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PAULO B. LOURENhO,1,*,** RENË DE BORST1,2 AND JAN G. ROTS1,3

1Delft ºniversity of ¹echnology, Faculty of Civil Engineering, P.O. Box 5048, N¸-2600 GA Delft, ¹he Netherlands
2Eindhoven ºniversity of ¹echnology, Faculty of Mechanical Engineering, ¹he Netherlands

3¹NO Building and Construction Research, P.O. Box 49, N¸-2600 AA Delft, ¹he Netherlands

ABSTRACT

A plane stress model has been developed for quasi-brittle orthotropic materials. The theory of plasticity,
which is adopted to describe the inelastic behaviour, utilizes modern algorithmic concepts, including an
implicit Euler backward return mapping scheme, a local Newton—Raphson method and a consistent
tangential stiffness matrix. The model is capable of predicting independent responses along the material
axes. It features a tensile fracture energy and a compressive fracture energy, which are different for each
material axis. A comparison between calculated and experimental results in masonry shear walls shows that
a successful implementation has been achieved. ( 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A large number of anisotropic materials exist in engineering such as masonry, plastics, wood and
most composites. The framework of plasticity theory is general enough to apply to both isotropic
and anisotropic behaviour. Indeed, the past decade has witnessed numerous publications on
sound numerical implementations of isotropic plasticity models. Nevertheless, it appears that,
while some anisotropic plasticity models have been proposed from purely theoretical and
experimental standpoints,1~3 only a few numerical implementations and calculations have
actually been carried out. Examples include the work of de Borst and Feenstra4 and Schellekens
and de Borst5 who fully treated the implementation of elastic—perfectly-plastic Hill and Hoffman
criteria, respectively. In these publications hardening behaviour has been simulated with the
fraction model of Besseling.6 More recently, linear tensorial hardening has been incorporated in
the Hill criterion7 and linear hardening has been implemented in a modified (pressure dependent)
von Mises criterion to fit either the uniaxial tensile or the compressive behaviour.8



*The word type is used here because Hill1 adopted a three-dimensional formulation. In plane stress conditions, the
influence of the out-of-plane direction is generally unknown and it will not be considered in this study. The yield criterion
adopted should, in fact, be considered as a particular case of the complete quadratic formulation from Tsai and Wu3
sThe word type is used here because the Rankine criterion represents the material strength along the maximum principal
stress. For an anisotropic material such definition is clearly not possible. The proposed yield criterion for tension will be
derived from the original Rankine criterion but represents solely a fit of experimental results

Figure 1. Proposed composite yield criterion with iso-shear stress lines. Different strength values for tension and
compression are assumed along each material axis

It is not surprising that only a few anisotropic models have been implemented and tested
successfully. An accurate analysis of anisotropic materials requires a description for all stress
states. Difficulties arise due to the fact that few experimental results are generally available (for
pre-peak and for post-peak behaviour), but also due to the intrinsic complexity of formulating
anisotropic inelastic behaviour. The yield criterion proposed in the present study combines the
advantages of modern plasticity concepts with a powerful representation of anisotropic material
behaviour, which includes different hardening/softening behaviour along each material axis.

The composite yield criterion proposed here is suitable for the modelling of anisotropic
materials under plane stress conditions and consists of an extension of conventional formulations
for isotropic quasi-brittle materials to describe orthotropic behaviour. Individual yield criteria
are considered for tension and compression, describing different failure mechanisms. The first
criterion is associated with a localised fracture process, namely cracking of the material, and the
second criterion is associated with a more distributed fracture process which is usually named
crushing of the material. The yield criterion represents a step further in the work of Feenstra and de
Borst,9 who utilised this approach for concrete with a Rankine and a Drucker—Prager criterion.

In order to model orthotropic material behaviour, we purpose a Hill-type* criterion for
compression and a Rankine-types criterion for tension, see Figure 1. The internal damage due to
these failure mechanisms is represented with two internal parameters, one for damage in tension
and one for damage in compression. The model is formulated in such a way that each internal
parameter is related to two independent fracture energies along each material axis.

2. DISCRETIZATION ASPECTS OF SOFTENING MATERIALS

Early applications of finite element analysis to the mechanics of quasi-brittle materials adopted
a sudden drop to a zero stress level upon violation of the tensile and compressive strength.
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Carefully executed experiments using servo-controlled equipment soon revealed that this
assumptions were erroneous, since a descending branch was observed. For this reason, ‘softening’
stress—strain relations were adopted, in which the stress was made a descending function of the
strain. The assumption of a stress—strain relation directly related to the experiments resulted in
analysis governed by the finite element mesh. This problem has been solved by relating the
softening stress—strain relations to the element size.10~12

Note that no argument is given here about strain softening localisation and mesh dependency.
The authors recognise that the problem of mesh objectivity is not completed solved by this
‘energy’ approach. But, for tensile cracking, the concept of energy dissipation, the fracture
energy G

&
, has been extensively used in finite element calculations and can be considered

as accepted in the engineering community. With the assumption that the fracture energy is
uniformly dissipated in a representative area of the structure, the equivalent length h, the finite
element calculations will lead to objective results with regard to mesh refinement. Thus, in the
following, the softening behaviour will be modelled with a smeared approach in which the
damaged material is still considered as a continuum. With this assumption, the localized damage
can be represented by the scalar i, which is related by an equivalent length to the released energy
per unit cracked area, G

&
.

