by using the inertial reaction forces of a small mass or rotational inertia. Perhaps the oldest and 

most tested of these actuators is the Control Moment Gyro or the Reaction Wheel (4). One of the 

flfst experiments in vibration control incorporating the reaction wheel actuator was perfonned by 

Lockheed (5) in which a pair of reaction wheels were placed on the end of a cantilevered beam and 

a proportional control law was used to add damping to the beam. This experiment was successful 

in adding 200/0 of critical damping to the beam. A slightly different configuration of the Reaction 

\Vheel, but applying the same principle of damping, is the annular momentum control device 

(AMCD). In this actuator, rather than having the inertia (or reaction) wheel connected directly to 

the driving motor, the wheel is actually an annulus which is suspended magnetically by noncon

tacting magnetic stations and is driven by a noncontacting electromagnetic spin motor. The 

ANtCD was introduced in 1975 by Anderson and Groom (6) and has since been studied for the 

purpose of active vibration control by others (7). 

Several years after the conception of the reaction wheel actuator a new actuator was in

troduced, the "proof mass" actuator. This device is the translational equivalent of the reaction 

wheel in that it applies forces (rather than moments) to a structure using the inertial reaction forces 

of a small mass. Several types of proof mass actuators have been introduced. Zimmennan, Inman, 

and Homer (8) have developed and tested the NASAjUV A Proof Mass Actuator. Tests were 

conducted primarily to characterize the dynamics of the microprocessor controlled system so that 

those results may be included in future control work. Doanes, Waites, and Edgemon (9) have in

vestigated the possibilities of using the linear momentum exchange device (L:\IED; developed by 

TR W) in control of LSS. Another configuration of the proof mass actuator is the Harris CO FS-I 
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actuator, also referred to as a linear DC motor, or LDCM (10). Each of these actuators differs 

slightly in configuration. For example, some are driven with stepper motors, some use brushless 

dc motors, and some are driven electromagnetically, but the idea of inertia-type actuation is the 

same throughout. 

In 1981 Mills (11) performed a theoretical study comparing the effectiveness of two 

inertia-type actuators, the proof mass and the reaction wheel. He modelled the actuators using dc 

motors to drive the inertial elements. In the study he placed the actuators at the tip of a cantilevered 

beam and determined each actuator's effectiveness in damping the frrst three modes of the beam. 

His results showed that for frrst mode the two actuators were very evenly matched, but for second 

and third modes, the reaction wheel actuator proved to be much superior to the proof mass 

actuator. The reason for the difference in control performance can be attributed in large part to 

actuator placement. By placing the actuators at the tip of the beam, their added mass produced a 

node close to that point in the beam's second and third mode shapes (Fig. 2). Placing the proof 

mass actuator at a node impaired its authority over second and third modes of vibration because 

of its translational style of actuation. The reaction wheel, however, was not affected by being placed 

at a node because it applies a rotational type of actuation. This paper examines the effects of 

placing the actuators at different locations on the beam, thus reducing the problem discussed above. 

With that in mind, this paper can be seen as an extension of Mills' work by studying the frrst two 

actuators in more detail as well as adding two more actuators to the comparison. 

For many years reaction-type actuators such as the proof mass and reaction wheel were the 

only mechanical actuators being studied for LSS control. A major inadequacy of reaction-type 

actuators is their inability to perform pointing or slewing maneuvers. Recently, though, a class of 

actuators was introduced which can provide both forces and moments to the structure and ac

complish slewing manuevers as well. These actuators can be classified as variable geometry trusses 

(VGT's) or active bay actuators. Variable geometry trusses are the newest actuators to be applied 

to the task of controlling vibrations of large space structures. VGT's had been studied in the past 

for their vibration characteristics, and for their pointing and shape control capabilities (12), but they 

had never been applied directly to vibration control. In 1986 Lovejoy and Robertshaw (13) showed 
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that a planar truss actuator could be used to damp the vibrations of a beam. The truss proved to 

have a great deal of authority over the beam. This work has opened the possibility of three

dimensional truss actuators which are built into the structure, thus eliminating the added weight 

of inertial elements. VGT's show more potential than any of the actuators mentioned previously, 

but there is still much work to be done in this area. 

There are many other active control methods being studied now which are not discussed 

at length in this paper, but are included here to provide a complete review. One method is to use 

distributed piezoelectric polymers fastened to the beam which actuate the structure by applying 

voltages to the piezoelectric material (14,15,16). This has advantages in that it is lightweight and 

the same material can be used for position sensing as well as actuation. The drawbacks of this 

method are its inability to do pointing maneuvers and the very small strains provided by the 

piezoelectric forces. Another relatively new method of active damping is applying thermal gradients 

to the structure to enhance the structures own internal damping capabilities (17). This method also 

has the drawback of not being able to point the structure through large motions, but it does show 

promise of being effective in damping vibrations. Another method of active control which has been 

in the literature for several years is the use of cold gas thrusters (1). The obvious disadvantage of 

this technology is the limited supply of gas available for actuation. 

When designing a system for vibration control of large space structures, one must not be 

concerned only with the actuator and its dynamics, but with the control law as well. :'vlany of the 

actuating methods discussed above have been tested in other experiments and simulations in the 

literature for the purpose of studying the growing number of control schemes. The various control 

laws which have been studied using the actuators described here include adaptive control (18), direct 

velocity feedback (11,19), classical control with compensators (20), suboptimal feedback (21), and 

optimal control (22). A linear quadratic regulator optimal control law is used throughout this pa

per. 
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3.0 Beam Dynamic l\Ilodel 

A major focus of this work is to simulate the planar response of a clamped·free beam to 

initial conditions as different actuators are applied at varying positions on the beam. The particular 

beam model used is a finite element model of a Bernoulli-Euler beam which has characteristics of 

the Mini-Mast. The lVlini-Nlast is a three·longeron deployable truss structure constructed by Harris 

Corporation for NASA Langley Research Center (Fig. 3). All members of the beam are made up 

of a graphite composite. Therefore the structure is lightweight and has low damping. In the model 

used in this work the beam is assumed to have no damping. 

3.1 Finite Element l\'lodel 

A Fortran program was written to model the linear mass and stiffness characteristics of the 

Mini-Mast with fmite elements. The method used here is a standard fmite element modelling ap

proach, and can be found in Nleirovitch (23). The program breaks the beam into a variable number 

of fmite elements. Four elements have been chosen for this study. Although the method discretizes 

the beam by breaking it into individual elements, each element is considered to be a continuum. 

