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Abstract—Older adults with dementia often cannot remember 

how to complete activities of daily living and require a caregiver 
to aid them through the steps involved. The use of a 
computerized guidance system could potentially reduce the 
reliance on a caregiver. This paper examines the design and 
preliminary evaluation of a planning system that uses Markov 
decision processes (MDPs) to determine when and how to 
provide prompts to a user with dementia for guidance through 
the activity of handwashing. Results from the study suggest that 
MDPs can be applied effectively to this type of guidance problem. 
Considerations for the development of future guidance systems 
are presented.  

Index Terms—Markov decision process, dementia, 
autonomous guidance, activities of daily living 

I. INTRODUCTION 

A. Scope of Paper 
HIS paper presents the design and preliminary evaluation 
of a planning system that is a critical component of a 

larger information technology system to guide people with 
dementia through activities of daily living (ADLs). This 
planning system is built using a Markov decision process 
(MDP), a decision-theoretic model capable of taking into 
account both uncertainty in the effects of its actions and 
tradeoffs between competing short-term and long-term 
objectives when making decisions. The planning system 
discussed in this paper is designed to be integrated with the 
tracking system presented in [1], and a prompting system that 
is still under development. This paper evaluates the planning 
system independently of these other systems through the 
administration of an efficacy study involving professional 
caregivers. 
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B. Problem Definition 
There are currently 18 million people worldwide who are 

diagnosed with dementia, with numbers predicted to rise to 35 
million by 2050 [2]. These estimates reflect a combination of 
an increasing number of older adults and the prevalence of 
dementia doubling every five years in patients over the age of 
65 [3].  

Older adults with dementia often forget how to complete 
ADLs, such as handwashing, dressing, and toileting, and rely 
on assistance from a caregiver. When the care recipient 
encounters difficulties in ADL completion, a caregiver 
provides cues to the care recipient for the next step required to 
progress in the activity. If the level of dementia worsens, as 
occurs with conditions such as Alzheimer’s disease, the 
caregiver experiences greater feelings of burden as a result of 
increasing demands of caregiving duties. Generally, there 
comes a point where the caregiver feels s/he can no longer 
cope and the care recipient is permanently transferred to a 
long-term care facility.  

Assistive information technology has the potential to delay 
institutionalization by alleviating some caregiver duties while 
restoring partial autonomy to the care recipient [4,5]. One 
prospective application of assistive technology is through 
partial compensation of the memory loss that often 
accompanies dementia in older adults. A specific example of 
this application is assistance with ADL completion.  

C. Previous Devices to Support the Completion of Activities 
of Daily Living 

There have been several different types of aids designed to 
increase the independence of people with significant memory 
impairments by support of ADL completion. An example is 
the memory wallet, which was filled with pictures familiar to 
the user that served as cues for remembering tasks and people 
[6]. A touch screen program has been developed by Hoffman 
et al. [7] where the user is presented with a series of pictures 
of his/her surroundings and “touches” his/her way through a 
sequence of photos depicting step-by-step guidance through 
an activity. The electronic memory aid developed by Oriani et 
al. [8] allows a user or caregiver to pre-record messages, such 
as reminders on how to complete a task, which are played 
back to the user at prescribed times. Another electronic, 
handheld system developed by Levinson [9] uses classical 
(deterministic) planning algorithms to compute a “best” plan 
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for completion of an activity, and provides step-by-step 
guidance through tasks in the form of visual and audio cues. 
The Autominder System developed by Pollack et al. [10] uses 
dynamic Bayesian networks as an underlying domain model 
to coordinate pre-planned events in an attempt to ensure that 
scheduled tasks are executed without interfering with each 
other or with other activities, such as watching television. 
Pineau et. al. [11] have recently used a variant of partially 
observable Markov decision processes (POMDPs) to design 
the high level control system for “Nursebot”, an artificially 
intelligent robot designed to assist elderly people with daily 
activities. The robot primarily provides intelligent reminders 
regarding specific activities (like Autominder) but also 
engages in a certain degree of social interaction. 

While compensating for losses in memory function, these 
devices are still impractical for the more severely impaired 
population as they require user feedback, such as a button 
press or dialogue, to operate. This is an unreasonable 
expectation of this population as they are unlikely to 
remember how or why to respond to vague stimuli, such as a 
beeping alarm. It is also unreasonable to expect the caregiver 
to be continually interacting with the device, as this adds to 
his/her already extensive list of caregiving duties. If they are 
to be effective, devices aimed at aiding people with dementia 
must be able to operate autonomously, without any explicit 
feedback from the care recipient or the caregiver. 

D. Overview of Guidance System Project 
The planning system described in this paper is designed to 

be a part of a larger guidance system that the authors and their 
collaborators are currently developing.  The guidance system 
will unobtrusively monitor older adults with moderate-to-
severe dementia and provide autonomous guidance to assist in 
the completion of ADLs, in particular, handwashing. The 
activity of handwashing was chosen for three reasons: 1) 
handwashing is a problematic activity for the moderate-to-
severe dementia group; 2) handwashing is deemed relatively 
safe for clinical trials; and 3) it is anticipated that technology 
developed to model the activity of handwashing will be 
generalizable to other ADLs.  