In the present article, the concept of released energy and equivalent length is also applied to
model compressive behaviour by introducing a compressive fracture energy G

#
, although it is

recognized that compressive failure is physically more a volume-driven process than a surface-
driven process. This equivalent concept for compressive loading13,14 is not a widespread idea in
the engineering community but it is fundamental to obtain mesh objective results.9 It remains to
be demonstrated if the compressive fracture energy is a material or a structural property,14
a consequence of the current limitations of computational tools to trace each and every tensile
crack preceding the discontinuities at collapse,13 or a numerical artifice aimed at mesh insensitiv-
ity.15

In a finite element calculation the equivalent length h, corresponds to a representative
dimension of the mesh size so that the results obtained are objective with regard to mesh
refinement. The equivalent length depends, at least, on the chosen element type, element size,
element shape, integration scheme and even on the particular problem considered. In this study it
is assumed that the equivalent length is related to the area of an element

h"a
h
JA

e
"a

h A
nm
+
m/1

ng
+
g/1

det(J)wmwgB
1@2

(1)

in which wm and wg are the weight factors of the Gaussian integration rule as it is tacitly assumed
that the elements are always integrated numerically. The local, isoparametric coordinates of the
integration points are given by m and g. The factor a

h
is a modification factor which is equal to one

for quadratic elements and equal to J2 for linear elements. For straining not parallel to the mesh
lines, the above values give a good approximation.16

The inelastic work g
&@#

is defined by the integral

g
&@#
"P rT de"P rTde1 (2)

which corresponds to the area under the stress—strain diagram for uniaxial loading. Assuming
that the inelastic work g

&@#
is uniformly distributed over the equivalent length, the relation
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between the fracture energy G
&@#

and the work g
&@#

is given by

g
&@#
"

G
&@#
h

(3)

This results in a material model related to the energy which has to be dissipated due to the
irreversible damage in the material.

3. NUMERICAL IMPLEMENTATION OF THE PLASTICITY THEORY

In this study the finite element method is adopted to compute the structural behaviour.
A mathematical description of the material behaviour, which yields the relation between the
stress and strain tensor in a material point of the body, is necessary for this purpose. Such
a mathematical description is commonly named a constitutive model. The constitutive model
developed here will be cast in a plasticity framework with a phenomenological approach in which
the observed mechanisms are represented in such a fashion that simulations are in reasonable
agreement with experiments. Indeed, it is presently not (yet) possible to formulate constitutive
models which fully incorporate all the interacting mechanisms of a specific material. A simplified,
macroscopic representation is then more desirable, since it is believed that more insight can be
gained by tracing the entire response of a structure using a relatively simple model than modelling
it with a highly sophisticated material model or theory which does not result in a converged
solution close to and beyond the failure load.

The theory of plasticity is well established and sound numerical algorithms have been
developed.17 It is a natural constitutive description for metals, but it can also be used for
quasi-brittle cementitious materials loaded in triaxial compression and shear-compression prob-
lems where inelastic non-recoverable strains are observed. The incapability of the theory to
reproduce the elastic stiffness degradation of quasi-brittle materials subjected mainly to tension
cannot be accepted for cyclic loading. Nevertheless, good results have been found for monotonic
loading conditions.9,18

3.1. Rate formulation

A fundamental notion in the plasticity theory is the existence of a yield function that bounds
the elastic domain. Yielding can only occur if the stresses r satisfy the general yield criterion

f (r, pN (i))"0 (4)

where the yield stress value p6 is a function, commonly named hardening law, of the scalar i, which
is introduced as a measure for the amount of inelastic straining.

In general, it is very difficult to describe the material behaviour with a single yield surface in an
appropriate manner and one usually has to resort to the theory of multisurface plasticity. In this
case the elastic domain is defined by a number of functions f

i
(0 which define a composite yield

surface. Loading/unloading can be conveniently established in standard Kuhn—Tucker form by
means of the conditions

jQ
i
*0, f

i
)0, jQ

i
f
i
"0 (5)
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where jQ
i
is the plastic multiplier. Plastic behaviour is characterized by a non-unique stress—strain

relation with the presence of irreversible strains on load removal. This is obtained by the usual
decomposition of the strain rate vector e5 in an elastic, reversible part, e5 % and a plastic, irreversible
part, e5 1

e5 "e5 %#e5 1 (6)

where the elastic strain rate is related to the stress rate by the elastic (constitutive) stiffness matrix
D as

rR "De5 % (7)

and, for single surface plasticity, the assumption of a non-associated flow rule yields

e5 1"jQ
Lg

Lr
(8)

where g is a plastic potential. For the definitions of inelastic behaviour adopted in the present
article, it will be shown that a particularly simple expression is obtained, where

iR "jQ (9)

For multisurface plasticity corners exist at the intersection of the different yield surfaces. We
adopt a composite yield surface that is defined by two yield surfaces. According to Koiter’s
generalization,19 the plastic strain rate vector e5 1 in the corner is obtained from a linear
combination of the plastic strain rates of the two yield surfaces,

e5 1"e5 1
1
#e5 1

2
"jQ

1

Lg
1

Lr
#jQ

2

Lg
2

Lr
(10)

The yield surfaces will be assumed uncoupled because they represent different failure mechanisms.