Displacements at any point within the element can be described by displacements at the nodal 

points augmented by elemental interpolating functions. The interpolating functions chosen for this 

particular model are cubic splines. The equations of motion for the beam are obtained by first 

deriving the elemental equations of motion, then assembling those equations to arrive at the 

equations for the entire beam. 
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The elemental equations of motion are denvcd by a Lagrangian approach. The element's 

potential energy and kinetic energy are derived in terms of nodal displacements, and Lagrange's 

equations are applied to develop the element's equations of motion. The equations are then ex

pressed in the form of the element's mass matrix and stiffness matrix. 

Referring to Fig. 4, there are four nodal displacements for each element; Yl, Y2. PI' and 

Pl' The displacement of any other point along the clement can be described in terms of these co-

ordinates by 

w(x,t) = L(x)tw(t) [3.1] 

where L(x) is the vector of interpolating polynomials and w( t) are the nodal displacements. ~ote 

that for an element of arbitrary length, h, the axial position can also be described by 

x 
s=-

h 

The differential equation for the displacement of a Bernoulli -Euler beam can be written as 

EI cfy(x) = a 
dx

4 

Integrating Eq. 3.3 four times, the equation for displacement becomes 

where c/ s are constants of integration. The boundary conditions for this equation are 

yeO) = YI 

dy(x) I -- = PI 
dx x=O 

Beam Dynamic Model 

[3.2] 

[3.3] 

[3.4J 

[3.5] 

I t 



o ~x~h 
O;ss;S1 

Figure 4. Beam Modelled with. Single Finite Element 
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Applying the above boundary conditions to Eqn. 3.4 and solving, the constants of integration are 

found to be 

Substituting into Eq. 3.4, and rearranging, the expression for bending displacement is 

y(x) = [ I - 3( Z )2 + 2( Z )3 YI + [ Z - 2( Z )2 + ( Z )3 ]hPI + 

[3( Z )2 - 2( Z )3 Y2 + [ - ( Z Y + ( Z )3 ]hP2 

which can be written as 

From Eqs. 3.2 and 3.8, the interpolating polynomials are 

3 2 
L

J 
= 2s - 3s + 1 

2 3 
~ = 3s - 2s 

Beam Dynamic:: Model 

[3.6] 

[3.7] 

[3.8] 

[3.9] 
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The kinetic and potential energy can now be found. The kinetic energy for the beam element 

is dermed as 

1 Gw(x,t) 2 

I
" 

T(I) = 2" 0 [ 01 ] m(x)dx [3.10] 

which, by applying Eqs. 3.1, and 3.2, can be written in the form 

[3.11] 

or 

[3.12] 

(the h appears when changing variables from x to s) where 

[3.13] 

Assuming the element's mass density, e, is constant along the entire length, Eq. 3.13 can be written 

as 

m = eh r L(s) L(s)'ds [3.14] 
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Solving the integrals results in the mass matrix for the element 

156 22h 54 -13h 

eh 22h 4h2 13h -3h
2 

m= 420 [3.15] 
54 13h 156 -22h 

-13h -3h
2 -22h 4h2 

The potential energy for the beam element is defmed as 

V(t) = ~ f EI(x) [ .f:~.t) ] 2dx [3.16] 

which, by applying Eqs. 3.1 and 3.2 can be written in the fonn 

V(t) = -1-1 1E1(5) [ o2(L(s)w(t» ] ~ 
2h3 os2 

o 

[3.17] 

or 

V(t) = ~ W(l/ k w(t) [3.18] 

(the I1h3 appears when changing variables from x to s in the integration and in the differentiation 

that occurs within the integrand) where 

Beam Dynamic Model 

k = ~ f 1 EI(s)L"'(s) L"'(s)t ds 

h 0 

[3.19] 
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Assuming EI is constant along the entire length of the element, Eq. 3.18 can be written as 

k = E{ f 1 L"(s) L(s)t ds 

h 0 

Solving the integrals results in the stiffness matrix for the element 

12 6h -12 6h 

k= 4EI 
6h 4h2 -6h :It" 

h
3 

-12 -6h 12 -6h 

6h 2h2 -6h 4h2 

[3.20] 

[3.21] 

The above discussion describes the derivation of the mass and stiffness matrices for one fInite 

element of the beam. The derivation can be extended to multiple elements by applying the same 

procedure for each element, then assembling all the elements to fonn the complete structure. The 

assembly process will now be described. Suppose the beam is modelled using two fmite elements, 

Fig. 5 (four fmite elements are used in the actual beam model, but for this discussion, two elements 

are sufficient; the assembly process remains the same for any number of elements). Each element 

is modelled as described above, so the result is two identical sets of mass and stiffness matrices. 

Figure 5 shows that in a two element model there are eight nodal coordinates used to describe the 

displacement of all points on the beam. Only six of these coordinates, however, are independent 

since the rotations and displacements of adjacent ends of the elements must be equal. A Boolean 

transformation can be written, then, to eliminate the redundant coordinates. Such a transformation 

is shown below 
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Yt 0 0 0 0 0 

Pl 0 0 0 0 0 WI 

Y2 0 0 0 0 0 W2 

P2 0 0 0 0 0 W3 

= [3.22] 

Y3 0 0 0 0 0 W4 

P3 0 0 0 0 0 Ws 

Y4 0 0 0 0 0 w6 

{J4 0 0 0 0 0 

y=Aw 

where w are the independent nodal coordinates, y are the local nodal coordinates for each element, 

and A is the Boolean transfonnation matrix. (The same transfonnation is used for velocity and 

acceleration.) The mass and stiffness matrices can be written in tenns of the local coordinates, and 

then the transfonnation can be applied as shown below to write the kinetic and potential energies 

in tenns of the independent nodal coordinates. (In the following discussion, the subscript, dep , 

means that the corresponding matrix is written in tenns of dependent, coordinates.) 

[3.23] 

Substituting into Eq. 3.12 gives 

T = + y(t/ mdep y(t) [3.24] 

Applying the transfonnation corresponding leads to 

[3.25] 

which can be written as 
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[3.26J 

So, m (the mass matrix in tenns of generalized coordinates) is 

t 
m = A mdepA [3.27] 

Applying the same reasoning results in the generalized stiffness matrix 

k = Atkdep A [3.28J 

The mass and stiffness matrix for the two element beam, then are written as 

[3.29] 

[3.30] 

where ml , m2t kl and, k2 are the mass and stiffness matrices for the individual elements. 

