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Figure 1: The Planar Reflective Symmetry Transform captures the degree of symmetry of arbitrary shapes with respect to reflection through
all planes in space. Although symmetry measures are computed for planes (lines in 2D), for this visualization, points are colored by the
symmetry measure of the plane with the largest symmetry passing through them, with darker lines representing greater symmetries.

Abstract

Symmetry is an important cue for many applications, including ob-
ject alignment, recognition, and segmentation. In this paper, we
describe a planar reflective symmetry transform (PRST) that cap-
tures a continuous measure of the reflectional symmetry of a shape
with respect to all possible planes. This transform combines and
extends previous work that has focused on global symmetries with
respect to the center of mass in 3D meshes and local symmetries
with respect to points in 2D images. We provide an efficient Monte
Carlo sampling algorithm for computing the transform for surfaces
and show that it is stable under common transformations. We also
provide an iterative refinement algorithm to find local maxima of
the transform precisely. We use the transform to define two new
geometric properties, center of symmetry and principal symmetry
axes, and show that they are useful for aligning objects in a canon-
ical coordinate system. Finally, we demonstrate that the symmetry
transform is useful for several applications in computer graphics,
including shape matching, segmentation of meshes into parts, and
automatic viewpoint selection.

Keywords: symmetry, shape analysis, registration, matching, seg-
mentation, viewpoint selection

1 Introduction

Symmetry is an important feature of almost all shapes: nearly ev-
ery man-made object contains at least one plane of perfect symme-
try, and most natural objects exhibit near-perfect symmetries (look
around your office and count the symmetric objects).

While symmetry is known to provide visual cues for human vi-
sion [Ferguson 2000], it has seen only limited use as a feature
for applications in computer graphics and geometric processing.
In recent years, symmetry information has been used to detect lo-
cal features in 2D images [Reisfeld et al. 1995], guide reconstruc-
tion of 2D curves and range scans with missing data [Zabrodsky

et al. 1993; Thrun and Wegbreit 2005], rotate shapes into a canon-
ical coordinate frame [Kazhdan et al. 2003a], match the shapes of
meshes [Kazhdan et al. 2004], and recognize instantiation of parts
in assembled scenes [Martinet et al. 2005]. However, most of this
work has focused on local symmetry with respect to points and
global symmetry with respect to planes through the center of mass.

In this paper, we describe a planar reflective symmetry transform
(PRST), a transform from the space of points to the space of planes
that provides a continuous measure of the reflective symmetry of
an object with respect to all planes through its bounding volume.
This transform represents both perfect and imperfect symmetries;
it captures global symmetries of an object; and, it highlights local
symmetries of salient parts.

As an example, consider the visualizations of the PRSTs for several
2D outlines (black lines) shown in Figure 1. Note that the point of
maximal symmetry (darkest point) usually corresponds to the con-
ceptual center of the object, and the main ridges in the PRST fre-
quently correspond to the main axes, even for partial objects (e.g.,
the flower). Also notice that symmetries in parts of objects (e.g., the
wheels of the motorcycle) appear as local maxima in the transform,
while small extra asymmetric features (e.g., the handle of the mug)
do not affect the global maxima. These properties are advantageous
for several applications, including selection of a canonical coordi-
nate system, matching of 3D shapes, segmentation into parts, and
optimal viewpoint selection (see results in Section 5).

The contributions of our work are six-fold. First, we define the pla-
nar reflective symmetry transform (Section 3). Second, we present
a new algorithm based on Monte Carlo integration for computing a
discrete version of the PRST (Section 4.3). Third, we provide an it-
erative refinement algorithm for finding local maxima in the PRST
with arbitrary precision (Section 4.4). Fourth, we define the new
shape properties center of symmetry and principal symmetry axes,
and demonstrate their utility for alignment of 3D meshes (Section
5.1). Fifth, we investigate using the PRST as a representation of
shape in matching and retrieval experiments (Section 5.2). Finally,
we explore the use of local symmetries in segmentation and view-
point selection (Sections 5.3 and 5.4 respectively).

2 Previous Work

Perfect Symmetries: Traditional approaches to symmetry de-
tection work with discrete symmetries—perfect symmetries un-
der rotation, reflection, or translation. For instance, efficient al-



gorithms have been described for finding whole-object symmetries
using substring matching [Atallah 1985; Wolter et al. 1985; Zhang
and Huebner 2002], using an octree representation [Minovic et al.
1993], the extended Gaussian image [Sun and Sherrah 1997] and
the singular value decomposition of the points of the model [Shah
and Sorensen 2005]. Further methods are available for describ-
ing local symmetries with a respect to a point—e.g., the medial
axis [Blum 1967]. However, since these methods consider only
perfect symmetries, they are unstable with added noise or missing
data and fail to recognize the potentially important cues of imper-
fect symmetries.

As a recent example, Thrun and Wegbreit [2005] detect perfect
symmetries in scanned models by explicitly searching ever-growing
sets of points while maintaining a list of possible rotational and re-
flectional perfect symmetries. In this way, scans of models com-
posed of symmetrical parts may be completed by extending the
measured symmetries to the entire model.

Also recently, Martinet et al. [2005] have introduced a method
based on generalized moments to detect perfect symmetry in 3D
shapes accurately. Their approach combines the property that even
order moments contain the same symmetries as the model with an
efficient method for calculating moment coefficients using a spher-
ical harmonic decomposition. While their method is efficient and
can detect perfect symmetries of a segmented model, they do not
work with imperfect symmetries, nor do they investigate the range
of applications addressed in this paper.

Imperfect Symmetries: In the last decade, methods have been
provided for measuring imperfect symmetries. For example,
Zabrodsky et al. defined the symmetry distance of a shape with re-
spect to a transformation as the distance from the given shape to the
closest shape that is perfectly symmetric with respect to that trans-
formation [Zabrodsky et al. 1995; Zabrodsky et al. 1993]. They
provide an algorithm to find the symmetry distance for a set of con-
nected points for any given reflective or rotational transformation,
and they use it for completing the outline of partially-occluded 2D
contours, for locating faces in an image, and for determining the
orientation of a 3D shape. However, their method considers sym-
metry with respect to only one point or plane at a time, and thus it
is not as general nor as descriptive as the methods proposed in this
paper.