3.2. Integration of the elastoplastic equations

The integration of the rate equations is a problem of evolution that can be regarded as follows.
At stage n the total strain field and the plastic strain field as well as the hardening parameter(s) are
known:

Me
n
, e1

n
, i

i,n
N (11)

The elastic strain and stress fields are regarded as dependent variables which can always be
obtained from the basic variables through the relations

e%
n
"e

n
!e1

n
, r

n
"De%

n
(12)

Therefore, the stress field at stage n#1 is computed once the strain field is known (in the
following the subscript n#1 will be generally dropped for convenience in the derivatives). The
problem is strain driven in the sense that the total strain vector e is trivially updated according to
the exact formula

e
n`1

"e
n
#*e

n`1
(13)

It remains to update the plastic strains and the hardening parameter(s). These quantities are
determined by integration of the flow rule(s) and hardening law(s) over the step nPn#1. In the
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frame of an implicit Euler backward algorithm this problem is transformed into a constrained
optimization problem governed by discrete Kuhn—Tucker conditions.17 The stability and accur-
acy of the Euler backward algorithm have been shown in different studies.4,5,20 For single surface
plasticity, this algorithm results in the following set of nonlinear equations in the presence of
yielding:

G
D~1(r

n`1
!r53*!-)#*e1

n`1
"0

f
n`1

(r
n`1

, i
n`1

)"0
(14)

in which *e1
n`1

reads

*e1
n`1

"*j
n`1

Lg

Lr K
n`1

(15)

and the elastic predictor step returns the value of the elastic trial stress r53*!- as

r53*!-"r
n
#D*e

n`1
(16)

The unknowns of the system of nonlinear equations are the components of the stress vector r
n`1

plus
the state variable *i

n`1
"*j

n`1
. The system is solved with a regular Newton—Raphson method.

For multisurface surface plasticity, the Euler backward algorithm results in the following set of
nonlinear equations in the presence of yielding:

G
D~1(r

n`1
!r53*!-)#*e1

1,n`1
#*e1

2,n`1
"0

f
1,n`1

(r
n`1

, i
1,n`1

)"0

f
2,n`1

(r
n`1

, i
2,n`1

)"0

(17)

in which *e1
1,n`1

and *e1
2,n`1

read

*e1
1,n`1

"*j
1,n`1

Lg
1

Lr K
n`1

*e1
2,n`1

"*j
2,n`1

Lg
2

Lr K
n`1

(18)

The unknowns of the system of nonlinear equations are the components of the stress vector
r
n`1

plus the state variables *i
1,n`1

"*j
1,n`1

and *i
2,n`1

"*j
2,n`1

. The system is again
solved with a regular Newton—Raphson method.

The problem that remains is how to determine whether only one or both yield surfaces are
active. The location of the corner, i.e. the intersection between the two yield surfaces, is unknown
at the beginning of the load step and the trial stress cannot provide a sufficient criterion to
determine which yield surfaces are active at the end of the load step.21 In the present study, a trial
and error procedure is used to solve the return mapping. It is assumed that the set of initial active
yield functions is the one defined by f 53*!-

i
*0.17 If, after the return mapping is completed, any

*j
i,n`1

(0 or f
i,n`1

'0 is found, the number of active yield surfaces is adjusted accordingly and
the return mapping is restarted. During this process, one restart may be required or, rarely and
only for larger increments, two restarts may be required before the correct number of active yield
surfaces is obtained.

3.3. Evaluation of the tangential stiffness matrix

The linearization of the equations arising from the finite element discretization yields the
tangential stiffness matrix, which plays a crucial role in the performance and the robustness of the
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Newton—Raphson method. It has been emphasized in the classical paper about consistent
tangential operators for computational plasticity22 that the tangential stiffness matrix at struc-
tural level must be obtained by consistent linearization of the stress update resulting from the
return mapping algorithm at the end of iteration n#1. According to equations (14) and (17) the
return mapping algorithm contains as unknowns the components of the stress vector r

n`1
and

some other state variables, namely *i
i,n`1

"*j
i,n`1

, which are conveniently collected in a vec-
tor of state variables q

n`1
. The number of components of q

n`1
, n

q
, is one for single surface

plasticity and two for the corner of a composite yield surface, cf. equations (14) and (17).
Linearization of equations (14) or equations (17) then yields

J G
dr

n`1
— — —

dq
n`1

H"C
J
np]np

D J
np]nq

— — — — # — — — —

J
nq]np

D J
nq]nq

D G
dr

n`1
— — —

dq
n`1

H"G
de

n`1
— — —

0 H (19)

where J is the Jacobian calculated previously to solve the return mapping and np is the number of
components of the stress vector r. Thus, the consistent tangential stiffness matrix D%1 can simply
be obtained as

D%1"
dr

n`1
de

n`1
K
n`1

"(J~1)
np]np

(20)

where (J~1)
np]np

is the top-left np]np submatrix of the inverse of the Jacobian J. This expression
for the consistent tangential stiffness matrix is generally applicable and is economical for complex
plasticity models since it employs the tangential stiffness matrix from the local Newton—Raphson
method for the return mapping to construct the consistent tangential stiffness matrix for the
Newton—Raphson procedure at structural level.