For a general, n - element beam model there are 2n + 2 independent coordinates needed 

to describe the dynamics. So the Boolean transfonnation matrix, A, has dimension 4nx(2n + 2), 

and the mass and stiffness matrices for the beam are (2n + 2)x(2n + 2) square, symmetric matrices. 

3.2 Beam Dynamics 

The beam model described up to this point has been free to move at both ends. In the 

comparison, however, the beam vibrates in clamped-free modes. This is equivalent to forcing WI 

and W2 (the displacement and rotation of the clamped end of the beam) to be zero for all time. If 

Beam Dynamic Model 19 



those coordinates are always zero, then the frrst two rows and columns of the mass and stiffness 

matrix have no effect on the model and can be deleted. The order of the model has now been re-

duced by two degrees of freedom. So, for a four-element beam model there are ten independent 

nodal coordinates, two of which are always zero, leaving eight independent degrees of freedom, or 

a sixteenth order model for the beam. 

Using m and k, the Lagrangian for the beam can be written 

!e=T-V [3.31] 

!e = + w(t)t m W(/) + ~ w(t/ k w(t) [3.32] 

Lagranges equations of motion can be written as (24) 

d [ a!£ ] - -- -
dl aWL 

[3.33] 

where w/ s are generalized coordinates and D/ s are generalized forces on the beam. \Vhen the 

actuators are added to the beam (at the nodes), the generalized forces will be the actuator forces, 

and the equations of motion will become 

m w(t) + k w(t) = RFM [3.34] 

where RFM is the vector of reaction forces on the beam from the actuators. 
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4.0 Actuator lVlodels and System Equations 

This chapter provides a derivation of the equations of motion for each of the actuators. 

A lumped mass approach is taken in each derivation. All actuators are assumed to have no means 

of storing appreciable amounts of potential energy, so potential energy is neglected in all models. 

Actuator parameters such as motor constants, masses of sensors, and ball screw leads are chosen 

so that the comparison is as fair as possible, not giving one particular actuator an unfair advantage. 

The approach taken in the overall modelling is to model the actuators separately from the 

beam, including in each model the generalized reaction forces from the beam on the actuator or vice 

versa. The two systems (beam and actuator) are combined by solving for corresponding reaction 

forces and then setting the resulting equations equal to one another. 

The following sections describe the derivations of each of the actuator equations of motion. 

At the end of each section the actuator model is combined with the beam model and the overall 

system equations of motion for that particular combination are given. 

4.1 Linear Proof lVlass Actuator 

A diagram of the linear proof mass actuator is shown in Fig. 6. Mass ml is the fixed mass 

or the part of the actuator attached to the beam, and mass ~ is the moving or uproor" mass. 

Throughout this thesis the proof mass will be referred to as the Hsecondary mass" and the fixed part 

of the actuator will be called the °5tator.... The linear proof mass actuator operates by driving the 

secondary mass back and forth relative to the stator, and thus imparting linear forces on the beam. 
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Motor 

Figure 6. Illustration or the Proof 1\1ass Actuator 
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The model of the actuator chosen for the purposes of this comparison is a dc motor which drives 

a ball screw. The secondary mass is attached to the movable part (or nut) of the ball screw. By 

turning the motor, the secondary mass can be moved along the ball screw in either direction. The 

motor/ball screw combination applies forces on the secondary mass whose equal and opposite re

actions are imparted on the beam. These forces, when applied correctly, can provide damping to 

the beam and thus attenuate vibrations. 

It should be noted that the proof mass actuator can also operate "backwards". Inertial 

forces applied to the secondary mass can drive the ballscrew, and also the motor, so that the motor 

acts as a passive damper. \-Vhen the beam moves due to its strain energy it carries the motor, 

ballscrew, and secondary mass with it. The inertia of the secondary mass, however, resists the 

motion imparted to it by the beam, so there is relative motion between the beam and the secondary 

mass. This relative motion can only take place if the ballscrew, and hence the motor, tum. As the 

motor turns, energy is transferred from the beam via the motor's back emf and is dissipated in the 

electrical network. Therefore, the proof mass actuator (as well as the other actuators in this com-

parison, since the active parts of all actuators are the same) can provide some passive damping. If 

the actuator design incorporated a lead screw with a high coefficient of friction instead of the 

ballscrew arrangement described here, or if the ballscrew gain were very low, then the beam could 

not drive back through the actuator, and passive damping would not be possible. 

The linear proof mass actuator equations of motions will now be derived using a 

Lagrangian approach. The kinetic energy for the proof mass actuator, linearized to second-order 

terms, is, (refer to Fig. 6), 

T = [4.1] 

where II is the mass moment of inertia of the stator, 12 is the mass moment of inertia of the sec-

ondary mass linearized about a fixed point, 1/$ is the ballscrew mass moment of inertia, and G, is 

the ballscrew gain. The potential energy in the actuator is assumed to be negligible. From 

Lagranges equation, Eqs. 3.31 and 3.33, the equations of motion for the actuator become 
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[4.2] 

where -RF and -RM are the reaction force and moment from the beam, and F(t) is the generalized 

force from the motor/ballscrew. As mentioned earlier, the motors in all actuators are assumed to 

be dc armature-controlled motors which can be modelled as (neglecting the armature inductance) 

[4.3] 

where Tm is the torque output of the motor, Vm is the input voltage, 0 m is the motor shaft speed, 

and KT and KB are motor torque and back emf constant~, respectively. If the motor is driving the 

secondary mass through a ballscrew, the force on the secondary mass (F(t) in Eq. 4.2), considering 

the ballscrew gain, Gp ! is 

F = [4.4] 

Substituting this force into Eq. 4.2, the equations of motion for the proof mass actuator become 

[4.5] 

Now the linear proof mass actuator and the beam will be combined to form a complete 

system. In this derivation, the actuator will be added at t he tip of the beam, which corresponds to 
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the last node in the fmite element model. In Eq. 4.5, Xl is the generalized coordinate for the 

actuator stator motion. This is also the coordinate describing the linear motion of the node on the 

beam at which the actuator is attached. With this redundancy of coordinates in mind, the mass and 

damping matrices for the actuator can be augmented with zeros to take into account the other beam 

coordinates in the fmal equation. The mass and damping matrices for the actuator become 