The guidance system consists of three sub-systems; sensing, 
planning, and prompting. The sensing system uses a video 
camera and a computer vision to track the position of the 
user’s hands and the position of objects that are relevant to 
activity completion (e.g. the soap and the towel). Our previous 
work [1] describes an automated sensing system that will 
eventually be integrated with the planning system.  In this 
paper, we simulate the action of the sensing system using a 
human operator. Specifically, a human operator input the 
position of the hands for use by the planning system (as 
discussed further below). The planning system determines the 
prompt to be given based on the input provided by the sensing 
system.  The prompting system communicates the selected 
prompt to the user. In this paper, the prompting system was 
simulated by a human caregiver (who read the prompts 
provided by the planning system, as detailed below) to ensure 

integrity of the prompts heard by participants in the efficacy 
study. 

II. DEVELOPMENT OF THE PLANNING SYSTEM 

A. Planning System Criteria 
The following criteria were used to guide the design of the 

planning system. The planning system must be able to: 
1) operate without explicit feedback from the user or 

his/her caregiver, 
2) have a framework that is generalizable to other ADLs, 
3) detect user progress through the activity, 
4) capture enough of the washroom environment to 

appropriately guide the user through handwashing (i.e. 
correct identification of the next step in the task as well 
as timing and repetition of prompts), and 

5) handle user regression/departure from an appropriate 
sequence of steps required for handwashing completion. 

Criteria 3), 4), and 5) are the focus of this paper. Section III 
presents our efficacy study, designed to show how the MDP 
model fulfills these criteria. Results from the efficacy study 
are presented in Section IV and discussed in Section V.  
While criterion 1) is not directly addressed in this paper — the 
vision and planning systems were not tested directly, hence 
some human input was required — the prompting policy 
constructed by the planning system does not require explicit 
user or caregiver input or feedback. Criterion 2) must be 
answered by future research, as discussed in Section V.B. 

B. Markov Decision Processes (MDPs) 
MDPs have been widely used in both operations research 

[12] and artificial intelligence [13] to model and solve 
decision-theoretic planning problems—essentially providing a 
model of a system’s interactions with its environment and 
allowing one to construct appropriate policies to guide the 
system’s control of the environment. MDPs are attractive as a 
model for ADL assistance for several reasons. First, they can 
capture the underlying stochasticity of a domain. As such, the 
MDP framework naturally lends itself to a problem such as 
handwashing, where the outcomes of actions taken by the 
system are uncertain (e.g. the user may be prompted to turn 
the water off, but may dry his/her hands instead). Second, an 
MDP allows one to account for multiple, potentially 
conflicting objective criteria, both short- and long-term. For 
example, in ADL assistance technology, we would like to 
allow the user as much independence as possible (minimal  
prompting to the user and summoning of the caregiver); but at 
the same time, we want to ensure the activity is completed 
successfully. As a result, the MDP model has the potential to 
address all of the design criteria presented in Section II.A. For 
an in-depth discussion of the MDP concepts presented in this 
paper, refer to [12,13]. 

An MDP consists of the following components. A finite set 
of states S denotes the set of possible joint configurations of 
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the environment and system relevant to the prediction of the 
effects of actions and objective satisfaction. A finite set of 
actions A correspond to the actions available to the system that 
influence state. A transition function P: S x A → ∆(S) captures 
system dynamics, and reward function R: S x A→ℜ represents 
various objective criteria. In our model, a state is comprised of 
a combination of instantiations of each of the variables used to 
define the status of the planning system and its environment 
(these variables are discussed in detail below). Actions are 
simply the various prompting (and other) choices available to 
the system. If the system is in state s and takes action a, it will 
transition to future state s’ with a known probability P(s,a,s’). 
Rewards and costs (i.e. negative rewards) are incurred by the 
system for taking certain actions in particular states: R(a,s’) 
denotes the reward received for taking action a in states s.  

Given such a model of a domain, solving an MDP requires 
that one construct a policy that maximizes the long-term, 
discounted expected reward. More precisely, we focus our 
attention on stationary policies of the form π: S → A, where π 
(s) denotes the action to be taken when the system is in state s. 
For any state s, any such policy induces a distribution over the 
sequence of rewards to be received. Our goal is to construct a 
policy that maximizes the expected discounted value of such a 

reward stream over the infinite horizon: . 

Here R
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t denotes the reward received at time t and 0≤β<1 is a 
discount rate that ensures the sum of rewards is bounded.1 
The optimal policy can be constructed using any of a number 
of classic algorithms, based on either linear or dynamic 
programming [12]. The optimal policy can be computed 
offline (before the system is installed). Once we have the 
mapping associating specific actions with system states, the 
policy can be implemented online with minimal computation. 

