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A Planning-and-Control Framework for Aerial Manipulation of
Articulated Objects

Maximilian Brunner, Giuseppe Rizzi, Matthias Studiger, Roland Siegwart, Marco Tognon

Abstract— While the variety of applications for Aerial Ma-
nipulators (AMs) has increased over the last years, they are
mostly limited to push-and-slide tasks. More complex manip-
ulations of dynamic environments are poorly addressed and
still require handcrafted designs of hardware, control, and
trajectory planning. In this paper we focus on the active
manipulation of articulated objects with AMs. We present
a novel planning and control approach that allows the AM
to execute complex interaction maneuvers with as little as
possible priors given by the operator. Our framework combines
sampling-based predictive control to generate pose trajectories
with an impedance controller for compliant behaviours, applied
to a fully-actuated flying platform. The framework leverages a
physics engine to simulate the dynamics of the platform and
the environment in order to find optimal motions to execute
manipulation tasks. Experiments on two selected examples of
pulling open a door and of turning a valve show the feasibility
of the proposed approach.

I. INTRODUCTION

The advancement of aerial robotics in recent years has
come with increasing focus on aerial interaction tasks. The
underactuated nature of early micro aerial vehicles (MAVs)
initially allowed for simple tasks only. Examples are aerial
pick-and-place [1], [2] or exertion of light pushing forces
against flat and rigid structures for inspection or writing
tasks [3], [4]. To provide more flexibility during contact,
they can also be equipped with a compliant or articulated
robotic arm [5], [6].

The introduction of fully-actuated MAVs has opened a new
variety of possible interaction tasks and higher interaction
forces. The full actuation of an aerial manipulator (AM) al-
lows it to exert forces and torques (i.e., wrenches) in multiple
directions. This allows the platform to counteract a larger
range of reaction wrenches that appear during an interaction,
as well as to decouple linear and angular dynamics. Contact-
based inspection and push-and-slide operations with fully-
actuated MAVs with an end-effector rigidly connected to the
platform have been demonstrated in [7], [8], while [9], [10]
employed an articulated robotic arm.

While the community rapidly developed new aerial de-
signs as well as control approaches for aerial physical
interaction, the interaction tasks studied so far are limited
to static manipulation involving only pure touching between
the AMs and their environment [11]. On the other hand,
active manipulation, where the physical interaction leads to
a change of the environment, like for the manipulation of ar-
ticulated objects, still remains a mostly unexplored and open
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Fig. 1: An Aerial Manipulator equipped with a rigid end-
effector autonomously opening a door and turning a valve.

problem. This problem requires to address new challenges:
(i) The dynamic behavior of the manipulated object affects
the dynamics of the AM, which needs to be accounted for
by the controller; (ii) the execution of the task can require
or result in multiple switching contacts between the AM and
the environment, leading to a recurring change of dynamics;
(iii) to generate and execute safe interaction motions, the
system must consider the inherent instability as well as
geometric and actuation constraints of AMs. In this work,
we address these challenges providing a framework for AMs
enabling active manipulation of objects in a generalized,
optimal, and robust way.

A. Related work

In order to perform aerial manipulation tasks, e.g., opening
doors, drawers, or turning valves, the community firstly
relied on underactuated platforms equipped with a compliant
or articulated robotic arm. Opening a door with an under-
actuated platform was firstly achieved in [12], where the
authors developed a control strategy for a quadrotor that
is able to perch against a door to subsequently open it by
generating lift with its propellers. More recently, the work



in [13] uses a model predictive controller (MPC) to push
open a hinged door with an articulated end-effector (EE). The
coupled system AM-door (i.e., its kinematic constraints and
dynamics) is modeled using the Lagrange formalism. The
MPC then acts as a trajectory generator for the pose of the
platform and the robotic arm joints, where only the reference
attitude for the AM and the reference door angle is given.
This reference pose is tracked by a Disturbance-Observer
Based (DOB) controller. While the approach properly models
and optimizes the physical interaction, it is limited to the
modeled case of pushing a door at an arbitrary contact point.
It is also based on the strong assumption of a rigid connection
between the end-effector and the door, whereas experiments
show that this connection cannot be maintained. The authors
already propose to use an impedance controller to tackle this
issue in future work.