Macruaror = 

CQClUQrOr = 

o 

o 

o 

o 

o 

0 

0 

0 

o o o 

m t + I'nJ. 0 I'nJ. 

o 11 + 12 0 

I'nJ. 0 m2 

o o o 

0 0 0 

0 0 0 

0 0 
KrKB 

2 
GpRa 

[4.6] 

where both matrices are 9x9. Note that moving the actuator to another node on the beam only 

requires moving the tenns m1 + n;., 11 + III and the two off-diagonal n;. tenns to the proper node 

locations in the mass matrix. Adding an actuator to the system can be done by simply adding the 

necessary mass and rotational inertia tenns to the mass matrix, and adding another damping tenn 

to the damping matrix. Note that adding an actuator adds one independent coordinate to the sys-

tern. 
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Solving for the reaction forces and setting the beam and actuator equations equal to one 

another, the overall system equations become 

FV m [4.7J 

where q consists of the beam nodal displacements and rotations and the proof mass displacement, 

F is the matrix of motor force coefficients, and V", is the vector of motor input voltages (scalar for 

one actuator). 

4.2 Reaction Wheel Actuator 

A diagram of the reaction wheel actuator is shown in Fig. 7. Inertia 11 (m1) is the stator 

and inertia /1 (11l:2) is the moving part or reaction wheeL The reaction wheel actuator operates by 

spinning the reaction wheel about an axis which is fixed on the beam, thus imparting moments on 

the beam. Once again, the model of the reaction wheel actuator incorporates a dc motor which' 

drives the reaction wheel through a gear. The gear is included to provide the reaction wheel 

actuator with the same mechanical advantage that the linear proof mass actuator attains from the 

ballscrew gain. By driving the motor, the reaction wheel is accelerated through some angle 82 • 

Thus the motor/gear combination applies moments to the reaction wheel whose equal and opposite 

reaction moments are imparted on the beam. These moments work to attenuate vibrations of the 

beam. 

At this time an appropriate model for the reaction wheel actuator will be presented. The 

second-order linearization of kinetic energy for the reaction wheel is 

T = [4.8] 

The potential energy is again assumed to be negligible. Applying Eqs. 3.31 and 3.33, the equations 

of motion for the actuator become 
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O. End View of Reaction Wheel Actuator 

React ion Wheel (J2) 

Stotor (J,) 

b. Side View of Reaction Wheel Actuator 

Figure 7. Illustration of the Reaction ''''heel Actuator 
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.... .. 
o 1(11 + 12) + 0 2/2 = -RM 

.. .. 
o 2h + 0 1/2 = Af(t) [4.9J 

where -RM and -RF are the reaction moment and force from the beam, and M(t) is the generalized 

moment from the motor/gear. Using the same model for the motor as with the linear proof mass 

actuator (Eq. 4.3), and substituting for M(l), the equations of motion for the reaction wheel 

actuator become 

.. .. 
B 1 (/1 + 12) + 0 2/2 = - R M 

[4.10] 

where G, is the gear ratio found in the reaction wheel actuator. 

Now the reaction wheel actuator and the beam will be combined to fonn a complete sys-

tern. As with the linear proof mass actuator, 01 in Eq. 4.10 is the generalized coordinate for the 

motion of the actuator stator and also the coordinate describing the rotary motion of the node on 

the beam where the actuator is attached. Realizing that the redundant coordinate in this case is a 

rotational and not a displacement coordinate, the mass and damping matrices for the reaction wheel 

actuator have the same fonn as those for the linear proof mass actuator. The augmented mass and 

damping matrices for the reaction wheel actuator become 
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Macruator = 

CactualOr = 

o 

o 

o 

o 

o 

0 

0 

0 

o o o 

[4.11 ] 

o ml + ""'2 0 

11 + 12 0 12 

12 0 12 

o o o 

0 0 0 

0 0 0 

0 0 
K7K8 

2 
GrRa 

where, again, both matrices are 9x.9. !\rote that adding an actuator to this system follows the same 

logic as that presented for the proof mass actuator, and once again, adding an actuator adds one 

degree of freedom to the system. 

Solving for reaction moments and setting the beam and actuator equations equal to one 

another, the overall system equations become the same form as Eq. 4.7. 

4.3 Planar Truss Actuator 

The planar truss actuator is shown in Fig. 8. TIus actuator, made up of three ex.tensible 

links, is located between the clamped end of the beam and ground in this study. The extensible 
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Extensible Links 

z, 

Figure 8. Illustration of the Planar Truss Actuator 
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links are eac:l made up of motor/ballscrew combinations much like the linear proof mass actuator. 

The fixed ends of the ballscrews are attached to groWld, and the ballscrew nuts are attached to the 

beam. As the motors tum the ballscrews t the beam is moved back and forth in the direction of the 

nut motion. As can be seen from the extensible link arrangement in Fig. 8, the planar truss actuator 

has control over three degrees of freedom of the base of the beam, Z,,, Z" and O. By controlling 

the motors correctly, the reaction forces, Rx, R:I' and Ma, imparted on the base of the beam work 

to attenuate the beam vibrations. 

The derivation of the actuator equations of motion will follow the same method as used 

by Lovejoy [18]. The actuator is separated into individual links, the energies are written for each, 

and then summed. The second-order linearization of kinetic energy for links 1, 2, and 3 is 

T, == i == 1,2,3 [4.12] 

The energy for link 4, the top plate of the actuator where the beam is attached, is 

[4.13] 

Potential energy is neglected in this model because the actuator is assumed to have no means of 

storing appreciable potential energy. Note that three dependent coordinate systems have been used 

in deriving the kinetic energy, Pr, ( [ZIt Z,8]' ), I, ( [I, ~ '3]' ), and <[" ( [4>, 4>14>3]'). The 

kinetic energy can be expressed in terms of these three systems as 

I ',., , . 
T== <P M4><p + I M ~ + Pr M p"pr [4.14] 

Coordinate transformations must be introduced to express the energy in one system basis, The 

"primitive'" system, Pr , has been chosen as the basis for convenience. Lovejoy derived these co-

ordinate transformations and they are presented here as: 

1== T, Pr [4.15] 
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where 

Zx-dcosfJ 

I} 

Zy - dsinfJ 

I} 

Zx+dcosfJ Zy + dsinO 

'2 '2 
Zx + d cos 0 - 2d Zy + d sin fJ 

and 

where 

- ( Zy - d sin 0 ) 

112 

- ( Zy + d sin 0 ) 