Symmetry descriptors: Kazhdan et al. used the same continuous
measure of imperfect symmetries to define a shape descriptor that
represents the symmetries of an object with respect to all planes and
rotations through its center of mass [Kazhdan et al. 2003a; Kazh-
dan et al. 2004]. They describe an efficient algorithm for comput-
ing the descriptor from a 3D voxel representation, and show that
planar symmetries can be used for alignment and classification of
3D meshes. We build upon this work to consider symmetries with
respect to all planes through an object’s bounding volume, an ex-
tension that enables more robust alignment and matching, as well
as new applications based on local symmetries.

Symmetry Transforms: More general symmetry transforms de-
fined for all points in space have been used for a decade in computer
vision, mainly for robust detection of radially symmetric features in
natural images prior to segmentation. For example, Reisfeld et al.
defined a Generalized Symmetry Transform for local point sym-
metries [Reisfeld et al. 1995], and related approaches have been
described in [Bigun 1997; Di Gesù et al. 1997; Loy and Zelinsky
2002; Choi and Chien 2004]. These methods have been shown to
be effective for finding features in noisy images (e.g., eyes on a
face [Reisfeld and Yeshurun 1992]), discriminating textures [Bon-
neh et al. 1994; Chetverikov 1995], and segmenting images based
upon local symmetries [Kelly and Levine 1995]. However, they
are designed mainly for detecting local point symmetries in unseg-

Figure 2: Visualization of the PRST for several simple 2D shapes.

mented 2D images, as opposed to global planar symmetries in 3D
meshes, and thus they do not address the mesh processing problems
and computer graphics applications targeted in this paper.

3 Planar Reflective Symmetry Transform

The Planar Reflective Symmetry Transform (PRST) is a mapping
from a scalar-valued function f defined over a d-dimensional space
of points to a scalar-valued function PRST( f ,γ) defined over the
d-dimensional space of planes, such that the scalar value associated
with every plane reflection γ is a measure of f ’s symmetry with
respect to that plane.

Following previous work on continuous symmetry analy-
sis [Zabrodsky et al. 1995; Kazhdan et al. 2003a; Kazhdan et al.
2004], we define the symmetry distance, SD( f ,γ) of f with respect
to a plane reflection γ as the L2 distance between f and the nearest
function that is invariant to that reflection:

SD( f ,γ) = min
g|γ(g)=g

‖ f −g‖.

Since the symmetry distance lies between 0 and ‖ f ‖ and provides
a measure of the “anti-symmetry” of the shape with respect to γ ,
we complement it and divide by the magnitude of f , to produce a
normalized symmetry measure for our PRST, such that

PRST2( f ,γ) = 1− SD
2( f ,γ)

‖ f ‖2
This definition was chosen so that PRST ( f ,γ) is 1 if f is perfectly
symmetric with respect to γ , 0 if f is perfectly anti-symmetric with
respect to γ , and an intermediate value for partial symmetries. It is
also important for computing the PRST efficiently, since the square
of the PRST for any plane reflection reduces to a dot product under
this formulation, as will be seen in the following section (for func-
tions on a grid, a dot product is the sum of the product of each pair
of corresponding elements).

To give an intuitive sense for the information provided by the PRST,
visualizations for several simple 2D shapes are shown in Figures 1
and 2. In these images, symmetry is measured for every plane (line



in 2D), and the darkness of every point represents the maximum of
PRST values over all planes passing through the point (darker val-
ues represent larger symmetries). While these images do not show
the PRST directly, since the PRST is defined on the space of planes,
not points, they are easier to understand than visualizations shown
in plane coordinates, and they give a good sense for where planes
of high symmetry can be found. Thus, we display visualizations of
this type throughout the paper unless otherwise noted.

These images demonstrate two important properties of the PRST.
First, we see that the dominant points and planes of symmetry
match our human intuition of the “center” and “major axes” of the
object. For example, trivially, the planes with maximal symmetry
through a circle intersect at the center, and the major and minor axes
of a rectangle appear as global and local maxima in the PRST, re-
spectively. In general, the local maxima of the PRST coincide with
the axes of the large (nearly) symmetric parts of an object (Fig-
ure 1).

Second, since the PRST for every plane takes into account the shape
of the entire object, it is not sensitive to noise and varies continu-
ously with deformations. These provable properties can be seen
empirically in Figure 2— i.e., the PRST is stable when a regular
polygon deforms into a circle, when a square deforms into a rectan-
gle, and when noise is added to the boundary of a starfish. This sta-
bility is in stark contrast to the medial axis transform, which finds
local point symmetries but is sensitive to small boundary pertur-
bations, shooting off a new branch for every small bump on the
boundary (Figure 3).

PRST MAT

Figure 3: The PRST and the medial axis transform (MAT) for a
rectangle and a rectangle with a bump. The bump leaves the PRST
largely unaffected (left), but dramatically changes the MAT (right).

While these visualizations are shown for contours in 2D, reflec-
tive symmetry transforms can be defined in any dimension, for any
symmetry group, for any symmetry measure, and for any shape rep-
resentation, including point sets, surface meshes, and volumetric
functions. For the sake of simplicity and generality, we focus our
initial discussion in the following sections on planar symmetries for
3D volumetric functions, however other shape representations can
trivially be converted to this representation.

4 Computation

Computing the planar symmetry transform is challenging, as an in-
finite number of planes can pass through an object, and a measure of
symmetry for an entire object must be determined for all of them.
In the following subsections, we provide background information
that can be used to gain insight into computational solutions, and
then we describe three algorithmic strategies. The first two provide
methods for computing a discrete version of the PRST for volumet-
ric functions and surface meshes, respectively, while the third pro-
vides a continuous method for finding local maxima of the PRST
precisely.