Another approach to open a door by pushing has been
presented in [14]. In this work an aerial manipulator is
integrated with a specific sensor and hardware setup to
control and detect the physical interaction required to open
a door. Positional uncertainties during the interaction are
compensated by a compliant non-rigid gripping mechanism.
The motion trajectory generation is tightly coupled with an
onboard camera and a force sensor to detect the door, and
to estimate the robot and contact state.

A solution to opening a drawer has been presented in [15].
In this work, a 2-degrees of freedom (DoF) manipulator
and control framework are designed to open and close
a drawer whose position and orientation is automatically
detected by an onboard camera. The controller equations are
directly derived from modeling the coupled system of the
manipulator and the drawer.

Finally, the task of turning a horizontal valve has been
addressed with an AM able to grasp the valve from the
top and and to turn it by executing a yaw-motion. [16]
applied this strategy using a quadrotor with a dedicated
grasping mechanism. More recently, [17] showed an aerial
manipulator designed as an aerial robotic chain, connecting
two underactuated MAVs. Once contact to the valve is
established through an electromagnetic gripper, the chain of
MAVs is commanded a reference angular velocity in order
to turn the valve.

All presented earlier works have in common the fact
that the control algorithm is specifically designed for the
respective task, either by modeling the dynamics analytically
or by generating references strongly relying on heuristics. As
a result, the controller is mostly only suitable for tasks with
low complexity, often requiring further engineering effort to
adapt it to slightly different scenarios.

MPC-based methods can reduce the amount of heuristics
needed, but they rely on differentiable models which mostly
have to be derived analytically. This derivation quickly
becomes intractable for certain tasks. In particular, modeling
contact forces and kinematic constraints for all possible
scenarios during interaction can be infeasible for complex
geometries of both object and AM. Recently, sampling-based
predictive control approaches, specifically Model Predictive
Path Integral Control (MPPI) [18], have been developed

which do not rely on analytical models. Instead, trajectories
are optimized by repeatedly sampling varying input trajecto-
ries (also referred to as rollouts) and simulating the resulting
system dynamics with a physics engine. By keeping only
the most successful rollouts, one obtains optimal trajectories.
This approach has been applied to robotic manipulation
tasks [19] (e.g., to open drawers), to drone racing with
simultaneous vision-based feature detection [20], and to
aggressive autonomous driving [18]. However, due to the
complex interaction dynamics of manipulation tasks and the
unstable nature of AMs, the direct transfer of MPPI to aerial
manipulation is not straightforward.

B. Contributions

We address the challenge of enabling autonomous aerial
manipulation of articulated objects with a fully-actuated
MAV equipped with a robotic end-effector. To this end,
we propose a new manipulation controller that combines
stochastic optimal control methods, which have already
proved successful in mobile manipulation, with a classical
impedance controller. We present a control architecture that
ensures a high control rate independent of the complexity
of the manipulation task at hand, despite potentially long
computation times of the optimization.

The sampling-based approach does not require an analyti-
cal model of the interaction dynamics and can handle multi-
ple and recurring contacts between the aerial manipulator and
the environment. Additionally, it allows for solving different
manipulation tasks with only minimum engineering effort.

The approach is applicable — but not limited to —
fully-actuated MAVs, characterized by their ability to exert
forces and torques in 6 DoF. We present the versatility of
the approach on two real-world experiments for the cases
of opening a door and turning a valve. We have chosen
these tasks as common benchmark manipulation tasks which
require both position and attitude changes. Furthermore,
instead of using customized manipulators for the individual
tasks, we employ a single generic end-effector. In contrast to
earlier works, this only allows non-rigid point-contacts with
its environment, making the interaction more challenging.
Finally, we show the reactivity of the method by applying
external disturbances that move the end-effector away from
the object. Still, the robot is able to re-gain contact and to
accomplish the task.