One difficulty with using standard dynamic programming 
algorithms for solving MDPs in a domain like ours is state 
space size. Since our states are defined using a number of 
distinct variables as we see below, our state space is 
exponential in the number of systems variables. In our case, 
this leads to over 22 million states, rendering explicit 
representation of the model (dynamics and reward function), 
explicit representation of the policy, and solution by 
enumeration of the state space, all infeasible. Fortunately, our 
domain has considerable structure, which we can leverage in 
two different ways. First, dynamic Bayesian networks (DBNs) 
[13,14] allow compact representation of the model by 
exploiting various independences among features. Namely, 
independent relationships between variables do not need to be 
explicitly enumerated, significantly reducing the size and 
complexity of the model. Second, algebraic decision diagrams 
[15], capture regularities in the local distributions used by the 
DBN model, to simplify the representation of the model.  

 
 

1 The use of an infinite horizon accounts for the fact that the time at which 
an activity will be completed cannot be bounded a priori (if it will be cut off 
after a fixed period of time, a finite horizon could be used, though the infinite 
horizon model is still applicable). Discounting also associates greater value to 
quicker task completion. 

 
Fig. 1.  Plan graph for the activity of handwashing (adapted from [16]). The 
step “wet hands” was considered optional as liquid soap was used. Arcs 
representing possible paths for regression have been omitted for simplicity. 

 
We can then use a specialized dynamic programming method, 
SPUDD, which exploits this structure to construct an optimal 
policy without explicit state space enumeration [15]. 

C. Planning System Design 
Fig. 1 describes the steps and pathways used to describe the 

activity of handwashing. The critical steps in the handwashing 
activity are represented by nodes. The direction of the arrows 
represents progression through the handwashing activity from 
one (step) node to the next. Since there is more than one 
“correct” way to wash one’s hands, the plan graph in Fig. 1 
captures different acceptable sequences of steps by 
representing several alternate pathways. Any pathway the user 
follows from node A to either node I or K corresponds to a 
successful execution of the handwashing task. The 
handwashing activity is defined by the following variables, 
actions, and dynamics. 

1) Planning System Variables: Two environment variables 
are used to describe the observable values of the handwashing 
environment. HP denotes the user’s hand position (one of 
sink, tap, towel, soap, water, away) and WF denotes water 
flow (on or off). The different HP regions can be seen in Fig. 
2. The towel and soap regions are associated with the objects 
themselves, and will therefore move if these objects move. 
The model is designed to make decisions based solely on 
input corresponding to these environment variables, obviating 
the need for explicit user or caregiver interaction. While both 
HP and WF are dictated by a human operator in the trials 
reported in this paper, in the full systems, these values are 
determined by the vision system (and, as such, are subject to 
noise, as we discuss further in Section V.B). 
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Fig. 2.  Definition of HP variables (note “water” is located under the faucet 
nd is only applicable when water is flowing from the tap) a 

Activity status variables capture the user’s progression 
through the activity. PS (plan step: A to K) denotes the last 
successfully completed step, corresponding to the letters 
beside the step nodes in Fig. 1. If PS has a value of I or K, 
then the user has successfully completed handwashing. MPS 
(maximum plan step: A to K) denotes the maximum value of 
PS reached during the user’s current attempt at the activity.  If 
the value of PS does not occur later in the plan graph than the 
value of MPS, the user has regressed in the activity. 
MPSrepeat (maximum plan step repeat: yes, no) represents 
whether or not a user has previously visited the plan step 
currently being attempted. MPS and MPSrepeat are reset on 
completion of the activity. MPS and MPSrepeat are necessary 
for the calculation of the reward function, which is described 
later in this paper. 

History variables capture a history of the user’s behaviour 
and the system’s actions. These variables are NP, PL, LP, NW, 
Prog, and Reg. NP refers to the number of prompts (zero, one, 
two, three+) given during the current plan step and is reset to 
zero when PS changes. PL denotes the prompt level (minimal, 
moderate, specific) of the last prompt given, while LP denotes 
the direction of the last prompt that was given (water on, 
water off, use soap, wet hands, rinse hands, dry hands). NW 
refers to the number of time steps where no prompting action 
has been taken (zero, one, two, three, four+). NW increases 
when there is a user-driven, non-progressive change in state 
(e.g. the user moving his/her hands away from the towel when 
it is time to dry his/her hands) or when a defined amount of 
time has elapsed without a change in state, and is reset to  
whenever PS changes (either though completion of the step or 
regression in the activity) or Prog has the value yes (see 
below), to provide the user with a “fresh start” each time a 
step is attempted.  
Reg denotes how many times the user has regressed in the 
activity (zero, one, two, three+). The value of Reg increases if 
the step the user is currently attempting is earlier in the plan 
graph (Fig. 1) than the previously completed step. Finally, 
Prog (yes, no) indicates whether the user is progressing within 
the step s/he is attempting. The values of Prog and NW are 
determined by changes in the user’s hand position. 
Specifically, if a user’s hand moves towards the next area 
relevant to the step s/he is attempting, Prog equals yes and 

NW is reset to zero. If NW increases because a set amount of 
time  
 
Fig. 3. Example of how the probability of WF being “on”, P(WF=on), varies 
with the number of wait times (where NW = 2.5 s) when the previous action 
was to: give no prompt, prompt the user to turn the water on at the minimal 
level, and prompt the user to turn the water on at the specific level. 
 
has elapsed without a change of state or because the user’s 
hand moves to an area that is not conducive to step 
completion, Prog is set to no. 