4.1 Background

Given a function f in a d-dimensional space, we aim to develop an
algorithm that will compute

PRST2( f ,γ) = 1− SD
2( f ,γ)

‖ f ‖2
for every plane reflection γ , where SD( f ,γ) represents the L2 dis-
tance between f and the closest function that is symmetric with
respect to γ .

In previous work, [Kazhdan et al. 2003a] has observed that the near-
est symmetric function to f is simply the average of f and γ( f ):

SD( f ,γ) =

∥

∥

∥

∥

f − f + γ( f )

2

∥

∥

∥

∥

=
‖ f − γ( f )‖
2

.

Combining the two equations, we get

PRST2( f ,γ) = 1− SD
2( f ,γ)

‖ f ‖2 = 1− ‖ f − γ( f )‖2
4‖ f ‖2 =

1− ‖ f ‖
2−2 f · γ( f )+‖γ( f )‖2

4‖ f ‖2 .

If f is normalized, then ‖γ( f )‖ = ‖ f ‖ = 1 (since norms are pre-
served by reflection), and we obtain

PRST 2( f ,γ) = 1− 1−2 f · γ( f )+1

4
=
1+ f · γ( f )

2
. (1)

Therefore, the calculation of the symmetry measure for a single
plane reduces to the calculation of a dot product between f and its
reflection:

D( f ,γ) = f · γ( f ). (2)

Intuitively, this means that the PRST 2( f ,γ) for a single plane re-
flection γ is related to how well f correlates with γ( f ), and it can
be computed with an integration of f · γ( f ) over the bounding vol-
ume of f .

In order to apply the above definition to surfaces, it is necessary to
convert them to volumetric functions. While we could simply ras-
terize the surfaces into a (binary) occupancy grid, this would result
in sensitivity to noise and small features. Instead, we use the Gaus-
sian Euclidean Distance Transform (GEDT), as was previously pro-
posed by [Kazhdan et al. 2004]. For a model M and width σ , the
GEDT at an arbitrary point in space x is defined as:

f (x,M,σ) = e−dist
2(x,M)/σ2 ,

where dist(x,M) represents the distance of the point x to the near-
est point on M. This allows surfaces to be slightly misaligned (by
the Gaussian width σ ) under reflection, allowing us to capture im-
perfect symmetries of the surface. We choose σ for the Gaussian
according to the maximal frequency of the grid in order to avoid
aliasing and to provide a gradually decreasing “penalty” for imper-
fect symmetries. The net result is a 3D function that is exactly one
at the surface of the object and gradually drops off to zero at both
interior and exterior points. Similar methods can be used for other
shape representations.

4.2 Discrete Computation for Volumetric Functions

With this background, we can propose several algorithms for com-
puting a discrete version of the PRST for a function f represented
on a regular n×n×n grid. These algorithms are efficient for char-
acterizing all the planar symmetries of a densely sampled volume



(a) Sampling orientations (b) Sampling translations

Figure 4: Computing the PRST for many planes at once by: (a)
sampling orientations and convolving over plane translations, or (b)
sampling positions and convolving over plane rotations.

(e.g., medical imaging data). However, as we will show in the fol-
lowing section, more efficient algorithms are possible for sparse
functions representing surfaces and point clouds.

As a first step, we could naively apply Equation 1 to evaluate
PRST2( f ,γ) for every possible plane reflection γ separately. Since

there are O(n3) possible planes through a n× n× n grid, and the
evaluation of a dot product over the grid for each plane requires
O(n3), the total complexity of this brute force algorithm is O(n6),
which is prohibitively expensive for most applications. However,
since the PRST values for planes with the same orientation require
dot products of functions successively shifted at regular intervals
with respect to one another (Figure 4a), we can compute them all at
the same time with a single convolution. Since the convolution for
a single direction takes O(n3 log n), and there are O(n2) possible
directions through the grid, the total running time of this algorithm
is O(n5 log n).

Equivalently, we can consider convolutions over rotations at a dis-
crete set of points (Figure 4b). In this case, we use the frequency
domain algorithm described in [Kazhdan et al. 2003a] to compute
the PRST for all planes throughO(n) points (Figure 4b). Since each
invocation of Kazhdan et al.’s algorithm takes (n4 log n), the total

running time is againO(n5 log n). Amultiresolution approximation
is possible in O(n4 log n).

We have investigated all three of these approaches. In our imple-
mentation, we discretize the space of planes to match the resolution
of the grid (finer sampling of the planes yields no additional infor-
mation about the band-limited PRST). When working in 2D, we
use a uniform parameterization of the set of lines by their angles
θ ∈ [0,π] and distance from the origin r ∈ [−rmax,rmax]. Note the
slightly unusual choice of angles on a semicircle and both positive
and negative radii, which avoids a singularity at the origin. Sim-
ilarly, we parameterize planes in 3D by the spherical coordinates
of their normals θ ∈ [0,π/2],φ ∈ [0,2π] and distance from the ori-
gin r ∈ [−rmax,rmax]. (Note that the “buckets” of planes are not of
uniform size, shrinking towards the poles as sin θ ).

We find that these convolution algorithms take 40 seconds on aver-
age for grids with 64×64×64 voxels on a 3GHz processor.

4.3 Discrete Computation for Surfaces

While the algorithms discussed so far are equally efficient for all
functions, rasterized surfaces and point sets naturally lead to spar-
sity over the volume. In this section, we describe a Monte Carlo
algorithm for computing the PRST that takes advantage of this spar-
sity to increase efficiency.