4. THE PROPOSED MATERIAL MODEL

4.1. A Rankine-type criterion

An adequate formulation of the Rankine criterion consists of a single function of the first
principal stress and an equivalent stress pN

5
which describes the softening behaviour of the

material23

f
1
"

p
x
#p

y
2

#SA
p
x
!p

y
2 B

2
#q2

xy
!pN

5
(i

5
) (21)

where the scalar i
5
controls the amount of softening. The assumption of isotropic softening is not

completely valid for quasi-brittle materials which can be loaded up to the tensile strength even if
damage has already occurred in the perpendicular direction. This problem can be solved partially
by using a kinematic softening formulation where the yield surface is shifted in the direction of the
first principal stress.23 However, if in a certain direction softening is completed and, subsequently
the material is loaded in a direction orthogonal to the previous loading direction, ideally plastic
behaviour is found in the new direction. This is because all the fracture energy has been consumed
during the opening of the first crack. A possible solution is the use of two independent softening
parameters to control the shifting of the yield surface. Such a formulation of the Rankine
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criterion, which reproduces exactly the material behaviour in tension, leads to a response that is
between the fixed and rotating crack models.24 Therefore, it has the benefit of a model with
memory and with a flexible shear response. Unfortunately, numerical difficulties18 preclude its
use in large scale computations.

In this contribution, a single scalar is used to control an orthotropic Rankine type criterion.
The scalar measures the amount of softening simultaneously in the two material axes, but the
model still incorporates two different fracture energies. The expression for the Rankine criterion,
cf. equation (21), is rewritten as

f
1
"

(p
x
!pN

5
(i

5
))#(p

y
!pN

5
(i

5
))

2
#SA

(p
x
!pN

5
(i

5
))!(p

y
!pN

5
(i

5
))

2 B
2
#q2

xy
(22)

where coupling exists between the stress components and the yield value. Setting forth
a Rankine-type yield surface for an orthotropic material, with different yield values along the x, y
directions pN

5x
and pN

5y
, is now straightforward if equation (22) is modified to

f
1
"

(p
x
!pN

5x
(i

5
))#(p

y
!pN

5y
(i

5
))

2
#SA

(p
x
!pN

5x
(i

5
))!(p

y
!pN

5y
(i

5
))

2 B
2
#aq2

xy
(23)

where the parameter a, which controls the shear stress contribution to failure, reads

a"
f
5x

f
5y

q2
u, 5

(24)

Here, f
5x

and f
5y

and q
u,5

are the uniaxial tensile strengths in the x, y directions and the pure shear
strength, respectively, see Figure 2. Note that the material axes are now fixed with respect to
a specific frame of reference and it shall be assumed that all stresses and strains for the
elastoplastic algorithm are given in the material reference axes, see also Section 4.4. Equation (23)
can be, advantageously, recast in a matrix form as

f
1
"(1

2
nTP

5
n )1@2#1

2
pTn (25)

where the projection matrix P
5
reads

P
5
"C

1
2

!1
2

0

!1
2

1
2

0

0 0 2a D (26)

the projection vector p reads

p"M1 1 0NT (27)

and the reduced stress vector n reads

n"r!g (28)

The stress vector r and the back stress vector g are given by

r"Mp
x

p
y

q
xy

NT
(29)

g"MpN
5x

(i
5
) pN

5y
(i

5
) 0NT
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Figure 2. Orthotropic Rankine-type criterion (shown for q
xy
*0)

Exponential tensile softening is considered for both equivalent stress-equivalent strain diagrams,
with different fracture energies (G

&x
and G

&y
) for each yield value, such that

pN
5x
" f

5x
exp A!

h f
5x

G
&x

i
5B , pN

5y
" f

5y
exp A!

h f
5y

G
&y

i
5B (30)

It is noted that the equivalent length h, cf. equation (1), can lead to snap-back behaviour at
constitutive level if the element size is large. Then, the concept of fracture energy which has been
assumed is no longer satisfied. In such a case, the strength limit would have to be reduced in order
to obtain an objective fracture energy. To prevent this from happening the equivalent length h is
bounded by

h)
G

&i
E
i

f 2
5i

(31)

where E
i
is the Young’s modulus and the subscript i refers to the material axis.