These variables (through all combinations of instantiations 
of their values) results in a state space size of 22,302,720 
states. 

2) Planning System Actions: There are twenty actions 
available to the planning system. The system can prompt the 
user to attempt six different subtasks, namely turn the water 
on, turn the water off, use the soap, rinse hands, wet hands, or 
dry hands. Each of these prompts can be given at a minimal 
(e.g. “Use the soap”), moderate (e.g. “Use the pink soap”), or 
specific (e.g. “John, use the soap in the pink bottle”) level, for 
a total of eighteen possible prompting actions. Minimal 
prompts are designed to gently cue the user, whereas specific 
prompts are designed to get the user’s attention as well as 
provide the user with more details on how to complete a step. 
As such, specific level prompts are pre-recorded for each user 
so that they include his/her name. The system can also choose 
to take the action of doing nothing (i.e. simply observe the 
user) or to call the caregiver to intervene. 

3) Planning System Model Dynamics: The dynamics of the 
planning system were manually specified by one of the 
authors using prior knowledge of the domain, gained through 
extensive observation of a professional caregiver guiding ten 
subjects with dementia through handwashing [17]. Future 
work includes learning the parameters from data, as discussed 
in Section V.B. Because of the size of the state space (even 
exploiting sparsity in the transition matrices), it is impossible 
to specify all transition parameters in explicit form. 
Fortunately, the DBN representation we use allows the 
complete model to be specified with far fewer parameters, and 
provides for a very natural decomposition of the transition 
distribution function. 

The only stochastic dynamics involve the environment 
variables HP and WF. All other variables are updated 



TITB-00164-2004 
 

5

deterministically as a function of changes in the state of these 
variables or elapsed time. (For example, whether a particular 
plan step has been completed, calling for an increase in the 
variable PS, is a function of the current plan step and the two 
environment variables).  

For all steps in the activity, appropriate prompting actions 
increase the estimated probability of successful step 
completion as did giving prompts at higher levels of detail. An 
example of model dynamics is shown in Fig. 3, which depicts 
the probability of the user turning on the water, P(WF=on), as 
a function of time and the system prompting action, at a 
specific state (namely, when PS = A, WF=off, NP=0; note 
that this probability is independent of the status of any other 
variables when NP=0, a fact that is exploited by the DBN 
representation). If no prompt is given, this probability 
decreases over time. This reflects the decreasing likelihood of 
the user ever turning on the water if s/he doesn’t do so fairly 
quickly. The effects of minimal and specific prompting on this 
probability distribution are also shown in Fig. 3. Prompting 
makes it more likely that the patient will turn the water on. 
Waiting for one time step after prompting to turn on the water 
gives the user some time to comprehend and respond to the 
prompt. After this, there is a decline in P(WF=on) reflecting 
the probability that the user has forgotten the prompt or has 
otherwise lost his/her focus about the current step. Higher 
levels of prompting detail are assumed to result in higher user 
compliance, and therefore higher values of P(WF=on).  

Again, despite the fact that the model contains over 22 
million states (thus requiring roughly half a trillion state 
transition parameters for each pair of states), manual 
enumeration of the transition probabilities was possible by 
exploiting the DBN structure using intuitions such as those 
described above. 

 4) Reward Function: The reward function employed by 
the planning system can be seen in Table 1. This reward 
function exploits a standard additive decomposition, 
decomposing R(s,a) into a reward associated with each state 
and a cost (negative reward) associated with each action (with 
R(s,a) being the sum of the two. Because rewards are 
associated with specific state features rather than individual 
states, the reward function can be specified compactly as 
described in the table.  

A large reward is given when handwashing is considered 
complete (i.e. when PS equals I or K). A smaller reward is 
given the first time a new plan step is reached (the first arrival 
at a specific plan step occurs when MPSrepeat equals no). 
 

 

Table 1: Definition of reward function, R(s,a’), for MDP model. The reward
given to the system is dependent only on the action taken and the value of the
variables planStep and MPSrepeat. The reward is the sum of the state reward
and the action cost. 

    

Action planStep MPSrepeat Reward Value
None - - 0 

Minimal detail level - - -3 
Moderate detail level - - -5 
Specific detail level - - -7 

Call caregiver - - -1000 
- A,B,C,D,E,F,G,H,J No 3 

- I,K No 300 
- - Yes 0 

Structuring the reward function this way encourages the 
policy to complete the entire activity, but in cases where the 
completion odds are very low, to try to make as much 
progress as possible. Conditioning rewards for progress on 
MPSrepeat=no (as opposed to the PS variable) deters possible 
cyclical regression in guidance of the activity (so attempting 
to guide a person to complete a specific step multiple times 
will not be rewarded.) 