Our discussion of the algorithm begins with the brute-force ap-
proach presented in Section 4.2:

Figure 5: The efficient Monte Carlo algorithm selects a pair of
points and votes for the plane between them. The vote must be
weighted, accounting for the fact that as a point is father away from
the plane of reflection, the chance of finding a reflection point is
increased (the size of the blue area is larger as the points are farther
apart).

for each plane γ:
for each point x:

x′← γ(x)
PRST2( f ,γ) += f (x) · f (x′)

We observe that for sparse functions this is inefficient, since it per-
forms useless computation whenever either f (x) or f (x′) is near
zero. Instead, we interchange the order of computations and per-
form importance sampling in a Monte Carlo framework:

for sampled points x:
for sampled points x′:

γ ← reflection plane(x, x′)
PRST2( f ,γ) += w(x, x′, γ) · f (x) · f (x′)

Intuitively, this algorithm repeatedly picks a pair of points and
“votes” for the plane between them. The sampling of x and x′ is
performed according to the energy in the function f , allowing us
to focus effort on computations that will contribute to the final an-
swer. For a typical 3D surface, non-negligible values appear in only
O(n2) voxels, and thus this algorithm requires only O(n4) opera-
tions to compute the entire PRST.

Weighting: In order for the above algorithm to compute the PRST
correctly, it is necessary to weight the contribution of each “vote”
appropriately. This is the role of the function w(x, x′, γ), which
consists of two terms. The first term accounts for the importance
sampling that we perform, and is simply the reciprocal of the prob-
ability of having selected x and x′:

wsamp(x, x
′, γ) =

1

f (x) · f (x′) .

The second term represents a change-of-variables, accounting for
the two different ways we have of sampling the space of planes: as
a pair of points (x, x′) and with our discretized bins over (r, θ , φ).
While part of this change-of-variables term is intuitive (accounting
for the sin θ decrease in bin size), another part accounts for the fact
that bins of planes will receive more votes if x and x′ are far apart
than if they are nearby. For example, both parts of Figure 5 consider
a single bin of planes. However, for a fixed x, it is clear that more
points x′ will vote for that bin if the points are further apart, so we
should weight the contribution of such pairs lower than votes by
nearby points.

To derive the change-of-variables weight, we simply compute the
determinant of the Jacobian of the transformation between the pa-
rameterization of the planes of reflection and the reflected points
themselves. If we let

n̂=





sinθ cosφ
sinθ sinφ
cosθ







be the normal of the plane of reflection, then we can write

O

r
n

x’

x

d/2

d/2

γ

d = ‖x−x′‖
= 2(r− n̂ · x)

x′ = x+dn̂

= x+2rn̂−2(n̂ · x)n̂

J =





↑ ↑ ↑
(

∂ x′

∂ r

) (

∂ x′

∂ θ

) (

∂ x′

∂ φ

)

↓ ↓ ↓





and solve for the determinant:

wchange-of-variables = |J|= 2d2 sin θ .

Therefore, we have

w(x, x′, γ) = wsamp ·wchange-of-variables,

=
1

f (x) f (x′) 2d2 sinθ
.

So, overall, our Monte Carlo estimator is:

D( f ,γ) =
1

Nsamp

Nsamp

∑
i=1

1

2d2 sinθ

Computation time: By exploiting sparsity in the volume, the
Monte Carlo algorithm is able to compute the PRST of 3D surfaces
efficiently. As with all randomized algorithms, noise in the final
approximation decreases with additional samples, but as shown in
Figure 6, the algorithm converges quite quickly. For example, for
the 643 grid resolution used throughout this paper, computing the
PRST to 1% noise takes an average of 8 seconds on a 3 GHz pro-
cessor, corresponding to two million sampled point pairs. These re-
sults are typical - there is little variation in computation time, except
for very large models (for which the rasterization time can begin to
dominate).
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Figure 6: Comparison of error in the Monte Carlo approximation to
the PRST, as a function of time. For typical grid sizes, such as the
643 used throughout this paper, computing the PRST takes only a
few seconds.

4.4 Continuous Refinement for Local Maxima

While the PRST taken as a whole characterizes all of an object’s
symmetries, its local maxima form an important and intuitive sub-
set. They may correspond to the principal symmetries of the whole
object, weaker or partial local symmetries, or perfect symmetries
of parts. Due to their intuitive nature, they are important for sev-
eral applications, including all those described in Section 5. We
now discuss an approach that builds upon the algorithm presented
in the previous section to find local symmetry maxima precisely:
we extract candidates for local maxima from the discrete PRST,
then refine their locations using an iterative local optimization al-
gorithm. This algorithm is able to find local maxima of the PRST
with arbitrary precision.

Given the full 3D symmetry transform, tabulated at a moderate res-
olution, we first look for cells with a higher symmetry value than
all their immediate neighbors. This yields a large number of can-
didates, so we apply a number of thresholds to extract only the
strongest symmetries. First, we apply a threshold on the strength
of the symmetry at that cell. While we could use a single fixed
threshold, we have observed that portions of the model away from
the center naturally have lower symmetry values (since there is less
of the model that could potentially map onto itself under those re-
flections), so it is more natural to use a lower threshold near the
edges of the model than near the center. In particular, we use a
threshold proportional to 1− r/R, where R is the radius of the object
and r is the distance of the candidate plane from the center of mass.
On top of the symmetry threshold, we also discard shallow max-
ima, which are potentially subject to noise: we impose a threshold
on the discrete Laplacian (sum of second partial derivatives) of the
PRST. The thresholds are set automatically to 1/10 of the values at
the strongest local symmetry.

Once we have a list of candidate local maxima, we refine them to
find the planes of symmetry with high precision. This approach, of
finding maxima of a function by first tabulating it then locally refin-
ing candidate maxima, is commonly used for numerical maximiza-
tion in general, and also resembles the local optimization performed
by Martinet et al. [2005]. Our refinement method is inspired by the
Iterative Closest Points algorithm [Besl and McKay 1992], com-
monly used to perform pairwise alignment of meshes, but solves
for a plane of reflection rather than a rigid-body transformation.

Our “Iterative Symmetric Points” or ISP algorithm begins by ran-
domly sampling points from the mesh (we typically use around
10,000 points per iteration), then reflecting them across the can-
didate plane. We match each reflected point to the closest point on
the mesh, then solve for the three parameters of the reflection plane
that minimizes the sum of distances (weighted to account for the
Gaussian Euclidean Distance Transform) between corresponding
points (note that the minimal sum of weighted distances provides
a maximum for Equation 2 when f is the GEDT of the surface).
The process is iterated until it converges to a local maximum of the
PRST. Figure 7, left, shows an iteration of ISP, with source points
in red, the candidate plane in gray, and reflected points in green.
The support of the final maximum is shown at right.