II. MODELING

We consider the challenging task of manipulating artic-
ulated objects with an AM. To address this problem, we
consider the following assumptions:
• The AM consists of a fully-actuated MAV with a rigidly

attached end-effector which enables it to interact with
its environment.

• Thanks to the full actuation of the AM, it can be mod-
eled as a rigid body floating in free space, controlled
by arbitrary bounded forces and torques (combined
as wrenches). This is a common simplification in the
related state of the art [7].

Preprint version, final version at http://ieeexplore.ieee.org/ 2 IEEE Robotics and Automation Letters 2022



• The dynamics of both the AM and the object, as well as
any present kinematic constraints, are known. We leave
the estimation of the object state and its dynamics to
future works.

In this section, we first introduce a generic model of
the aerial manipulator, as well as the object that is to be
manipulated.

A. Aerial manipulator

We use the following frames: The inertial world frame
is described by FW = {OW ,xW ,yW , zW } and the
frame fixed to the AM body is denoted by FB =
{OB ,xB ,yB , zB}.

We model the AM as a rigid body system which can
exert bounded forces and torques in arbitrary directions.
The mass of the platform is given by m and its iner-
tia by I = diag

[
Ixx Iyy Izz

]
. We combine the mass

and inertia into a single matrix called total inertia, J =
diag

[
m m m Ixx Iyy Izz

]
. We express the AM

pose by q ∈ SE (3), with its position given by r ∈ R3

in FW , its attitude by RB ∈ SO (3), and its twist (i.e., the
stacked linear and angular velocity) as t =

[
v> ω>

]> ∈
R6 expressed in FB . The AM is controlled by wrench inputs
wc ∈ R6 which are translated through an allocation method
into actuator commands for both rotor velocities and tilt
angles [21]. The AM dynamics can be modeled following
the common Newton-Euler approach1:

ṙ = RBv (1)

ṘB = RB [ω]× (2)

Jṫ+C(t)t+mg = wc +wext, (3)

with g ∈ R6 as the gravity vector in FB and wext ∈ R6

representing any external wrenches. The cross terms matrix
C(t) ∈ R6×6 captures kinematic effects:

C(t) =

[
[ω]× 03×3
03×3 − [Iω]×

]
. (4)

Defining the states of the AM as x =
[
q>, t>

]>
we can

then write its dynamics as ẋ = fR(x,wc,wext).

B. Articulated object

We describe the state of the object by o ∈ Rno , with no as
the number of DoF of the object. In this paper we consider
two different objects, namely a door and a valve. As both
have a single revolute joint, we have in both cases no = 1,
and we use an angle to describe their state, with od ∈ [0, 90◦]
for the door and ov ∈ R for the valve.

III. MODEL PREDICTIVE PATH INTEGRAL CONTROL

In order to execute a manipulation task, different ap-
proaches could be devised: (i) Heuristic handcrafted trajec-
tory planning according to the task, as it has been applied
in [14] to pull open a door. Depending on the task com-
plexity, this approach can provide a feasible trajectory for

1We use [·]× : R3 → so(3) to denote the skew-symmetric operator and
the vee-map (·)∨ : so(3)→ R3 for its inverse.

performing the task. In case of more complex scenarios with
possibly multiple contact points or changes of dynamics, it
can quickly turn out infeasible and not robust. (ii) Model
Predictive Control (MPC): This method can optimize the
direct control inputs or the reference trajectory to achieve a
desired object state. The advantage of using MPC is that — if
the model and the objective function are well designed — it
can result in optimal trajectories that do not require heuristics
about the optimal interaction procedure. However, it relies
on analytical models of the platform, the object, and the
interaction behavior. [13] applied this method to push open
a door, where the connection between the AM and the door
were modeled by a kinematic constraint. Transitions between
free flight and interaction, resulting in varying dynamics,
have to be specifically distinguished and handled in the
controller.