There is a small cost associated with prompting that is 
proportional to the level of detail of the prompt. By making 
this cost proportional to prompt specificity, we reward 
prompting that encourages increased user independence 
slightly more than prompting that is very specific. The overall 
effect of this (as embodied in the optimal policy) is that the 
system generally begins prompting the user at the minimal 
level, resorting to more detailed levels of prompting only if 
the user is not responding. This strategy is intended to provide 
the user with as much independence as possible.2

In general, summoning the caregiver is penalized, as 
executing this action is assumed to result in activity 
completion with aid from the human caregiver. Since our aim 
is to complete the task without human intervention if possible, 
this cost should be set high enough to deter this choice unless 
the probability of the user completing the activity in a 
reasonable period of time is sufficiently low, or of the costs of 
prompting are sufficiently high. The cost should generally be 
set lower than the value associated with task completion 
however, since the net reward attached to calling the caregiver 
at any point in time should be positive (otherwise the system 
will get greater value by simply doing nothing “forever”). 
Because of our experimental design, however, it was 
important that the caregiver never be called (since, as 
discussed below), we evaluate our system through a 
comparison with a human caregiver (which will not have this 
action in his/her repertoire). Thus the large penalty of -1000 
used made it impossible for the call caregiver action to occur 
in the optimal policy. This would not be the case the deployed 
guidance system, since calling the caregiver is an important 
option.  
The values shown in Table 1 were determined in an iterative 
process in which the reward function was successively altered 
until desired performance was attained, as qualitatively 
assessed through a series of simulated trials. The system was 
rewarded at each time step based on the action the system took 
and the values of MPSrepeat and planStep. Our reward 
function was designed to promote user independence, 
completion of overall task, and minimal regression by the 
user. One focus of our ongoing research is to involve 
caregivers in the refinement of this reward function through 

 
2 Naturally, the fact that the optimal policy starts out using less specific 

guidance depends critically on the systems dynamics as well. If minimal 
prompting had a very small probability of successfully inducing the user to 
complete a task step, it would be forgone in favor of an immediate, more 
specific prompt. This is discussed further in Section V.B. 
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the evaluation of the relative utility of possible outcomes. This 
study serves as a first step towards this goal. 

D. Computing the Policy and Using the Planning System 
The optimal policy is computed using a well-known 

algorithm called value iteration [12]. We used a factored, 
structured implementation of value iteration called SPUDD, 
which exploits the compact DBN representation of dynamics 
and the additive structure of the reward function, to compute 
the policy [15]. The optimal policy was computed in 64 
minutes and was represented with an algebraic decision 
diagram with 3284 internal nodes (in contrast, the explicit 
policy representation would have required over 22 million 
table entries to reflect the optimal action for each state). 

The planning system operates as follows.  Each time a 
change in the state is detected, the system consults the optimal 
policy and executes the action specified for the current state.  
To detect state changes, the current values of the state 
variables are deterministically calculated based on the action 
taken and the previous variable values, except for hand 
position (HP) and water flow (WF).  The values of HP and 
WF are normally obtained from sensors (i.e. video camera and 
water flow sensor), but for the purpose of evaluating the 
planning system in isolation and to achieve full observability, 
these were supplied by a human observer.  

III. DEVELOPMENT OF EFFICACY STUDY 

A. Objective of Efficacy Study  
The efficacy study evaluated the performance of the 

planning system according to the criteria in Section II.A. In 
the study, professional caregivers evaluated the effectiveness 
of the guidance strategies employed by the planning system 
and those of a human caregiver. Participants viewed videos of 
simulated handwashing scenarios and subsequently rated the 
effectiveness of the prompting s/he saw by completing a 
questionnaire. Both quantitative and qualitative data were 
captured. Trials were simulated (i.e. using an actor, as also 
conducted by [18]) at this point because the authors felt the 
technology should be proven and refined as much as possible 
before conducting clinical trials with real dementia subjects. 

Section III.B describes how the video trials recorded for the 
efficacy study were used to evaluate how well the MDP 
system detected the user’s progress through the handwashing 
activity (criterion 3). Section III.B also describes how the 
system handles user regression, illustrating it behaviour with a 
sample sequence (criterion 5). Section III.C describes how the 
efficacy study was designed to capture the appropriateness of 
MDP system guidance (criterion 4).  

B. Construction and Composition of Video Clips 
A researcher impersonated an individual with moderate-to-

severe dementia washing his hands. These handwashing 
scenarios were either guided by a human caregiver (human-
guided) or by the MDP planning system (MDP-guided) and 
were recorded as video clips using a camcorder mounted over 
the sink area. Both the researcher and the caregiver had 

extensive experience  interacting with people with dementia 
(over 30 years exposure apiece). In the human-guided 
scenarios, the caregiver was free to guide the actor through the 
activity of handwashing as she wished, provided that guidance 
was strictly verbal and she did not enter into the field of view 
of the camera. In the MDP-guided scenarios, the status of the 
actor’s hand position and water flow was input by a researcher 
directly to the MDP policy. The corresponding optimal action 
defined by the MDP was displayed as a script on a monitor, 
which the caregiver read aloud to the actor. The caregiver was 
instructed to read the entire prompting script verbatim as soon 
as it was displayed. A caregiver was used to read prompts, as 
opposed to using pre-recorded prompts, in an effort to ensure 
that the voice guiding the subjects in both the human-guided 
and MDP-guided scenarios sounded as similar as possible. 
When the optimal action was “nothing”, the monitor remained 
blank. Each scenario began when the actor was positioned at 
the sink and ended when his hands were successfully washed. 
To gauge how well the planning system addressed criterion 3) 
(defined in Section II.A), the operator checked to ensure that 
the visual observations of the user and the sink environment 
matched the appropriate PS value (depicted by Fig. 1) for each 
MDP scenario. 