A non-associated plastic potential g
1

g
1
"(1

2
nTP

'
n)1@2#1

2
pTn (32)

is considered, where the projection matrix P
'

represents the original Rankine plastic flow and
reads

P
'
"C

1
2

!1
2

0

!1
2

1
2

0

0 0 2 D (33)

Note that for a"1, P
5
"P

'
. The description of the inelastic behaviour is then completed by

a softening hypothesis which involves the maximum principal plastic strain eR 1
1

iR
5
"eR 1

1
"

eR 1
x
#eR 1

y
2

#1
2
J(eR 1

x
!eR 1

y
)2#(cR 1

xy
)2 (34)
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This expression can be recast in a matrix form as

iR
5
"eR 1

1
"(1

2
(e5 1)TQe5 1)1@2#1

2
pTeR 1 (35)

where

Q"C
1
2

!1
2

0

!1
2

1
2

0

0 0 1
2
D (36)

which reduces to the particularly simple expression, cf. equation (9),

iR
5
"jQ

5
(37)

The return mapping algorithm, cf. equation (14), reduces to the following set of four equations
which contain four unknowns (the components of r

n`1
and *i

5,n`1
"*j

5,n`1
)

G
D~1(r

n`1
!r53*!-)#*j

5,n`1

Lg
1

Lr K
n`1

"0

f
1,n`1

"(1
2
nT
n`1

P
5
n
n`1

)1@2#1
2
pTn

n`1
"0

(38)

where D represents the symmetric orthotropic elasticity tensor. The Jacobian necessary for the
iterative local Newton—Raphson method can be elaborated as

J
n`1

"C
D~1#*j

5,n`1

L2g
1
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The above algorithm is not stable for the entire stress domain because the gradient of the
plastic potential in the apex, cf. equation (40)

2
, is not defined. Nevertheless, a quite simple

algorithm can be used for the apex regime because q
xy
"0. In this case, the stress update, cf.

equation (38)
1
, is simply a return mapping to the apex, independently of the trial stress value, and

reads

r
n`1

"g
n`1

(41)

The above stress update is sufficient to fulfill f
1,n`1

"0. It remains to update the softening scalar
according to equation (35). For this purpose a non-linear equation can be setup as follows:

F(*i
5,n`1

)"*i
5,n`1

!*e1
1,n`1

"*i
5,n`1

!(1
2
(*e1

n`1
)TQ*e1

n`1
)1@2#1

2
pT*e1

n`1
"0 (42)

where the increment of the plastic strain vector *e1
n`1

can be calculated from

*e1
n`1

"D~1(r53*!-!r
n`1

) (43)

The consistent tangential stiffness matrix is directly obtained from equation (20) for the
standard regime. For the apex, differentiation of the update equations yields, after algebraic
manipulation,
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with

L*i
5

Le1
"

Q*e1
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2(1
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)1@2

#1
2
p (45)

4.2. A Hill-type criterion

The simplest yield surface that features different compressive strengths ( f
#x

and f
#y

) along the
material axes is a rotated centered ellipsoid in the full plane stress space (p

x
, p

y
and q

xy
), see

Figure 3. The expression for such a quadric is

f
2
"Ap2

x
#Bp

x
p
y
#Cp2

y
#Dq2

xy
!1"0 (46)

where A, B, C and D are four material parameters such that B2!4AC(0, in order to ensure
convexity.

For the numerical implementation the yield function can be advantageously recast in a square
root matrix form and the variables can be defined in a more amenable way. For this purpose we
first introduce the additional material parameters b and c which determine the shape of the yield
surface. The parameter b controls the coupling between the normal stress values, i.e. rotates the
yield surface around the shear stress axis, and must be obtained from one additional experimental
test, e.g. a biaxial compression test with a unit ratio between the principal stresses. If this test is
used to obtain the parameter b, the collapse load under biaxial compression (p

x
"p

y
"!f

45° and
q
xy
"0) leads to

b"C
1

f 2
45°

!

1

f 2
#x

!

1

f 2
#y
D f

#x
f
#y

(47)
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Figure 3. The Hill-type criterion (shown for q
xy
*0)

The parameter c, which controls the shear stress contribution to failure, can be obtained from

c"
f
#x

f
#y

q2
u,#

(48)

where q
u,#

is the material pure shear strength according to this criterion. With the definition of
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where pN
#x

(i
#
) and pN

#y
(i

#
) are, respectively, the yield values along the material axes x and y, the

proposed yield surface can then be rewritten as
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where the projection matrix P
#
reads

P
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#
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and pN
#
is given by

pN
#
"JpN

#x
pN
#y

(52)

while the scalar i
#

controls the amount of hardening and softening. The adopted inelastic law
features parabolic hardening followed by parabolic/exponential softening and is used for both
equivalent stress-equivalent strain diagrams, with different compressive fracture energies (G

&#x
and G

&#y
) along the material axes. The problem of mesh objectivity for analyses with strain

softening materials is an intensely debated issue, at least for tensile behaviour, and in the present
approach the stress—strain diagram is adjusted according to the characteristic length h introduced
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Figure 4. Hardening/softening law for compression

in equation (1) to provide an objective energy dissipation. The inelastic law shown in Figure 4
features hardening, softening and a residual plateau of ideally plastic behaviour. The value of the
compressive fracture energy G

&#i
(shaded area in Figure 4) corresponds only to the local

contribution of the pN
#i
!i

#
diagram, where the subscript i refers to the material axis. The basis for

the above definition is numerical, in order to obtain objective results with regard to mesh
refinement.18

The value for the peak strength is assumed to be reached simultaneously for both materials
axes, i.e. isotropic hardening, followed by anisotropic softening governed by the different fracture
energies. A residual strength value is adopted to avoid a cumbersome code (precluding the
case when the compressive mode falls completely inside the tension mode) and to achieve
a more robust code (precluding degeneration of the yield surface to a point). For practical
reasons, it is assumed that all the stress values for the inelastic law are determined from the peak
value pN