If the iteration causes the reflection plane to leave its cell (in the
discrete PRST), the candidate is determined to be an unstable local
maximum and discarded. Of course, this should not happen if the
function f is sufficiently bandlimited by the GEDT. However, we
have found this check is necessary since different point sampling
strategies are used by the discrete and iterative algorithms.

In our experiments, this two-stage process of first tabulating the
PRST then refining candidate local maxima has proven both robust
and efficient. The local refinement converges in a few seconds for
each plane, and we typically find 10–20 strong local maxima of



Figure 7: At left, we show an iteration of ISP. We select random
points (red), reflect them through the candidate plane of symme-
try (gray), and find closest points on the surface (green). We then
update the plane of reflection to optimize the sum of Gaussian dis-
tances between corresponding point pairs (samples with low weight
have been culled in this visualization). At right, we show the sup-
port of the final local symmetry maximum, as indicated by the gray
level.

symmetry for models of moderate complexity. Figure 8 shows the
four strongest local maxima for a bull model, together with the sur-
face support of each plane reflection (white regions of the surface
reflect onto each other across the chosen plane). Note that we find
planes capturing the global symmetries of the bull (1), as well as
separate local maxima capturing symmetries of the neck (2), body
(3), and head (4).

5 Applications

The PRST is a general-purpose transform with potential applica-
tions in computer vision, medical imaging, and a variety of other
fields. In this section, we investigate four applications in computer
graphics.

5.1 Alignment

Alignment of objects into a canonical coordinate frame is an im-
portant preprocessing step for a variety of tasks, including visual-
ization, studying the variation of models across different classes,
composition of scenes, and indexing of 3D model databases. To
perform this alignment, a global point of reference must be selected
for the origin and a set of axes must be chosen to determine the ori-
entation.

Typically, alignments of this type are computed with principal com-
ponent analysis (PCA): the center of mass is chosen as the origin,
and the principal axes are used to determine the orientation [Duda
et al. 2001]. However, it is well known that PCA does not always
produce compatible alignments for objects in the same class [Kazh-
dan et al. 2003b], and it certainly does not produce alignments sim-
ilar to what a human would select. Consider, for example, the mugs
shown in Figures 9 and 10. Most humans would suggest that the
central axis of these mugs runs straight up and down through the
middle of the cup, and the center is somewhere along this axis.
However, the center of mass and principal axes (shown in green
in Figure 9) are biased towards the handle to different degrees de-
pending on the size and shape of the handle, producing alignments

(1) (2)

(3) (4)

Figure 8: In this visualization, the triangles of the bull are colored
to show how symmetric they are with respect to the plane of sym-
metry displayed, with black meaning no support of the plane re-
flection. Planes representing the four strongest local maxima of
the PRST are shown here. Note how points supporting reflections
across planes (2), (3), and (4) tend to cluster into regions corre-
sponding to the neck, body, and head, respectively.

inconsistent with other mugs and undesirable for most applications
(e.g., placement in a scene). Similarly, since the center of mass is
shifted off the central axis of the cup, the symmetry descriptor of
Kazhdan et al. [2003a] will not detect its perfect symmetries and
will produce poor alignments.

Figure 9: A line drawing of a mug with and without handles. The
the center of mass and PCA axes are drawn in dotted green—note
that they move depending on the presence of handles. A visual-
ization of the PRST is overlaid on the drawings, and the center of
symmetry and principal symmetry axes are shown in solid red—
they remain stable under perturbation of the shape.

In this section, we investigate the use of the PRST to produce better
alignments. Specifically, we introduce two new concepts, the prin-
cipal symmetry axes (PSA) and the center of symmetry (COS), as
robust global alignment features of a model. Intuitively, the princi-
pal symmetry axes are the normals of the orthogonal set of planes
with maximal symmetry, and the center of symmetry is the inter-
section of those three planes. Specifically, given a PRST we select
the first principal symmetry axis by finding the plane with maximal
symmetry. We then select the second axis by searching for the plane
with maximal symmetry among those perpendicular to the first, and



Center of mass and PCA

Center of symmetry and principal symmetry axes

Center of mass and PCA

Center of symmetry and principal symmetry axes

Figure 10: Alignment for translation and rotation based on centers
of symmetry and principal symmetry axes, as compared to center of
mass and PCA. In each case, the red, green, and blue lines represent
the first, second, and third principal axes, and their intersection is
the computed center.

finally we choose the third axis in the same way, searching only the
planes perpendicular to both the first and second selections.

We find that this simple method produces coordinate frames that
are both robust and semantically meaningful for most objects. For
example, for the mugs shown in Figures 9 and 10, the center of
symmetry and principal symmetry axes appear right in the middle
of the cylindrical cup. Similarly, for the mailboxes shown in Fig-
ure 10, the center of symmetry and principal symmetry axes con-
sistently reside in the middle of the box—unlike the center of mass
and principal axes, they are not affected by the shapes of the stands.
In general, the principal symmetry axes and center of symmetry are
determined by an object’s large parts with significant symmetries,
and thus they closely match our intuition of an object’s canonical
coordinate frame.

In order to test whether the PRST is robust, even for partial sur-
faces, we experimented with alignments of synthetically generated
range scans. This experiment is motivated by an object recognition
application in which (partial-object) scans are acquired and regis-
tered to (whole-object) meshes stored in a database, with the hope
of automatically recognizing which object was scanned [Shan et al.
2004]. For this application, it is useful to align the partial scan to
the complete object automatically.

(Center of Symmetry) (Center of Mass)

Figure 11: To evaluate the stability offered by symmetry-based
alignment in a scan recognition application, we computed eight vir-
tual scans of 907 models (top two rows of images), and for each
computed coordinate frames using our symmetry-based approach
and PCA. Note how the centers of symmetry computed from the
partial scans (shown as cross-hairs) cluster near the center of the
whole car better than do the centers of mass.
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(a) (b)

Figure 12: Histograms of translational (a) and rotational (b) mis-
alignment in our virtual-scan experiment. In blue we show align-
ment based on center of symmetry and PSA, with center of mass
and PCA in green. Larger values near the left of each graph indi-
cate better matching performance.