As opposed to analytical MPC, we follow a sampling-
based model predictive approach. Instead of relying on
differentiable system dynamics, this method samples input
trajectories according to a probability distribution and applies
them to a dynamic model to generate the corresponding state
trajectories. We then employ methods from Stochastic Con-
trol to find an input distribution that optimizes an objective
function.

Mathematical formulation of MPPI
Model Predictive Path Integral Control (MPPI) [19], [22]

is a control method that aims to minimize a cost function
represented by the cumulative expected cost over an infinite
future time horizon. We define h : X × X ∗ × U → R≥0 as
the objective function to minimize, with x ∈ X representing
the system states, x∗ ∈ X ∗ the state reference, u ∈ U the
inputs to the system, and f : X × U → X a continuous
function that describes the state dynamics. We want to find an
optimal control policy that minimizes the expected infinite-
time horizon cost starting at time t0, given that the inputs
are distributed according to a feedback policy distribution
ut ∼ πθ:

min
θ

Eπθ

 ∞∫
t0

h(x∗t ,xt,ut) dt


s.t. ẋt = f(xt,ut)

ut ∼ πθ(xt)

xt ∈ X , ut ∈ U ,

(5)

where Eπθ
(·) is the expectation value of the infinite time

horizon cost and θ is a vector that parameterizes the distri-
bution πθ.

The problem (5) can be simplified and rewritten as a
discrete finite time horizon problem with N prediction
steps and discretization time δt, resulting in a predic-
tion horizon of T = N · δt. Let a sequence of con-
trol inputs be Ut = {ut,ut+δt, . . . ,ut+(N−1)δt}, where
the input sequence is sampled from a distribution Ut ∼{
πθt , πθt+δt , . . . , πθt+(N−1)δt

}
= πθ. We define the vector

θ as the collection of all distribution parameters for each
timestep, i.e., θ =

{
θt,θt+δt, . . . ,θt+(N−1)δt

}
. Further-

more, let Xt = {xt,xt+δt, . . . ,xt+T } be the sequence of
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states obtained from applying the input sequence Ut to the
system. The expected cost in (5) can then be approximated
by

Eπθ

 ∞∫
t0

h(x∗t ,xt,ut) dt


≈ Eπθ

[
cterm(x∗t+T ,xt+T ) +

t0+T−δt∑
t=t0

c(x∗t ,xt,ut))

]
︸ ︷︷ ︸

J(Xt,Ut)

.

(6)

The time-discretized cost function is represented by
c(x∗t ,xt,ut) as the stage cost and the terminal cost
cterm(x∗t+T ,xt+T ).

We minimize (6) by following a Bayesian approach similar
to [23]. We map the expected cost through an exponen-
tial function to a pseudo success likelihood J (Xt, Ut) =
exp(−λJ(Xt, Ut)), where λ determines the scaling between
the cost function and the success likelihood. We then find the
optimal distribution parameters which maximize the expected
log-likelihood of the resulting trajectory through stochastic
gradient descent (SGD):

θi+1 = θi + ρ∇θ logEπθ
[J (Xt, Ut)] , (7)

where ρ is the step size. We model the input distribution πθ
as a multivariate Gaussian distribution πθt = N (µt,Σ) with
µt = θt and constant diagonal variance Σ ∈ Rnu×nu . This
choice ensures that consecutive trajectories do not exhibit a
too high variability. The input mean is initialized at zero and
then warm started from the previous optimization iteration.

IV. PLANNING AND CONTROL FRAMEWORK

We aim to use the proposed MPPI controller to execute
aerial manipulation tasks in an optimal way. In this regard we
face the following challenge: An AM is a highly dynamic
system with — depending on its configuration — a large
number of control inputs. Its inherent instability commonly
requires a consistently high control rate of ≥ 100 Hz. On
the other hand, the complexity of solving the MPPI problem
highly depends on the size of its state and input space, as
well as on the speed at which the system dynamics can be
computed. As a result, optimization times can be too slow
or have a too high variance, prohibiting the optimization of
direct actuator commands.