Fig. 4 depicts snapshots of one of the MDP-guided 
scenarios used in the efficacy study. In this case, the 
handwashing subject is able to complete the steps of turning 
on the water (PS=B) and turning the water off (PS=K) 
independently. The subject ignores the prompt given to him at 
t=71s to dry his hands and regresses in the activity to PS=D 
by applying soap instead. The planning system copes with this 
regression (criterion 5 from Section II.A) by identifying that 
the subject has returned to PS=D, and prompts him to rinse 
his hands. The majority of the time the prompting screen 
remained blank, as portrayed at t=6s and t=55s, allowing the 
subject time to attempt each step on his own. We discuss this 
example further in Section V.A.  

Of the 33 recorded handwashing scenarios, six were 
randomly selected for evaluation in the efficacy study. Three 
of the scenarios were human-guided and three were MDP-
guided. In order to examine prompting strategies while 
ensuring that interviews would be an hour or less, scenarios 
included in the study had to: 1) be less than three minutes in 
length (deemed to be an appropriate amount of time from 
handwashing trials by [19] with nine subjects with dementia, 
which ranged between 50 seconds and four minutes); 2) not 
show undue amounts of the actor’s head or face, for privacy 
reasons; 3) demonstrate interaction between the actor and the 
prompter (i.e. the actor was not overly independent in activity 
completion); and 4) not have unnecessarily distracting 
behaviour (e.g. the actor throwing the towel at the caregiver at 
the end of a scenario).  

C. Questionnaire Design 
Professional caregivers (participants) were asked to fill out 

a questionnaire after each video clip was viewed, rating the 
effectiveness of the prompting s/he had observed. The 
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questionnaire was designed to capture both qualitative and 
quantitative data. The quantitative portion of the evaluation 
  

 
Fig. 4.  Sequence of events for a MDP-guided handwashing scenario used in 
the efficacy study, with accompanying PS references and MDP planning 

system prompts (note that the PS value refers to the last step that was 
completed) 

was accomplished through the completion of a five-point 
Likert rating scale [20] of five aspects of effectiveness. These 
aspects were: 
Identification - The prompt(s) given to the patient 

appropriately identified the next task in handwashing. 
Detail - The level of detail of the prompt(s) was appropriate 

for completion of the task. 
Time - The patient was given an appropriate amount of time to 

attempt the task before being prompted. 
Repetitions - The number of repetitions of the prompts was 

appropriate for completion of the task.  
Overall Effectiveness - The patient was guided effectively. 

The Identification, Time, and Repetition questions were 
designed to gauge criterion 3), namely how appropriately the 
planning system prompted the user. Detail was not considered 
part of the evaluation of this criterion, as the prompts are 
scripted and therefore a reflection of the wording of the 
predetermined prompting script as opposed to decision 
making by the system. Overall Effectiveness was also not 
included as this was considered to reflect the effectiveness of 
the system rather than the appropriateness of the prompting. 

The qualitative portion of the study consisted of a space at 
the bottom of each questionnaire page, where participants 
were encouraged to make any comments s/he had. After 
viewing all 
the video clips, participants were asked to fill out an 
“Evaluation Summary” sheet, which asked participants if they 
thought the prompting in the videos was believable (and if 
not, why not), if there were any specific aspects in the 
prompting strategies that could be improved upon, as well as 
any other comments the participant had.  

D. Administration of Efficacy Study  
There were 30 participants in the efficacy study, all of 

whom provided professional care (including guidance through 
ADLs) to people with dementia in long term care facilities at 
the time of the study. The researcher did not inform the 
participants that computer guidance was involved in any way. 
Each participant was interviewed individually, with the 
exception of participants S9 and S10 who were interviewed at 
the same time. During each interview, the researcher 
explained the study procedure to the participant, had the 
participant sign consent, and then proceeded to show video 
clips of the handwashing scenarios and administer the 
accompanying questionnaires. Video clips were shown to 
participants on a laptop computer, operated by the researcher. 
Participants were shown a full handwashing scenario and 
asked to fill out a questionnaire. S/he was then shown each 
step in the scenario s/he just saw (e.g. turning on the water, 
using the soap, etc.) and asked to fill out a questionnaire after 
watching each step. This procedure was repeated for the 
remaining five scenarios for a total of 31 questionnaires per 
participant. Scenarios were presented in a non-repeated, 
random order to ensure each participant viewed a unique 
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sequence of scenarios. Participants were invited to ask 
questions at any point during the interview. Interviews were 
conducted at the participant’s institution of employment and 
were approximately one hour in length.  