For the experiment, we used a ray tracer to generate eight synthetic
range scans of approximately 10,000 points (Figure 11, top) for the
907 meshes provided as part of the Princeton Shape Benchmark test
set [Shilane et al. 2004]. For each mesh, the virtual scanner was in
turn placed at each of the eight corners of a cube surrounding the
model, always pointing toward the center of the mesh bounding
box. The view distance was twice the length of the bounding box
diagonal, and the field of view was 0.4 radians (Figure 11). For
each scan, we voxelized the point cloud, computed the PRST, and
extracted the principal symmetry axes and center of symmetry (Fig-
ure 11, bottom left). Then, we evaluate how well these coordinate
frames match the frames computed for the complete meshes, and
compare to the accuracy of the frames computed using the princi-
pal axes and center of mass (Figure 11, bottom right).

Figure 12 shows the results of this experiment. In the first plot, we
see histograms of the translational misalignment between the partial
range scans and the whole objects when aligned with the center of
symmetry (blue curve) and center of mass (green curve). In general,
the partial scans were sufficient to recover the major symmetries of
the object correctly, leading to lower average errors for center-of-
symmetry alignment as compared to center-of-mass. Of the 907
models tested, the center of symmetry for a scan was closer to that
of the entire model 90% of the time. On average, they were closer
by a factor of 1.5, with better results occurring when a particular
viewpoint caused significant portions of the model to be missing.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

c
is

io
n

Recall

PRST x GEDT

GEDT

PRST

RSD

Figure 13: Plot of precision versus recall achieved with four shape
matching methods: PRSD (magenta), PRST (thick blue), GEDT
(green), and the combination of PRST and GEDT (thick red). Note
that the PRST captures information complementary to other shape
matching methods, hence can be used to augment their retrieval
performance.

Figure 12b shows histograms of the rotational misalignment of the
partial scans with respect to the full object when aligned with prin-
cipal symmetry axes (PSA) and with the principal axes (PCA). Note
the large peak near zero in the blue curve, indicating that PSA re-
covered the rotation for most range scans to within a few degrees
of that computed for the entire object. In contrast, PCA provided a
larger spread of misalignment angles. Moreover, even though less
than half of the surface was available in any scan, we found that
the coordinate frame chosen with PSA was within 5 degrees of a
human chosen set of axes for the whole object in 70% of the scans,
as opposed to only 50% for PCA.

5.2 Matching

For many applications, it is important to be able to classify 3D
models or retrieve them from a database based on their geomet-
ric properties. The goal is to find a representation of shape (a shape
descriptor) that can be computed robustly, matched efficiently, and
used to discriminate different classes of objects effectively. In this
section, we investigate using the PRST as such a shape descriptor.

Our efforts are motivated by the observation that symmetry proper-
ties are often consistent within a class of objects. For example, al-
though chairs may vary in their size, whether or not they have arms,
etc., their reflective planar symmetries are almost always the same
(perfect left-right symmetry, a weaker global symmetry between the
back and seat, local symmetries through the seat and back, etc.).
This is true for many other object classes as well, including air-
planes, tables, people, etc. Perhaps it is possible to classify 3D
meshes automatically by comparing their computed symmetries to
those of meshes in a supervised training set.

In previous work, Kazhdan et al. investigated this approach using
their reflective symmetry descriptor. They employed the maximum
difference between the symmetry measures of any two correspond-
ing planes through the center of mass as a dissimilarity measure for
a pair of 3D meshes. We extend that previous work by considering
symmetries with respect to all planes through an object’s bound-
ing volume. In our matching method, we measure the dissimilarity
between a pair of aligned meshes as the L2 distance between their
discrete PRSTs (Section 4.3), weighting the differences between

PRST Better

D
if

fe
re

n
ce

 i
n
 N

N
 C

la
ss

if
ic

at
io

n

0

+20%

+40%

+60%

-20%

-40%

-60%

GEDT Better

s
c
h
o
o
l_
d
e
s
k

b
u
tt
e
rf
ly
a
n
t

tr
e
e
_
b
a
rr
e
n

k
n
if
e

h
u
m
a
n
_
w
a
lk
in
g

b
ill
b
o
a
rd

fl
y
in
g
_
b
ir
d

tr
a
in
_
c
a
r

ro
u
n
d
_
ta
b
le
h
a
t

s
ta
n
d
in
g
_
b
ir
d

s
ta
ir
c
a
s
e

fa
c
e

s
h
ip

b
e
n
c
h

p
o
tt
e
d
_
p
la
n
t

c
o
m
p
u
te
r_
m
o
n
it
o
r

ta
b
le
_
re
c
ta
n
g
u
la
r
h
u
m
a
n
_
s
ta
n
d
in
g

fi
g
h
te
r_
je
t

h
e
lic
o
p
te
r

d
e
s
k
_
c
h
a
ir

o
n
e
_
s
to
ry
_
h
o
m
e

c
o
m
p
u
te
r_
d
e
s
k
to
p

s
e
d
a
n

h
u
m
a
n
_
a
rm
s
_
o
u
t

g
e
a
r

d
o
o
r

s
w
o
rd

d
o
g

s
e
a
_
tu
rt
le

s
h
o
v
e
l

h
o
u
rg
la
s
s

h
o
rs
e

h
a
n
d

c
o
m
m
e
rc
ia
l_
a
ir
p
la

n
e
tw
o
_
s
to
ry
_
h
o
m
e

ti
e
_
fi
g
h
te
r

m
o
n
s
te
r_
tr
u
c
k

g
a
z
e
b
o

c
o
v
e
re
d
_
w
a
g
o
n

c
h
e
s
s
_
s
e
t

c
a
b
in
e
t

fl
y
in
g
_
s
a
u
c
e
r

fi
s
h

w
h
e
e
l

ra
b
b
it

h
a
m
m
e
r

a
x
e

e
n
te
rp
ri
s
e

s
a
te
lli
te

ra
c
e
_
c
a
r

m
a
ilb
o
x

h
a
n
d
g
u
n

c
it
y

m
o
to
rc
y
c
le

la
rg
e
_
s
a
il_
b
o
a
t

s
te
a
lt
h
_
b
o
m
b
e
r

b
a
rn

s
u
b
m
a
ri
n
e

b
u
s
h

s
lo
t_
m
a
c
h
in
e

c
h
u
rc
h

s
e
m
i_
tr
u
c
k

b
o
o
k

Object Classes

Figure 14: The PRST provides better retrieval performance for
some classes (top), while the GEDT is better for others (bottom).
Combined, they produce better retrieval performance than either
alone.