In order to mitigate the influence of varying optimization
times and to maintain a high control rate, we propose a
cascaded control architecture: (i) The MPPI controller acts
as a trajectory planner to generate state references for the
AM. It updates the policy through (7) continuously and
always uses the most recent state estimate as initial state. It
finds optimal trajectories by sampling reference accelerations
and outputs the most recent optimal acceleration rollout
at a fixed rate. (ii) Each reference acceleration rollout is
integrated twice to obtain a full state reference trajectory.
(iii) The optimized reference trajectories are tracked by an
impedance controller which runs at a constant high rate.

This not only ensures a sufficiently high rate to control
the platform, but it also renders its dynamics as a 6-DoF
impedance, ensures compliance with the environment, and
simplifies the dynamics used in the MPPI. Figure 2 illustrates
the entire control block diagram.

A. Impedance control
The impedance controller ensures that the AM closed-loop

dynamics can be rendered as the dynamics of a second-
order system with a desired impedance. This is driven by
the external wrench wext ∈ R6 and a reference state xr that
comprises the reference pose qr ∈ SE (3), twist tr ∈ R6, and
acceleration ar ∈ R6, respectively. The desired closed-loop
error dynamics are:

Jv ṫe +Dvte +Kvqe = wext, (8)

which is characterized by the virtual total inertia Jv ∈ R6×6,
the virtual damping Dv ∈ R6×6, and the virtual stiffness
Kv ∈ R6×6. The pose, twist, and acceleration errors are
computed according to the geometric tracking controller
[24]:

qe =

[
re
θe

]
=

[
R>B(r − rr)

1
2

(
R>B,rRB −R>BRB,r

)∨]
te =

[
ve
ωe

]
=

[
v − vr

ω −R>BRB,rωr

]
ṫe = ṫ− ar.

(9)

Assuming that we have an estimate of the external wrench
ŵext (e.g., through a disturbance observer), we can then
compute the impedance control law as

wc =
(
JJv

−1 − I6
)
ŵext − JJv−1(Dvte +Kvqe)

+C(t)t+ Jar +mg, (10)

which, when applied to (3), results in the desired dynam-
ics (8). We write the dynamics of the impedance-controlled
AM in a more compact form as a function of the reference
states and external wrenches:

ẋ = fimp(x,xr,wext). (11)

Remark: During interaction with articulated objects, the
external wrench is a function of the AM and object states,
i.e., wext = fo(x,o).

B. State augmentation with reference states

With ar =
[
v̇>r ω̇>r

]>
as reference acceleration we can

derive the dynamics of the reference states which are simply
given by the double integration:

tr(t) =

[
vr
ωr

]
=

∫ t

0

ar(τ)dτ (12a)

rr =

∫ t

0

vr(τ)dτ (12b)

RB,r =

∫ t

0

RB,r(τ) [ωr(τ)]× dτ, (12c)

which can be written as the reference state dynamics

ẋ∗ = fr(x
∗,ar). (13)
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Fig. 2: Control block diagram including the MPPI optimizer and the impedance-controlled system. At each timestep tr the
MPPI releases the optimal reference trajectory Xr,tr = [xr(tr), . . . ,xr(tr + T )]. The impedance control loop, represented
by the block on the right, runs at a constant rate of rc.

We introduce an augmented state vector that comprises the
AM states x, the reference state xr, and the object state o:

x̃ =
[
x> x>r o>

]>
, (14)

and write the augmented system dynamics as

˙̃x = f̃(x̃,ar). (15)

Note that the dynamics are now purely driven by the refer-
ence acceleration ar. As we generally aim to control either
the AM pose or the object states, we also introduce the
augmented state reference

x̃∗ =
[
q∗> o∗>

]>
. (16)

Finally, we can use the augmented system dynamics (15) to
find optimal trajectories that bring the system to the desired
states represented by (16).