1/ 
- ( Zy + d sin 0 ) 

1/ 

13 13 

- (Zx - d cos fJ) 

112 

- ( Z x + d cos 0 ) 

Il 
- ( Zx + d cos fJ - 2d) 

1/ 

Zx d sin 0 - Zy d cos fJ 

'1 
Zy dcosO - ZxdsinO 

12 

Zy d cos fJ - Z x d si n (I + 2d
2 

sin 0 

! 
'..1 

[4.16J 

- ( Z x - d cos fJ ) d cos fJ - ( Zy - d sin 0 ) d sin e 

112 

(Zy + d sin e) d sin e + (Zx + d cos e) d cos fJ 

122 

( Zy + d sin B) d sin fJ + ( Zx + d cos fJ - 2d) d cos fJ 

1/ 

These transfonnations are exact for velocities as well, so it is true to say 

[4.17] 
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For this work it is also assumed that 

[4.18J 

Using the above transformations, the kinetic energy can be written as 

. t . 

T = Pr Macruator Pr [4.19] 

where 

Using the above expressions for kinetic energy and applying Eqs. 3.31 and 3.33, Lagrange's 

equations, the planar truss actuator equations of motion become 

2 l\facruator Pr = - R F M + '1'[ FV m [4.21J 

where - RFM is the vector of reaction forces and moments from the beam, and T,FV Iff is the vector 

of generalized forces from the motor/ballscrews. Applying the model for the motors developed 

earlier, the equations of motion for the planar truss actuator become 

[4.22] 

At this time, the beam and actuator will be combined to form a complete system. Before 

doing so, it is important to note that in this case, the base of the beam undergoes motion through 

three degrees of freedom, whereas in the previous case, the base of the beam was constrained to 

remain motionless. So, before combining the two models, three coordinates must be added to the 

existing beam model. These coordinates are the same as the primitive coordinates of the actuator 

model. The beam no longer vibrates in clamped-free modes because the base is free to move 
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through the coordinates Z", and a, and the entire beam can undergo rigid body motion through the 

coordinate Zy. Taking into account this difference, the beam equations of motion can be derived 

to be 

[4.23] 

where the primes distinguish this beam model from the one used in the previous two sections. The 

vector of coordinates for this model is 

[4.24] 

where Yi and OJ (i = 1, 2~ 3, 4) are the local nodal displacements and rotations, respectively. 

The beam and actuator models can be combined to form the total system equations of 

motion by fITst augmenting the beam equations by adding zeros to account for the other coordi

nates, solving both sets of equations for the reaction forces, and setting them equal to one another. 

The overall system equations of motion are 

[4.25] 

4.4 Planar Truss Proof 1\'lass Actuator 

A diagram of the planar truss proof mass actuator is shown in Fig. 9. This actuator is 

configured the same as the planar truss actuator, it is made up of three extensible links consisting 

of motor/ballscrew combinations, but it operates somewhat differently. In this case the actuator 

is placed at the tip of the beam and operates as an inertia-type actuator. It is not fixed to ground 

as the planar truss actuator is. \Vhen the motors tum the ballscrews, the secondary mass is accel

erated through three coordinates, Z,,! Z,! and e, by forces Rx! Ry , and A18, whose equal and opposite 
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Figure 9. Illustration or the Planar Truss Proof Mass Actuator 
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reactions are applied to the beam. These reaction forces, when applied correctly, work to attenuate 

vibrations in the beam. 

The derivation of the equations of motion of the planar truss proof mass actuator will 

follow the same method as in the previous section, with the added complication that the actuator 

is no longer fixed to ground. The base of the actuator can move through some displacements X, 

y, and a, the motions of the tip of the beam. Since motion in the y-direction is negligible and has 

been neglected in the fmite clement model, it will be neglected in this model as well. Considering 

these global motions superimposed on the local actuator motions discussed in the last section the 

actuator equations of motion will now be derived. 

The bi-linearized kinetic energy for the planar truss proof mass actuator can be written as, 

[4.26J 

where 

[4.27J 

and M dorp is the mass matrix for the actuator written in terms of dependent coordinates. ~ote that 

the vector of coordinates, qT' has increased by two elements (x and (1; the rigid body motions of the 

actuator) over that used in the model of the planar truss actuator. Once again, potential energy is 

neglected in the actuator. 

Before applying Lagrange's equations, the kinetic energy must be written in terms of inde

pendent coordinates. The above set of equations describes the actuator with 11 coordinates where 

only 5 are independent. The coordinate transformation matrices, T, and T~, introduced in the 

previous section will be used to write the equations in terms of 5 "primitive" coordinates. The 

following transformation from dependent to primitive coordinates will be used: 
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x 0 0 0 0 

IX 0 0 0 0 

4>1 0 0 

[ 1 
4>2 0 0 T4> X 

~3 0 0 a 

It = 0 0 

[ 1 

ZX [4.28J 

'2 0 0 T/ Zy 

13 0 0 () 

Zx 0 0 0 0 

Zy 0 0 0 0 

e 0 0 0 0 

Where the transfonnation matrix, once again called A, is exact for velocities and is a linear ap

proximation for accelerations. Applying the transfonnation to the kinetic energy leads to 

[4.29] 

And the mass matrix for the actuator can be written in tenns of independent coordinates as 

[4.30J 

where I\laCtrilftor is a 5x5 matrix. Applying Lagrange's equation, Eqs. 3.31 and 3.33, to Eq. 4.30, the 

equations of motion become 

[4.31] 

Adding the motor model used previously! the equations of motion for the planar truss proof mass 

actuator become 

MaclUato,qT+ Cacruato,ttT = -RFM + F V m [4.32] 
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The beam and actuator will now be combined. In this case the beam model is the same 

as that used for the proof mass and reaction wheel actuators. The actuator and beam can be 

combined by ftrst augmenting the actuator equations by adding zeros, solving both sets of equations 

for the reactions, and setting them equal to one another. The overall system equations become 

[4.33J 

where, for this model, 

[4.34] 
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5.0 Basis for Comparison 

It has been mentioned several times so far that the purpose of this work is to compare the 

effectiveness of four actuators in their ability to damp the planar vibrations of a beam. At fIrst sight 

that seems like a straight-forward task, but upon closer inspection several difficulties begin to ap

pear. When comparing two subjects one must have some basis to start from in order to insure that 

(1) the comparison is fair, and (2) the conclusions reached are drawn from relevant data. In this 

comparison then, before any simulations were perfonned, a basis was fonnulated. In the de· 

scriptions of the actuator models, the basis for comparison was alluded to when discussing the in

ertias of the proof mass and reaction wheel, and the gains of the proof mass' lead screw and the 

reaction wheel's gear. In this section the basis for comparison will be described in detail to show 

that an .attempt was made to compare the actuators without giving one an unfair advantage, and 

to show that the qualities compared are relevant to the overall goal of the work. 