IV. RESULTS 

A. Quantitative Results 
An analysis of variance (ANOVA) was run to compare the 
ratings between the two guidance types for each aspect of 
effectiveness queried by the efficacy questionnaire. The 
results of this analysis can be seen in Fig. 5. As the human-
guided scenarios achieved higher ratings than the MDP-
guided scenarios for every aspect with high statistical 
confidence, it can be surmised that the overall prompting 
strategy employed by the human caregiver was considered by 
the participants in the study to be significantly more effective 
than the strategy employed by the planning system. There 
were no significant guidance*scenario [F(2,58)=2.89 Pα<0.76] 
or guidance*aspect [F(4,116)=0.80 Pα<0.52] interaction 
effects detected. 

Of 150 rating comparisons (five aspects for two guidance 
types rated by thirty subjects), there were eleven instances 
where MDP-guidance was given a higher rating than human-
guidance (specifically, three instances for Identification, two 
for Detail, four for Timing, two for Repetition, and zero for 
Overall effectiveness) and seventeen instances where the 
ratings were equivalent (three instances for Identification, four 
for Detail, three for Timing, five for Repetition, and two for 
Overall effectiveness). Eleven of the thirty participants 
recognized that there was an actor in the clips and six of thirty 
thought the scenarios were not believable. Four of the 
participants who considered the scenarios to be unbelievable 
also recognized that an actor was involved.  

B. Qualitative Results 
The following themes were the most common in 

commentary feedback from the caregiver participants, with 
the number of participants who made a relevant comment 
listed in brackets after the cited theme. Participants thought it 
was important when prompting a patient to consider: 

• the language construction of the prompts (22), 
• allowing the patient enough time for step completion 

(17), 
• turning the water off before asking a patient to dry his/her 

hands (13), 
 

Fig. 5.  Mean effectiveness rating per aspect of efficacy study for human 
and MDP guidance (Differences were significant with a Pα<0.0001) 
• the effectiveness of having visual cues to accompany 

verbal ones (13), 
• using prompts that are tailored to each individual patient’s 

abilities (12), 
• the use of positive feedback, a friendly voice, and being 

polite when prompting (11), 
• turning the water on before asking a patient to use the 

soap (7), and 
• checking the water temperature before the patient washes 

his/her hands (5). 
None of the comments suggested that the MDP-guided 

scenarios were more or less believable than the human-guided 
ones. There were also no comments made regarding any 
perceived differences in the tone of voice of the prompter 
between the MDP-guided and human-guided scenarios. 

V. DISCUSSION 

A. Interpretation of Results 
The higher ratings attained by the human-guided scenarios 

are particularly significant considering that none of the 
participants were told that there was computer guidance 
involved in any way. Since there were no specific comments 
about the believability or tone of voice in the MDP-guided 
scenarios, it is postulated that the discrepancies in the average 
rating of the effectiveness aspects were a result of the 
strategies used by the different guides in the scenarios. 
However, although the human-guided scenarios achieved 
higher ratings than the MDP-guided ones, this does not 
necessarily indicate that the planning system performed 
poorly. When the ratings are compared, the participants 
considered MDP-guidance of the subject in the scenarios to be 
as good as or better than human-guidance in 28 of 150 
instances (18.7 % of the ratings). Therefore the study indicates 
that, while participants felt the MDP-based planning system 
did not guide users as effectively as the human caregiver, the 
MDP-guided scenarios were still comparable in effectiveness 
to the human-guided ones. We now examine how this data 
supports the design criteria proposed in Section II.A. 

One of our claims was that the MDP system could 
appropriately guide the user through handwashing (criterion 
4). We feel that the relative performance of the MDP 
prompting system to that of a professional caregiver shown in 
Fig. 5 justifies this claim with modest success. This is all the 
more compelling when we consider that our goal is not to 
replace human caregivers completely, but rather to relieve the 
burden of caregiving by increasing the odds of independent 
task completion or simply making greater progress in the task 
before requiring assistance.  

Furthermore, the qualitative comments made by the 
participants provided insight into the areas that need further 
work to improve the appropriateness of the system’s guidance. 
For example, qualitative comments made by the participants 
included the sequencing of activity steps. Many participants 
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felt that turning the water on before asking a patient to use the 
soap or turning the water off before asking a patient to dry 
his/her hands provides a natural cue as to what the next step in 
the activity is and helps to avoid possible confusion. 
Suggestions were also made on ways the wording of the 
prompts could be made to be more effective. These comments 
give insight into plausible reasons why MDP guidance rated 
lower than human guidance and can be incorporated to 
improve future versions of the guidance system, as discussed 
in Section V.B. Note that many of these suggestions do not 
expose fundamental limitations of the MDP framework per se, 
but simply reflect specific modeling and prompting choices 
that can easily be incorporated without significant changes to 
the model itself. 

Some of the respondents did not feel the scenarios were 
believable and/or recognised the patient in the videos as an 
actor. One possible reason for this could be the lack of 
physical guidance or gesturing by the caregiver, which is 
commonly used to get attention when guiding people with 
dementia. When the respondents who thought the scenarios 
were unbelievable and/or identified the patient as an actor 
were removed, there was no change in the data trends and 
differences between human and MDP guidance were still 
significant (Pα<0.001).  