C. Objective function
We employ multiple objective costs to construct the overall

cost function c : X × X ∗ × U → R as presented in (6).
1) Pose cost: We use a pose cost function in order to

track a reference pose q∗ at all times. The reference pose is
used to navigate the platform to the point of interaction and
to maintain a certain orientation during the interaction. Note
that q∗ differs from qr as it is given by the user or another
higher level planner, whereas qr is generated by the MPPI.

cq = (q − q∗)>Qq(q − q∗), (17)

with Qq = blkdiag (QposI3, QattI3) to distinguish between
position and attitude weights. We employ high weights
during approach and retreat motions to improve free-flight
position accuracy, while lower weights (nearly zero) during
interaction.

2) Object cost: The object cost is simply driven by the
difference of the object state and its reference:

co = (o− o∗)>Qo(o− o∗). (18)

3) Distance to object: In order to provide some heuristic
information about the location of interaction we use a cost
component that penalizes the distance of the end-effector
from the object d = ‖rEE − ro‖ when a certain threshold
dmin is reached:

cd =

{
0 if d < dmin,

Qd(d− dmin) else.
(19)

4) Force reduction: Furthermore, we penalize large inter-
action forces between the AM and the object in order to
avoid too aggressive or infeasible interaction:

cf = Qff
>
i fi, (20)

where fi represents any interaction force. Note that fi is
a function of the augmented system state (14) and can be
extracted from the rollout dynamics.

5) Orthogonality: Specifically for the task of opening a
door, we introduce a cost component which aims to maintain
an orthogonal angle between the AM end-effector and the
door during interaction. This helps to guide the platform
towards opening the door by a pulling motion and to reduce
torques on the body center and is favorable due to the
relatively limited yaw torque of our experimental platform.

cor = Qor(1− cos(γ)), (21)

where γ ∈ [0, π2 ] is the angle between the door surface
normal and the rod.

D. MPPI as a control-aware trajectory planner

The MPPI optimizer solves the SGD in (7) by continu-
ously sampling input trajectories Ut, given the most recent
optimal distribution πθ. The corresponding state rollouts Xt

are then obtained by applying the inputs u = ar to the
augmented state dynamics (15) which are implemented in
the physics engine RaiSim [25]. Using the resulting state
rollout and the reference given by (14), we apply the cost
functions to compute the expected cost and update the
optimal distribution parameters. At each arrival of a new
state estimate the initial time t0 as well as initial state x0 are
reset to the most recent odometry. Since the MPPI simulates
the closed-loop system (both robot dynamics and impedance
controller), it acts as a control-aware trajectory planner.

Depending on the complexity of the geometry and col-
lisions between objects, the time ∆topt that is required to
obtain a new reference trajectory Xr,t can vary significantly
and is a priori unknown. The MPPI needs to account for
the fact that the impedance controller will only receive a
new trajectory after this uncertain amount of time. To this
end, we define a constant rate rr at which trajectories are
released to the impedance controller. This rate is chosen low
enough to allow the MPPI enough time budget to finish an
iteration even in complex scenarios. In the MPPI we ensure
that the reference trajectory does not change before the next
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tc1 + T tr2tr1tc2tc1

Xtc1

Xr,tc1
Xr,tc2

x(t)

xr(t)

Fig. 3: Illustration of actual pose (blue lines) and pose
reference rollouts (green lines), represented by Xtci

and
Xr,tci

, respectively. At each state estimate update at time
tci , new rollouts are generated. Dotted lines represent the
simulated state and reference state rollouts. The continuous
blue line represents the finally executed state trajectory x(t).
Reference state rollouts are only allowed to vary after the
next release, scheduled at each tr. The concatenation of
reference states results in the final reference trajectory, given
by xr(t).

scheduled release of a new trajectory at time tr2 by setting
the covariance to zero, i.e., Σ(t) = 0 ∀ t ∈ [tr1 , tr2 ]. That
way, we can ensure that the reference trajectory Xr,t is
equal in both the simulated rollout and the real system at all
times. Figure 3 illustrates this mechanism to ensure smooth
trajectories despite unknown optimization times. The final
trajectory results from a concatenation of optimal trajectories
Xr,tri

.