5.1 Phvsical Parameters 

The idea behind making the comparison fair is to set up all the actuators as nearly identical 

as possible while still maintaining their individual uniquenesses. It is obvious, then, that each 

actuator's configuration cannot be altered, because that is where the uniqueness lies. A reaction 

wheel actuator is still a reaction wheel actuator for any motor-gear-reaction wheel set, but once the 

configuration is changed (for example, if it no longer applies moments, but rather forces) it can no 

longer be grouped with the class of actuators called reaction wheels. An important point to be 

gained from this, then, is that this study focuses not on any specific actuator set-up, (such as the 
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LIVIED or AlVICD referred to in the Literature Review) but rather on how each actuator config

uration and damping method fares in suppressing the vibrations of a beam. \Vith those thoughts 

in mind, we can look at those physical variables which can be adjusted to insure a fair comparison. 

Each actuator uses a motor (or motors) to produce the actuating forces. All motors are 

assumed to be the same in every actuator. Looking at the actuator illustrations in Fig. 1 quickly 

shows that the planar truss and the planar truss proof mass actuators have three "active parts" while 

the proof mass and the reaction wheel actuators have only one active part. To make up for this 

disadvantage three proof mass and three reaction wheel actuators are placed on the beam at different 

locations to give each actuating system the same number of active parts. 

The proof mass actuator could acquire a distinct advantage by having a very large second

ary mass (and likewise for the reaction wheel actuator). To account for this, the magnitudes of the 

secondary mass and the reaction wheel inertia are made equal. The magnitude of the secondary 

mass in the planar truss proof mass actuator is more difficult to pin down because this case deals 

with a combination proof mass/reaction wheel located at a single point rather than three proof 

masses or reaction wheels spaced along the beam. Taking that into consideration, the solution was 

to make the secondary mass in the planar truss proof mass actuator slightly less than three times 

that of a single proof mass, and if s mass moment of inertia slightly less than three times that of a 

single reaction wheel. This choice makes up for the disadvantage of being placed at a single lo

cation, but doesn't drastically alter the mode shapes of the beam. 

Another place where mechanical advantage can be found is in the gains of the ball screws 

and gears found in the actuators. These are set equal to one another; the ball screw gains in the 

proof mass, planar truss, and planar truss proof mass actuators are equal to the gear ratios in the 

reaction wheel actuators. 

The physical constants used in this work are shown in Appendix A. 
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5.2 Control Law 

Besides physical parameters which can be varied in the models, the control law also has a 

great effect on an actuator's perfonnance. In order to be consistent throughout this study, a full 

state optimal control law is used for all actuators. For a linear system, the optimal control is a 

time-varying function of the system states. It can be shown that under certain conditions, the op-

timal control becomes time-invariant, and a constant set of feedback gains, the Kalman gains, can 

be derived. This class of control problems is known as the linear quadratic regulator (LQR) 

problem. Its fonnulation is shown below. (The following discussion can be found in more detail 

in Kirk (25).) 

The linear quadratic regulator problem can be proposed as: 

lVtinimize the perfonnance measure 

J = ~ x T(11Hx(1) + + Jt'[x T(t)Q(t)x(t) + ut(t)R(t)u(t)Jdt 
Co 

[5.1] 

subject to the following constraints: 

x( t) = A( l)X( t) + B( t)u( t) [5.2] 

where the constraints are, of course, the system equations of motion in state space fonn. In the 

perfonnance measure, H, Q, and R are "'penalty matrices" which place indirect limits on the [mal 

states, the states during control, and the control values, respectively. This perfonnance measure 

describes the desire to maintain the state vector as close to the origin as possible without expending 

excessive control effort. By applying a variational approach to this problem, the optimal control 

can be found to be a linear, time-varying function of the system states, Eq. 4.3. 

[5.3] 

It can be shown that the matrix S satisfies the matrix differential equation (the Riccati equation) 
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Set) = -S(t)A(t) - AT(t)S(t) - Q(t) + S(t)B(t)R-
1
(t)B

T
(t)S(l) [5.4] 

with the boundary condition S( t,) = H. Kalman has shown that if 

1) the plant is completely controllable 

2) H=O 

3) A, B, Q, and R are constant matrices, 

then Set) -. S (a constant matrix) as t,-. 00. This means that the optimal control law is no longer 

time varying, and can be written as 

[5.5J 

or 

u(t) = -Kx(t) [5.6] 

For this work H is set to zero, and Q and R are constant, diagonal matrices. (The diagonal 

elements of Q are 10,000, and those for R are 1. This choice of penalties means that any offset of 

the states from zero is severely penalized while the control voltages can be fairly high.) The optimal 

control law was found by assuming t,-. 00, so Eqs. 5.5 and 5.6 apply, and the feedback gain matrix, 

K, is constant. 

5.3 Performance Indices 

Using the above control law provides a simple means for evaluating the effectiveness of 

each actuator, namely, the perfonnance index 1. During simulations 1 can be calculated for each 

actuator system and then can be used to compare to other actuators. Perhaps a better, more 

meaningful index of perfonnance is the power consumed by the actuators during control. For 
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practical purposes, the power consumed by each actuator may be the limiting factor in actual 

control situations. The perfonnance index, J, does not adequately represent power. \Vhere J is a 

function of the motor input voltage, it should be a function of both the annature voltage and cur-

rent. A proper representation of the power consumed by any actuator system (since all actuators 

have the same motor models) in this study is 

[5.7] 

where k = 1,2,3 denote the three motors in each system, and v~ and i* are the annature voltage and 

current in each motor. This perhaps more practical perfonnance index is also calculated during 

each simulation for each actuator system. 