1i
" f

#i
as follows: pN

ii
"1

3
f
#i
, pN

.i
"1

2
f
#i

and pN
3i
" 1

10
f
#i
. The equivalent plastic strain i

1
corresponding to the peak compressive strength is assumed to be an additional material
parameter. In order to obtain a mesh independent energy dissipation the parameter i

.i
(see

Figure 4) is given by

i
.i
"

75

67

G
&#i

h f
#i

#i
1

(53)

To avoid a possible snap-back at constitutive level, the condition

i
.i
*

f
#i

E
i

#i
1

(54)

is required.
An associated flow rule and a work-like hardening/softening hypothesis finally yield, cf.

equation (9),

iR
#
"

1

pN
#

rTeR 1"jQ
#

(55)
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The return mapping algorithm, cf. equation (14), reduces to the following set of four equations
which contain four unknowns (the components of r

n`1
and *i

#,n`1
"*j

#,n`1
)

G
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(56)

The set of equations can be reduced to one nonlinear equation,25 namely f
2
(*j

#,n`1
)"0.

This approach will not be followed here in order to obtain a consistent framework for the
several modes of the composite yield surface. Alternatively, the system of four non-linear
equations is solved with a regular Newton—Raphson method. The Jacobian necessary for this
procedure reads
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where
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The consistent tangential stiffness matrix is directly obtained from equation (20).

4.3. A composite yield criterion

The tension and compression yield criteria are now combined in a composite yield surface.
Assuming that the tension and compression regimes are uncoupled, the return mapping
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algorithm for the corner regime, cf. equation (17), reduces to the following set of five equations
which contain five unknowns (the components of r

n`1
, *i
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The Jacobian necessary for the iterative local Newton—Raphson method reads
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where all the terms have been defined in equations (40) and (58). The consistent tangential stiffness
matrix is again directly obtained from equation (20).

4.4. ¹he orientation of the material axes

For the sake of simplicity, the formulation of the plasticity model was presented based on the
assumption that the principal axes of orthotropy coincided with the frame of reference (local or
global) for stresses and strains in finite element computations. Since this is not necessarily the
case, such non-alignment effects must be taken into account.

Two different approaches can be followed. In the first approach, with each call to the plasticity
model, stresses, strains and, finally, consistent tangential stiffness matrices must be rotated
into and out of the material frame of reference, respectively, as pre- and post-processing.
In the second approach, before the analysis begins, the elastic stiffness matrix D, the projection
matrices P

5
, P

'
and P

#
, and the projection vectors p and g must be rotated from the material

frame of reference into the global frame of reference at each quadrature point, eliminating
the need of all subsequent rotation operations. The drawback of the latter approach is
that the matrices then lose their sparse nature, which tends to make algorithm developments
less clear and less efficient. For this reason, the plasticity model is implemented employing the
former option.
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Table I. Material properties for uniaxial tension test (a"1·0)

Material properties

E
x

10 000 N/mm2 E
y

5000 N/mm2

l
xy

0·2 G
xy

3000 N/mm2
f
5x

1·0 N/mm2 f
5y

0·5 N/mm2
Example 1 0·006 Nmm/mm2

G
&x

0·02 Nmm/mm2 G
&y

Example 2 0·01 Nmm/mm2
Example 3 #RNmm/mm2

5. THE INELASTIC BEHAVIOUR OF THE MODEL: ELEMENTARY TESTS

This section provides insight into the inelastic behaviour of the anisotropic composite yield
criterion. This is a relevant issue given the limited experience in using anisotropic plasticity
models and some inherent complexity of the proposed material model.

5.1. Orthotropic behaviour in uniaxial tension

The ability of the proposed model to represent tensile orthotropic behaviour is now discussed.
For this purpose, we consider a single element test, with dimensions 100]100 mm2, under pure
uniaxial tension. The material properties listed in Table I are assumed, where all the material
parameters in the y direction are reduced by a factor two (except the fracture energy) to simulate
orthotropic behaviour. For the fracture energy G

&y
, three different values are considered: 0·3 G

&x
(general case), 0·5 G

&x
(isotropic softening) and#R (elastic—perfectly-plastic behaviour).

The adopted values for the material parameters demonstrate that completely different behav-
iour along the two material axes can be reproduced, see Figure 5. Further insight into the
behaviour of the model can be obtained from Figure 6, which shows the evolution of the tensile
yield contour in the plane q

xy
"0 upon increasing softening. In the first example, the material

strength in the y direction degrades at a faster rate than the material strength in the x direction.
The second example yields isotropic softening, which means that degradation of f

5x
sub and f

5y
occurs at the same rate, i.e the ratio of strength along the material axes f

5x
/ f

5y
is constant during

any load history. In both examples, once the fracture energies are exhausted, a no-tension
material is recovered, see Figures 6(a) and 6(b). Finally, the third example yields elastic—perfectly-
plastic behaviour in the y direction while softening is allowed to occur in the x direction. This
means that the ratio of strength along the material axes tends to zero and the yield surface is only
allowed to shrink along the x-axis, see Figure 6(c).