corresponding bins of the PRST by
√
sinθ (where θ is the polar

angle of the plane represented by the bin) to account for different
bin sizes. This measure produces a large distance when there are
planes for which one object is (nearly) symmetric, while the other
is not.

In order to evaluate the PRST as a shape descriptor for shape-based
retrieval and classification applications, we ran a set of “leave-one-
out” experiments with the Princeton Shape Benchmark test set [Shi-
lane et al. 2004], a database of 907 polygonal models partitioned
into 92 classes commonly used for shape matching evaluations. In
order to focus our study on shape representation rather than align-
ment, we manually registered all models into a common coordinate
frame before matching every model against all the others. The L2
distances between PRSTs were used to produce a ranked retrieval
list for each “query” model, and then statistics were computed to
evaluate how often models within the same class appear at the front
of the computed retrieval lists.

Figure 13 shows average precision-recall plots comparing our re-
trieval performance with that of Kazhdan et al.’s planar reflective
symmetry descriptor (PRSD) and the Gaussian Euclidean Distance
Transform (GEDT), which is currently used in at least one shape
based search engine [Funkhouser et al. 2003]. The horizontal
axis of this plot represents increasing recall values (fraction of the
query’s class retrieved), while the vertical axis represents retrieval
precision (fraction of the retrieved models that are in the same class
as the query). Higher curves represent better performance.

We find that the precision achieved when matching with the PRST
(thick blue curve) is higher than with the PRSD (magenta curve)
for every recall value. This confirms the expectation that the ex-
tra information provided by the PRST (symmetries for off-center
planes) adds precision for shape matching. Of course, it is more
expensive to store (32,768 floats versus 1,024 floats) and to com-
pare (0.1 ms versus 0.004 ms), but the extra cost seems worth the
improved performance for most applications.

We also find that both the PRSD and PRST provide less match-
ing precision than the GEDT (green curve) on average. We be-
lieve that this is because many object classes within the Princeton
Shape Benchmark have the same symmetries (e.g., almost all man-
made objects have perfect left-right symmetry). Even though the
symmetries may be consistent within a class, they do not always
help discriminate between classes. However, we observe that the
PRST provides better matching results for some types of objects
(i.e., ones with distinctive symmetries), while the GEDT provides
better results for others (Figure 14). So, we find that combining the
two shape descriptors (by simply multiplying the L2 distances com-
puted separately for the two descriptors) provides better retrieval
performance than either alone (the thick red curve in Figure 13).



The nearest neighbor classification rate and discounted cumulative
gain scores for the combined method were 69.2% and 68.6%, re-
spectively, which represent good retrieval performance for this data
set [Shilane et al. 2004]. This leads us to conclude that the PRST,
while perhaps not the best shape representation for retrieval of this
type of data on its own, can provide useful information for shape-
based matching and can be used to discriminate classes of objects
that are difficult to distinguish with other methods.

5.3 Segmentation

Although the PRST naturally represents the symmetries of an entire
object, it also implicitly captures the symmetries of its parts. We
propose to use this information for segmentation: we decompose
a mesh such that the faces with each segment have the same dis-
tinct symmetries. This criterion for automatic decomposition into
parts is quite different from previous methods (e.g., [Chazelle et al.
1995; Li et al. 2001; Mangan and Whitaker 1999] in that it incorpo-
rates local shape information for many different parts of the mesh
simultaneously.

Our segmentation algorithm follows recent work that has used k-
means clustering as a primitive operation. However, instead of clus-
tering based on a simplification [Garland et al. 2001] or based on
geodesic and angular distance between points [Katz and Tal 2003],
we cluster based on support for local maxima in the PRST. To do
this, we find the significant local maxima of the PRST (Section 4.4)
and compute, for each face and for every symmetry plane, the de-
gree to which the face contributes to the symmetry with respect to
that plane— i.e., how well does the face map onto the surface after
reflection across the plane (a visualization of this measure is shown
in Figure 8). If there are m local maxima in the PRST, then ev-
ery point has m values representing its support for symmetry with
respect to each of the m planes. We treat these m values as a fea-
ture vector and cluster faces according to their proximity in the m-
dimensional feature space. Intuitively, this method clusters faces
that support the same, distinct set of planar symmetries.

Our segmentation algorithm proceeds hierarchically, in a manner
similar to the method of Katz and Tal [2003]. For each split, we
perform k-means clustering (with k = 2) to establish a rough seg-
mentation, and then take the two largest connected components and
find the exact boundary between them by computing a weighted
min-cut along the edges of the mesh. The discrete PRST is recom-
puted and its local maxima are refined after every split. Segmenta-
tion is terminated at a user-supplied depth, or when the only planes
of local maxima reflect either more than 90% or less than 10% of
the surface onto itself.