A third perfonnance index which may offer some insight when sifting through the data to 

fmd the best actuator is the damping factor added to the beam by the actuators. This is ordinarily 

calculated from the logarithmic decrement of the beam's controlled response, but the responses 

obtained for these simulations are not conducive to accurate damping factor detennination by the 

logarithmic decrement method. The reason is that the control law seems to exchange energy be-

tween modes in the system, resulting in "unclean" plots, and also the control is saturated part of the 

time, so the output is not linear over the entire response. Another perfonnance index was used 

which represents the damping added to the beam. Integrating the energy in the system over time 

provides a relative "damping factor" which can be used to compare one actuator to another. This 

perfonnance index can be written as: 

[5.8J 

where E is the total system energy. 
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All three of these perfonnance indices are tabulated with the results of the simulations, and 

are used in the discussion of the results. 
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6.0 Simulation Results 

6.1 ACSL Program 

The program used to simulate the response of the beam/actuator systems is called Ad

vanced Continuous Simulation Language (ACSL), by :\1itchell and Gauthier. This is a numerical 

integration program which provides a variety of integration methods to fit the size or speed of the 

system being modelled. The integration method used to do the bulk of the work in this project 

was the 2nd order Runge Kutta constant time step routine. \Vhat follows is a discussion of the 

results obtained from the simulations of the various beam/actuator models using the above

mentioned integration routine. 

6.2 Fun Comparison of Four Actuators 

The beam/actuator systems were set up as described in the Basis for Comparison section, 

and the response of each system to initial conditions was simulated. The initial conditions imparted 

on the beam in the frrst set of simulations are shown in Fig. 10. This set of initial conditions is a 

linear combination of modes 1-8 (all modelled modes). The amplitudes were chosen such that each 

mode contributes 201 to the potential (strain) energy in the beam. Overall, then, the beam sees a 

total of 160kJ of potential energy (all strain) at time t = O. To give some feel for what this means, 

a frrst mode deflection with 201 of strain energy is equivalent to a tip deflection of 0.089 meters. 
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The same energy in higher modes corresponds, of course, to smaller nodal deflections, explaining 

why the initial conditions in Fig. 10 look largely like frrst mode. The reason for implementing the 

above-mentioned initial conditions was to excite all modes of vibration so as not to give one 

actuator an advantage over the others if it is particularly adept at damping a given mode. 

The results of the simulations for each actuator are shown in Figs. 11-14. Each figure 

shows two plots; the frrst shows the energy of the beam versus time, and for a more "seeable" il

lustration, the second plot shows the tip deflection of the beam versus time. Note that the time 

scale on the planar truss' plot is different from the others, it covers 5 seconds where the others cover 

20 seconds. Figure 15 shows the motion of the planar truss actuator to provide a better idea of how 

this actuator works. 

A second set of simulations was run to determine each actuator's effectiveness at damping 

1st, 2nd, and 3rd mode initial conditions. In this case, each beam/actuator system was given initial 

conditions corresponding to 1 st, 2nd, or 3rd mode, and the response was simulated. The results 

of these simulations (and the previous simulations as well) are shown in Table 1. The performance 

indices in Table 1 are, as explained in the Basis for Comparison section, the LQR performance 

index, and the power consumed by the actuators during control. The last performance index is the 

time integral of the system energy, and will be discussed further in the next section. 
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Table t. Results of Multiple Actuator Comparison 

Actuator *Initial LQR Performance Energy Consumed 
Conditions Index By Actuators 

J Jp (Joules) 

1st I\lode 103,000 76.3 
Proof 2nd Nlode 21,000 94.2 
Mass 3rd lViode 9,020 86.7 

All lVlodes 39,800 130. 

1st lVlode 530,000 95.0 
Reaction 2nd Nlode 93,900 96.7 

\Vheel 3rd l'vlode 18,900 89.2 
All lVlodes 41,400 128. 

1 st :\tlode 32,800 92.6 
Planar Truss/ 2nd I'vIode 18,000 778. 
Proof IVtass 3rd :Vlode 6!350 236. 

All :VI odes 19,400 93.5 

1st :Vlode 5,640 137. 
Planar Truss 2nd lVlode 6,010 501. 

3rd :Vlode 5,150 427. 
AlllVlodes 25,400 396. 

+Single mode initial conditions imparted 1001 of strain energy 
to the beam; multiple mode initial conditions imparted 1601 
of strain energy to the beam (201 for each modelled mode). 

Simulation Results 

System Energy 
Performance Index 

JD (Joule-sec) 

347. 
66.8 
23.1 
113. 

2630 
195. 
39.6 
406. 

183. 
191. 
29.4 
72.7 

8.75 
30.2 
11.5 
8.4 
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7.0 Discussion 

This section will discuss the results shown in t.:hapter 6. Fir~t, the results will be discussed 

to show their value in comparing actuator effectiveness. Next will follow a section discussing each 

performance index in relation to the others. Operational considerations of the actuators will be 

discussed to highlight actuator characteristics which are nef pointed out in the simulation results. 

Finally, a section will be included to discuss extensions 01 this work, highlighting recommendations 

of where this work may lead. 

7.1 Discussion of l\tIultiple Actuator Conlparison Results 

The response plots shown in Figs. 11-14 show that the Variable Geometry Truss actuators 

do a better job of damping the vibrations of a beam excited by initial conditions. The plots of beam 

tip deflection provide a qualitative indication of how the actuators perform. The system energy 

plots provide an even better indication of performance, but only after examining the entries in Table 

1 can the true performance be realized. The third colun1n shows the integral of the total system 

energy over time. So these numbers represent the area under the energy curves shown in Figs. 

11-14. (In Fig. 12b the energy does not go to zero in 20 seconds, but the entry in Table 1 represents 

an integral which is not truncated before the system energy reaches zero.) From these numbers it 

is seen that all actuators do a better job of damping higher modes than lower modes. The planar 

truss actuator, however, is much better than the inertia-type actuators at damping frrst mode. This 

can be explained by the mode of operation. The inertia-t)T- actuators can only apply Hdamping 

forces" to the beam when the secondary mass is being ac(;derated. This acceleration can only last 

as long as the motor back emf permits; in a short pen0d of time the motor reaches a steady-state 
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velocity, the secondary mass is no longer accelerated, and no force is applied to the beam. If that 

period of time is less than half the period of oscillation of the frrst mode of the beam, then the 

actuator can be effective for only part of the oscillatory cycle of frrst mode. In the planar truss 

actuator, though, it is not reaction forces that are important in damping the beam, but rather 

kinematic inputs to the beam. The planar truss actuator (and VGT's in general) can "catch" the 

beam to remove the potential (strain) energy, then move the beam back to zero in a rigid body 

fashion. This action is shown in the response plots for Z;r , Zy, and 0 of the planar truss actuator 

(Fig. 15). They move to an extreme position (with some oscillations along the way, due to higher 

modes), and then return slowly to their zero position. So, in this case, the motors can still be ef

fective even when they are operating at steady-state velocity, if the velocity is in the right direction. 