5.2. Orthotropic behaviour in uniaxial compression

The ability of the proposed model to represent compressive orthotropic behaviour is now
discussed. For this purpose, we again consider a single element test, with dimensions
100]100 mm2, under pure uniaxial compression. The material properties listed in Table II are
assumed, where all the material parameters in the y direction are reduced by a factor two (except
the compressive fracture energy) to simulate orthotropic behaviour. For the compressive fracture
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Figure 5. Stress—strain response in uniaxial tension along the two material axes: (a) example 1 (general case); (b) example 2
(isotropic softening); (c) example 3 (elastic—perfectly-plastic behaviour in y direction)

energy G
&#y

, three different values are considered: 0·3 G
&#x

(general case), 0·5 G
&#x

(isotropic
softening) and#R (post-peak perfectly plastic behaviour).

Again, the values chosen for the material parameters illustrate the fact that completely different
behaviour along the two material axes can be reproduced, see Figure 7. Further insight into the
behaviour of the model can be obtained from Figure 8, which shows the evolution of the
compressive yield contour in the plane q

xy
"0 upon increasing softening. In the first example, the

material strength in the y direction degrades at a faster rate than the material strength in the
x direction. In the second example, degradation of the material strength in both directions occurs
with the same rate and isotropic softening is obtained. In both examples, the residual yield
surface, retrieved once the fracture energies are exhausted, is scaled from the peak yield surface
while maintaining its original shape. Finally, in the third example, degradation only occurs for the
material strength in the x direction, while a post-peak perfectly plastic behaviour is obtained in
the y direction. This means that the ratio of strength along the material axes tends to a constant
quasi-zero value and the residual yield surface has a different shape than the original one.

Note that, in the case of isotropic softening, the post-peak stress—strain diagrams under
uniaxial loading conditions along the two material axes, see Figure 7(b), are not scaled by a factor
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Figure 6. Evolution of the tensile criterion in the plane q
xy
"0 upon increasing softening: (a) example 1 (general case);

(b) example 2 (isotropic softening); (c) example 3 (elastic—perfectly-plastic behaviour in y direction)

Table II. Material properties for uniaxial compression test
(b"!1·0, c"3·0 and i

1
"0·0005)

Material properties

E
x

10 000 N/mm2 E
y

5000 N/mm2

l
xy

0·2 G
xy

3000 N/mm2
f
#x

10·0 N/mm2 f
#y

5·0 N/mm2
Example 1 1·5 Nmm/mm2

G
&#x

5·0 Nmm/mm2 G
&#y

Example 2 2·5 Nmm/mm2
Example 3 #RNmm/mm2

two. This is solely due to the definition of the softening scalar and the fact that the yield value pN
#
is

not equal to the uniaxial strength along each material axis. This also means that the definition of
the ‘compressive fracture energy’ can be questioned because a perfect equivalence in the stress-
strain diagram is not obtained. This limitation of the model can be easily solved, for example, if
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Figure 7. Stress—strain response in uniaxial compression along the two material axes: (a) example 1 (general case);
(b) example 2 (isotropic softening); (c) example 3 (post-peak perfectly plastic behavior in y direction)

a unit norm is used for the plastic flow vector and a strain softening hypothesis is used for the
softening scalar. The additional difficulty introduced in the formulation (iR

#
Oj0

#
) is not parti-

cularly difficult to solve but, with the usual lack of experimental results on the material inelastic
behaviour, the initial assumptions are advised in order to simplify the implementation.

6. EXAMPLES

As an example of the applicability of the model in the analysis of anisotropic structures, attention
is given to tests carried out in masonry shear walls at ETH Zurich.26 These experiments in hollow
clay brick masonry are well suited for the validation of the model because most of the material
parameters are available from biaxial tests. Figure 9 shows the geometry of the walls, which
consist of a masonry panel of 3600]2000]150 mm3 and two flanges of 150]2000]600 mm3.
Additional boundary conditions are given by two concrete slabs placed in the top and bottom of
the specimen. Initially, the wall is subjected to a vertical load p uniformly distributed over the
length of the wall. This is followed by the application of a horizontal force F on the top slab
causing a horizontal displacement d.
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Figure 8. Evolution of the compressive criterion in the plane q
xy
"0 upon increasing softening: (a) example 1 (general

case); (b) example 2 (isotropic softening); (c) example 3 (post-peak perfectly plastic behaviour in y direction)

A regular mesh of 24]15 four-noded quadrilaterals with full integration is used for the panel
and 2]15 cross diagonal patches of three-noded triangles are used for each flange. It is noted that
hybrid or mixed-type finite elements have not been employed on purpose because the danger of
spurious modes in non-linear calculations27 is far more important than computing the shear
stress wrongly in a linear elastic analysis with regular elements. The analyses are carried out with
indirect displacement control with line searches, and the snap-backs are traced with COD control
over the most active crack. It is noted that the self-weight of the wall and the top slab is also
considered in the analyses. Two walls from the experiments, W1 and W2, are analysed with the
composite plasticity model. The properties of the composite material are obtained from Ganz and
Thürlimann,28 see Tables III and IV. Note the extreme anisotropy of the material, which is not
due to the arrangement of the units and joints but it is due to the anisotropy of the hollow clay
bricks. The axes of orthotropy x—y coincide with the horizontal (bed) joints and vertical (head)
joints, respectively. Nevertheless, it is noted that the flanges have the width of a single unit and the
failure in the x direction (equivalent to the out-of-plane direction of the panel) is determined by
the tensile and compressive strength of the clay brick: f

5x
"0·68 N/mm2 and f

#x
"9·5 N/mm2.