The result of this process is a segmentation tree, with the property
that lower levels in the tree capture increasingly local symmetries,
hence allowing strong symmetries of even small parts to influence
the segmentation. Figure 15 shows some examples of the segmenta-
tion produced by our method. Note that for the Teapot the strongest
planes of symmetry pass through the body of the pot. So, the han-
dle, spout, and top are removed precisely because they are not sym-
metric with respect to those planes— i.e., the body of the pot is
removed from the smaller parts, rather than vice-versa. For the Oc-
topus and Skeletal Hand models, local symmetries of parts are im-
portant for obtaining the segmentation shown. Finally, a weakness
of our scheme can be seen in the segmentation of the legs of the
Dinopet and Bull. Because we use a min-cut to smooth our initial
guess, the final segmentation will seek a shorter cut, and thus avoid
the upper sections of the thigh. Integrating symmetry information
into the min-cut algorithm is a topic for future work.

Teapot Octopus Dinopet

Bull

Skeletal Hand

Figure 15: These images show segmentation of a range of models.
For the bull we show segmentation into 2,4, and 8 segments. The
skeletal hand is shown segmented into 4 and 18 parts.

5.4 Viewpoint Selection

3D models may look considerably different when viewed from dif-
ferent directions, thus computing good viewpoints for 3D models
has always been important for applications such as rapidly viewing
a large number of models, generation of icons, selection of view-
points for Image Based Rendering, and robot motion. The optimal
“canonical view” of a model may differ depending on the purpose,
and there have been a number of methods suggested to find such
viewpoints for various applications. Kamada et al. [1988] seek
to minimize the number of degenerate faces in the image. Both
Vázquez et al. [2001] and Lee et al. [2005] try to find quality view-
points by maximizing the (interesting) information content for a
view. Abbasi et al. [2000] and Lee et al. [2004] find optimal view-
points for recognition based on image contours, pruned by various
imaging constraints. Finally, Blanz et al. [1999] performed a user
study to determine factors that influence the canonical views used
to display 3D models. They report that users prefer off-axis views
to front or side axis views.

We introduce a method to choose good viewpoints automatically by
minimizing the symmetry seen. The intuition behind our approach
is that symmetry in an object presents redundant information to the
user and is therefore to be avoided. Our method begins with the
primary symmetry of the object and then uses the local maxima ex-
tracted from the PRST to minimize the amount of symmetry in the
direction of the viewer. More specifically, for each plane appearing
as a local maximum in the PRST, the preferred viewing direction
is along the normal to the plane. We compute the viewpoint score
for a view direction v as S(v) = ∑u∈W |v · u| ·M(u) where u ∈W is
a plane of local symmetry and M(u) is the symmetry score for that
plane.

With this relatively simple scoring function it is enough to do an
exhaustive search to find the optimal viewpoint, although a gradient
decent method such as introduced by [Lee et al. 2005] may be used
to accelerate the computation.



Score Best Worst

Figure 16: At left, we show the viewpoint score for each model as
a spherical function. The visualization is obtained by scaling unit
vectors on the sphere in proportion to the quality of the viewpoint
from that direction. The images at center show the best viewpoint
selected by our algorithm. The images at right show the worst view-
point selected.

We show the results of our approach in the middle column of Fig-
ure 16—each object’s local symmetries repel the viewpoint, such
that the final selected view is off of the major axis of the objects.
Note that even though we only show the best viewpoint, it is possi-
ble to extend this implementation to produce multiple “interesting”
viewpoints for the user’s selection (left column in Figure 16) and/or
viewpoints to be avoided (right column).

6 Discussion

The investigation of the PRST presented in this paper is a first step.
Our implementation has several limitations, and there are many av-
enues for future research.

First, we have investigated only the transform that maps a 3D object
to its planar reflective symmetries. While this type of symmetry is
perhaps the most prevalent in real-world objects, and thus makes a
good starting point, it is possible to consider other types of sym-
metry in future work. For example, one might define a rotational
symmetry transform, in which a measure of symmetry is computed
for every possible rotation around every possible axis (5D), or a
point reflectional symmetry around every point (3D). We can fur-
ther investigate the mapping of the reflective symmetry transform
back from the space of planes to the space of points, by storing with
each point a function of the symmetry distances for the planes that

pass through it. This was the motivation for our visualization in Fig-
ures 1 and 2. We hypothesize that the average, maximum, or some
similar function of symmetry distances for all planes through each
point may produce a 3D function worthy of future investigation.

Second, our transform measures symmetries of an entire object.
However, for objects containing multiple symmetric parts a use-
ful investigation would be to understand how symmetries can be
detected at multiple scales, corresponding to different sized regions
of local support [Manmatha and Sawhney 1997]. While we have
shown an automatic segmentation algorithm that extract symme-
tries of large parts of the model hierarchically, interesting local
symmetries may “be drowned” and not found during this process.
A multi-resolution scheme, where the PRST is computed on local
sections of the model would be interesting to investigate.

Finally, since the PRST is a 3D→ 3D mapping, we raise the ques-
tion of whether the transform is invertible. While at first glance
the transform is composed of operations that cause irrecoverable
loss of information, precluding inversion, we believe that there are
strong constraints provided by, for example, the requirement that
the model be bounded (i.e. that the function is zero at the bound-
ary) that make inversion possible. Using these constraints we can
already show that the transform is invertible in the 1D and 2D cases,
and we believe we can extend this to 3D. The inversion is currently
sensitive to noise however, so further research is necessary to deter-
mine if additional constraints or stronger variational relations might
make our method practical. We hypothesize that the ability to invert
the transform will lead to applications in a variety of domains, with
the ability to not only analyze but also synthesize symmetries.

7 Summary

In summary, we have defined the planar reflective symmetry trans-
form, which measures the symmetry of an object with respect to
all planes through its bounding volume. We have described an ef-
ficient Monte Carlo algorithm for computing the transform for sur-
face meshes, shown that it is stable under small perturbations, and
investigated its utility for several geometric processing applications.
In particular, we propose that the center of symmetry and principal
symmetry axes are useful for aligning 3D objects in a common coor-
dinate frame. We also show that the reflective symmetry transform
can be used for registering 3D range scans into a common coor-
dinate system, matching 3D polygonal models of the same class,
segmenting 3D models into parts, and finding good viewpoints for
visualization of meshes. In future work, we hope to investigate
other variants of the symmetry transform and their applications for
geometric processing.
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