It should be noted here that the planar truss actuator/beam configuration used in this work (Fig. 

1), with the actuator located between the beam and ground, may be more advantageous than 

placing the actuator at some position along the beam. This, however, has not been studied and is 

recommended for future work. 

A fmal point to be drawn from the "System Energy" data in Table 1 is that the planar 

truss/proof mass actuator is particularly good at controlling frrst mode. Even though this is an 

inertia-type actuator, its configuration allows it to control first mode better than either the proof 

mass or the reaction wheel actuators alone. 

Another important consideration in choosing an actuator is the amount of energy con

sumed by the actuator in doing the control task. This is particularly important in space applications 

where the available energy is limited. Table 1 shows that the inertia-type actuators are all very close 

in the amount of energy consumed in controlling any mode. The planar truss actuator, however, 

consumes significantly more energy than the inertia-type actuators. This can be explained by the 

fact that the planar truss actuator must affect rigid body motion on the beam, a process which 

consumes more energy than moving a secondary mass. Placing the planar truss actuator at some 

position along the truss should cause the energy required for control to decrease because the part 

of the beam being moved rigidly is decreased. This improvement will be offset, however, by an 
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expected decrease in damping performance, as mentioned above. Once again, that situation has 

not been studied in this work. 

7.2 Performance Indices 

A Linear Quadratic Regulator control law was used in controlling each of these systems. 

This control law worked nicely for the purpose of a comparison, because even though the dynamics 

were different for each system (different A matrix) there were constant penalties (Q and R) for de-

termining the feedback gains. An important question to ask is "Does this control law minimize a 

performance index which truly represents the physical problem?'" The physical problem is, from 

the point of view of this work, to minimize the integral of the total energy in the system and the 

integral of the control over time. This can be described by the equation 

J E = fl=I'(T(t) + Vet) + P(/»dt 
1=0 

[7.1] 

or 

[7.2] 

where V;" 1m is the power supplied to the motors. The performance index for the Linear Quadratic 

Regulator is described in Eq. 5.1 t rewritten here as: 

[7.3] 

These two performance indices are nearly proportional. They both contain a term which is pro

portional to the state squared, and some form of the motor voltage input squared. This can also 
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be seen from Table 1. The LQR performance index is roughly a linear combination of system 

energy and the energy consumed by the actuators. By placing the system mass and stiffness ma

trices in 0, the motor characteristics in R, and adding terms to 0 (which are multiplied by the ve

locities of the motors) to account for the motor annature current, Eq. 7.2 could very nearly be 

represented by Eq. 7.3. A point to be gained from this is that for a vibration control problem with 

the objectives of high damping and low power requirements, the LO R control law with diagonal 

Q and R works nicely, but perhaps a better optimal control law would be one that minimizes the 

performance index in Eq. 7.3. 

7.3 Actuator Operational Considerations 

There are several points concerning various actuator characteristics which should be con

sidered when comparing one actuator to another. These points are not drawn directly from the 

simulation results, but have an impact on actuator design or on the choice of an actuator for a 

particular application. 

The derivation in Chapter 4 showed that the reaction wheel actuator is completely analo

gous to the linear proof mass actuator with the exception that one provides moments to add 

damping to the beam while the other provides forces. This analogy holds true as long as the dis

cussion remains in two dimensions. The reader should keep in mind, though, that if the beam is 

allowed to move out of the plane (consider, for example, torsion of the beam about its longitudinal 

axis) then the angular velocities of the reaction wheel bring about gyroscopic effects which make 

the model more complicated. The two dimensional results presented in this paper do not, then, 

provide an entirely clear picture of the total dynamics of the reaction wheeL Another point along 

those same lines is that the secondary mass of the proof mass actuator has a varying mass moment 

of inertia (calculated about an axis fixed to the beam). That moment of inertia is held constant in 

the proof mass actuator model in this work (a valid assumption, considering the small motions of 
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the secondary mass), but for some actuators which see larger secondary mass motions (such as the 

LDC:l\tt and LMED) it's effects on the system may need to be considered. 

An important characteristic of the planar truss actuator is that it is an extension of the 

lV1ini-Mast by one bay, with the difference that the links making up the actuator are active. This 

active bay could be located anywhere along the beam, which makes the planar truss actuator very 

flexible for applications such as pointing or shape control. Global beam motions can be applied 

and controlled by the actuator to accomplish tasks such as positioning solar arrays or antennas. 

Global motions cannot be applied by the inertia-type actuators. Another advantage of the planar 

truss is that it does not require the added mass necessary for the operation of inertia-type actuators. 

That added mass will be costly when these ideas are implemented in space. 

The conclusion to be drawn from this discussion is that, from an operational standpoint, 

the planar truss actuator is more favorable than the inertia-type actuators. It allows for global po

sitioning (slewing, shape control) of the beam, it does not come with the penalty of an added sec

ondary mass, and as was shown in the previous section, the planar truss actuator is very effective 

in controlling vibrations of a flexible beam. 

7.4 Recommendations 

Throughout this discussion several areas of this work have been mentioned which deserve 

further consideration. First, this is a planar study only. An obvious extension of this work is to 

study the effectiveness of actuators controlling a beam in three dimensions. This could point out 

effects which are unseen in a planar study, such as gyroscopic effects of the reaction wheel actuators. 

A second area of interest is a study of systems which are free-floating in space. These are more 

realistic space situations which are no longer attached to ground through either a beam or an 

actuator. Another important extension of this work is to study the effects of actuator placement 

on the beam. It was mentioned earlier that placing the planar truss actuator at a position along the 

beam should be studied, but optimizing the position of the other actuators should be looked at as 
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well. A fmal recommendation is to study the use of a modified control law, such as one using the 

performance index shown in Eq. 7.2. 
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Appendix A. List of Physical Constants 

m1 8kg 

12kg 

II 8kgm2 

II 12kgml 

JSM 20kg 

A-fSM 20kgml 

!<T 0.4237N - m/amp 

K8 Volt - sec 

Ra Ohms 

Gp 8.0851£ - 4m/rad 

G, 8.0851£ - 4 

Entries in Q 10,000 (all on diagonal) 

Entries in R 1 (all on diagonal) 
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