The first wall, denoted by W1, is subjected to an initial vertical load p of 0·61 N/mm2. The
comparison between numerical and experimental load—displacement diagrams, for wall W1, is
given in Figure 10. Good agreement is found. The low initial vertical load combined with the
confinement provided by the flanges and the top concrete slab yields a very ductile behaviour.
The unloading found at d+2·0 mm is due to the mode I crack opening of the left flange.
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Figure 9. Geometry and loads for ETH Zurich shear walls

Table III. Walls W. elastic properties

E
x

E
y

l
xy

G
xy

2460 5460 0·18 1130
N/mm2 N/mm2 N/mm2

Table IV. Walls W. inelastic properties

Tension regime

f
5x

f
5y

a G
&x

G
&y

0·28 0·05 1·73 0·02 0·02
N/mm2 N/mm2 Nmm/mm2 Nmm/mm2

Compression regime

f
#x

f
#y

b c G
&#x

G
&#y

i
1

1·87 7·61 !1·05 1·20 5·0 10·0 8]10~4
N/mm2 N/mm2 Nmm/mm2 Nmm/mm2

The behaviour of the wall at ultimate stage is depicted in Figure 11 in terms of deformed
meshes and cracked Gauss points. The center node of the crossed diagonal patch of the flanges is
not shown in order to obtain a more legible picture. Cracks are plotted normal to the tensile
principal plastic strain directions with a thickness proportional to the tensile equivalent plastic

PLANE STRESS SOFTENING PLASTICITY MODEL 4053

( 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 4033—4057 (1997)



Figure 10. Wall W1. Load—displacement diagrams

Figure 11. Wall W1. Results of the analysis at a displacement of 12·0 (mm) (ultimate): (a) deformed mesh; (b) cracks

strain. The cracks for which the tensile principal plastic strain fall in the lowest 5 per cent values
have been discarded in order to obtain a more legible picture. At the ultimate stage, a well-defined
failure mechanism is formed with a final band going from one corner of the specimen to the other
and intersecting the flanges. This means that cracks rotate significantly after initiation into a sort
of shear band, which agrees well with the experiments.26 Failure is exclusively governed by the
tension regime.

The wall analysed next, denoted by W2, is subjected to an initial vertical load p of 1·91 N/mm2.
The comparison between numerical and experimental load—displacement diagrams is given in
Figure 12. From a qualitative perspective good agreement is found because the same trend is
observed in both diagrams. Remarkably, the explosive type of failure observed in the experiments
at a displacement of approximately 8·0 mm is also predicted by the analysis. Less good agreement
is found with respect to the calculated collapse load value, which is 20 per cent higher than the
experimental value. It is likely that the difference can be explained by the variation of the material
properties in compression between the biaxial tests and the wall.

The behaviour of the wall W2 at the ultimate stage, see Figure 13 for deformed meshes and
crack patterns, is quite different from the behaviour of wall W1. Two crack bands form which do
not concentrate in a single band because crushing of the bottom-right corner of the structure
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Figure 12. Wall W2. Load—displacement diagrams

Figure 13. Wall W2. Results of the analysis at a displacement of 8·0 (mm) (ultimate): (a) (incremental) deformed mesh;
(b) cracks

occurs first. This explosive type of failure, which is also observed in the experiments,26 has been
traced with arc-length control over the nodes in the bottom row of elements of the panel. Failure
is clearly governed by masonry crushing where, at the ultimate stage, the compressive strength of
the bottom-right corner of the panel is completely exhausted.

7. CONCLUSION

An anisotropic composite continuum model for plane stress structures has been formulated in
a modern computational plasticity format. It is assumed that two failure mechanisms can be
distinguished, one associated with localised fracture processes and one associated with a more
distributed fracture process which can be related to crushing of the material. The internal damage
due to these failure mechanisms can be represented with two internal parameters i

5
and i

#
for

damage in tension and compression, respectively. The model is formulated in such a way that
each internal parameter is related to two independent fracture energies along each material axis.
For this reason, it is possible to reproduce different inelastic behaviour along two orthogonal
directions.
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The softening model features a Rankine-type criterion for tension and a Hill-type criterion for
compression. A crucial point in the analysis of strain softening materials with a standard
continuum is the sensitivity of the results with respect to the mesh size. The fracture energy-based
regularization which has been adopted in this study is widely used in engineering practice to
overcome this problem. It has been shown elsewhere18 that mesh independent results are, indeed,
obtained with the proposed material model.

Good agreement has been found in a comparison between numerical results and experimental
data for masonry shear walls where both modes of the composite model (tension and compres-
sion) become active. The model has also proved to be quite robust because it was possible to
follow the complete load—deformation path until total degradation of the strength.
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