E. Cost scheduling/state machine

In order to enable a fully autonomous execution of the
task, we use a simple state machine to transition between
different phases.

1) During the approach phase only the pose cost is active
and the pose reference q∗ is set to a point close to the
point of interaction.

2) During the interaction phase the pose cost is reduced
and all other costs relevant for the task execution are
enabled.

3) During the retreat phase the weights are the same as
during the approach, with the pose reference set to a
point in sufficient distance from the object.

The state machine is triggered manually, it could however be
automatically triggered by the value of the cost function. This
state machine is represented in Fig. 2 by the planner control
block. The state of the mode (either free flight or interaction)
determines the weights applied in the optimizer.

V. EXPERIMENTS

In this section we evaluate the proposed framework based
on two selected interaction tasks: 1) Opening a door by
pulling on its handle, and 2) turning a valve around its
vertical rotation axis. Both tasks are performed using a
custom built AM with a rigid end-effector (see Fig. 1).

The AM is based on a symmetric hexacopter design, with
6 arms carrying double rotor groups. Each arm can be tilted

TABLE I: Impedance parameters.

Param Value
mv m = 4.4 kg
Iv I = diag [0.07, 0.08, 0.15] kgm2

Kv blkdiag (15I3, 60I3)
Dv blkdiag (5I3, 15I3)

TABLE II: MPPI weights used in experiments.

Param Free flight Door Valve
Qd 0.0 100 100

dmin [m] n/a 0.03 0.08
Qf 0.0 1.0 1.0
Qo 0.0 150 1.0
Qor n/a 100 n/a
Qpos 20 0.0 0.0
Qatt 10 0.0 10

individually through six separate servos that are mounted in
the center of the platform [7]. The end-effector is mounted
at the end of a rod in a horizontal distance of 60 cm from
the body center and has the shape of a hook with a length of
5 cm, pointing vertically down. Both the rod and the hook
are made from carbon fiber, only allowing small compliance
through bending.

The MPPI solver runs on an onboard Intel NUC computer,
generating trajectories ideally at a rate of rr = 10 Hz.
State estimation fuses pose measurements through a VICON
motion capture system and onboard IMU measurements. The
impedance controller runs at the same rate as state estimation
at rc = 250 Hz. It computes wrench commands which are
sent to an onboard Pixhawk flight controller, where the
allocation is performed to obtain the actuator commands. The
object states of either the door or the valve angle are obtained
through VICON measurements. The MPPI sampling time is
set to δt = 0.015 s and the rollout length is set to N = 66,
resulting in a horizon length of T = 0.99 s. State rollouts
are simulated in RaiSim, running 8 threads simultaneously.

For all experiments we use the same impedance controller
settings with parameters listed in Table I. Note that by setting
Jv = J we do not apply any external wrench estimates in
the controller. The optimization weight parameters are listed
in Table II.

A. Door opening

For the task of opening a door we consider a hinged
shelf door with a handle and only small friction in its hinge
joints. Note that both the door handle and the hook on the
AM are aligned vertically which requires the platform to
tilt in order to allow a proper grasp. We specify the object
reference as constant at o∗d = 90◦ (where od = 0◦ is fully
closed and 90◦ is fully open). The approach phase commands
a single reference pose that brings the end-effector close
to the handle, after which the MPPI mode is switched
to interaction. After a fixed duration of 20 s the mode is
switched back to free flight and a single retreat pose is
commanded.

Figure 4 shows three stages during the task execution.
The MPPI generates a trajectory which leads to a slight
roll of the AM such that it can insert the hook behind the
door handle. After having inserted the hook, the position
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Fig. 4: Three steps during the opening of a door with a
vertically aligned handle.

Door

Fig. 5: Top-down view of the motion during the opening of
the door. The approach and retreat trajectories are marked in
dashed purple and red, respectively. The colorbar shows the
time from the start of the manipulation task.

trajectory resembles a circular motion in a horizontal plane
which pulls the door open, maintaining contact between
the door handle and the hook. Figure 5 shows the entire
trajectory in a top-down view, including the approach and
the retreat phase. Figure 6 presents the evolution of the
individual cost components and the tracking of the door
reference angle. Once the interaction mode is enabled, the
object cost co causes the opening of the door. During this
motion the orthogonality cost cor ensures that the AM and
the door maintain an orthogonal angle. Although the distance
and force cost, cd and cf , are too small to be seen in the
figure, they are crucial for a proper execution: cd ensures
that the hook remains close to the door handle, guiding the
MPPI towards a feasible solution. cf keeps interaction forces
in a feasible range, avoiding too aggressive maneuvers. Also
note the pose cost before and after the interaction, causing
the approach and retreat of the AM to and away from the
door.

B. Valve turning

We use a custom built mock-up valve with a diameter
of 24 cm and unlimited rotation range. It is set up with a
vertical rotation axis, as shown in Fig. 1. Similar to the
previous experiment, after an approach phase we activate the
interaction mode and set the valve angle reference to either a
constant value or a dynamically updated value for continuous
rotation. Accordingly, we perform two experiments.

1) We command alternating angle references of 6 rad ≈
344◦ and 0 rad, respectively. Figure 7 shows the suc-
cessful reference angle tracking in six consecutive valve
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Fig. 6: Door cost components (top) and door angle tracking
(bottom). The area highlighted in blue represents the period
during which the interaction mode is enabled.
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Fig. 7: Valve rotations with alternating reference angles of
6 rad ≈ 344◦ and 0 rad. The references and interaction
modes are set manually.

rotations. The robot turns the valve by inserting the
hook in the valve plane and then performing a circular
position trajectory, thereby rotating the valve by pushing
and pulling horizontally on its spokes.

2) We command a continuous valve rotation and disturb
the end-effector by manually lifting it off the valve with
a stick. Figure 8 shows that the AM always successfully
resumes the task after each interruption.

Figure 9 illustrates the optimization times ∆topt required
by the MPPI to finish its iterations and the time differences
between the releases of subsequent trajectories. ∆topt signifi-
cantly increases during contact, but always stays well below
the trajectory length T , avoiding outages of references for
the impedance controller.

VI. CONCLUSION

In this work we provide a framework that enables the
robust execution of complex manipulation of articulated
objects with AMs. This is achieved by combining recent
advances in sampling-based optimal control with a classical
impedance controller. The control architecture autonomously
generates optimal trajectories for an AM to manipulate
an articulated object and to bring it to a desired state.
The dynamics are embedded in a physics engine which
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Fig. 8: Continuous valve rotation with disturbances. The
areas highlighted in red represent the disturbance periods.
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Fig. 9: Optimization times ∆topt and differences between
trajectory release times ∆tr. Although optimization times
sometimes exceed the targeted maximum time of 0.1 s, the
trajectory length of 0.99 s provides enough margin to provide
the impedance controller with new references at all times.

simulates contacts and interaction forces that appear during
manipulation tasks. In combination with a reference-tracking
impedance controller, our method abolishes the need for
analytical models and heuristic-based solutions. Experiments
show the ability to generate and track optimal trajectories to
accomplish different interaction tasks. They also show that
the framework is able to handle intermittent contacts and dis-
turbances effectively by re-planning trajectories accordingly.

Future work will focus on increasing the complexity of the
manipulation task as well as on increasing the robustness for
real-world scenarios. As for most model-based controllers,
this approach relies on an accurate description of the AM
and the object. Along this line, we aim to employ onboard
vision and tactile sensors to update the state and dynamics
estimates of the object within the simulator in real time.
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