The MDP system also handled user regression in the task 
reasonably effectively (criterion 5 from Section II.A), as 
exemplified by the MDP scenario depicted in Fig. 4. This 
ability was given positive feedback by the study participants. 
Not only did the participants who gave feedback approve of 
the prompting action when regression was encountered, they 
also approved of the fact there was no reprimanding of the 
subject. For example, one reviewer commented, “Good - 
caregiver did not correct John, but went back to rinsing 
prompt.”  

User progress through the task was successfully identified 
by the planning system in the efficacy trials. This was done by 
matching the real-time PS values calculated by the MDP 
model to the observed status of the user and the handwashing 
environment, as discussed in Section III.B. The value of PS 
matched the conditions of the trial in every observed instance, 
satisfying criterion 3). 

Some of the comments made by the participants cannot be 
addressed through modifications to the current planning 
system, such as checking the temperature of the water and the 
ability for the system to respond to user queries. A concern 
such as water temperature could be addressed through 
adaptation of the environment, such as the installation of a 
water temperature regulation device on the faucet. It is 
unlikely that a system could have the capability of carrying on 
a conversation with the user using a pure MDP model. 
However, it would be valuable to be able to detect and react to 
certain key phrases from a user (e.g. “help”).  

B. Future Work 
The model for the planning system that is described in this 

paper was based solely on a researcher's estimate of user 

behaviour, which was gained from the observation of 
handwashing in a clinical setting. The authors are in the 
process of inducing model parameters from clinical data. It is 
anticipated that the incorporation of clinical trial data will 
result in a more accurate representation of user dynamics, 
therefore improving the performance of future versions of the 
planning system. 

Many of the improvements suggested by participants 
regarding the guidance strategies employed in both the 
human- and MDP-guided scenarios can be incorporated into 
the MDP model. These recommendations include guiding the 
patient with his/her preferred ordering of steps, allowing the 
patient more time to complete a step, and using a level of 
detail in the prompts that the patient responds to.  

As identified by the participants in the efficacy study, 
people have different preferences and abilities. A person is far 
more likely to comply with ADL guidance if s/he is prompted 
in a way that s/he is familiar with and understands. Therefore, 
it will be important to include information about user types or 
preferences in the state space for future versions of the 
planning module. For example, we can roughly characterize 
dementia patients into levels of responsiveness and attention, 
aspects that could be added to the MDP model.  

However, in most cases, information about the user types 
will not be readily available on a day-to-day basis: these 
variables are not directly observable, can only be assessed 
probabilistically by a caregiver initially, and may evolve over 
time. One approach to this problem is the use of partially 
observable Markov decision processes (POMDPs) [21]. A 
POMDP provides a model of sequential decision making in 
which actions are conditioned on probabilistic estimates of the 
underlying state of the world (as opposed to MDPs, which 
always assume full knowledge of the true state). This allow 
one to represent inherent uncertainties in the state of the 
world, based on noisy observations (e.g. the noisy output of a 
vision system) and hidden variables (e.g. hidden user 
characteristics such as level of responsiveness) whose values 
can be inferred (probabilistically) through observed 
behaviour. The POMDP model reflects how user traits would 
impact state transitions, resulting in a more accurate 
representation of the washroom environment and better user 
guidance. It is also important that the system be able to 
autonomously converge on the prompting strategies that work 
best with a specific user, allowing the device to customize 
prompting strategies autonomously over time. The POMDP 
model allows for this by maintaining a probabilistic estimate 
of such characteristics that is updated with each observation of 
user behaviour. Apart from tailoring its prompting strategy to 
specific users, this also enables the system to adjust to changes 
in user abilities, especially important for users with 
progressive forms of dementia, such as Alzheimer’s disease. 
Research into the application of POMDPs to ADL guidance is 
currently underway [22].  

So far, we have used handwashing as an initial test-bed for 
planning and guidance concepts. However, if a system is to be 
implemented that successfully provides simultaneous relief to 
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the caregiver and independence to the care recipient, it must 
be able to address more than one ADL. ADLs such as 
dressing, cooking, and toileting, represent a greater guidance 
challenge, as they are more complex and the consequences of 
misguidance are higher than those in handwashing. Since 
assistance with these ADLs is cited as the most problematic 
for caregivers (toileting especially), automated guidance of 
these activities would likely provide the most relief to a 
caregiver. The MDP model presented in this paper could 
conceivably be altered to suit other ADLs. Although research 
would have to be conducted to determine the compositions of 
different activities, ADLs such as toileting and dressing 
represent sequential decision making problems that are similar 
in structure to handwashing. Thus a similarly structured MDP 
could likely handle a different ADL, and indeed, many of the 
variables would likely be the same, such as NW, LP, and PL. 

The most crucial immediate task is to merge the sensing, 
planning, and prompting systems to create an autonomous 
guidance system. Experiments with this integrated guidance 
system are necessary to further improve the design of the 
planning system, such as fine-tuning the values of the reward 
function, as well as the guidance system as a whole. Trials 
with a clinical population must be conducted to truly evaluate 
the performance and validity of the planning system. These 
should be conducted after merging the systems into an 
autonomous system and after possible improvements 
identified by the efficacy study are incorporated, such as the 
integration of clinical data and the re-ordering of step 
sequences. 

C. Implications of Research 
While prior research has been conducted to examine 

scheduling [10] and guidance through handwashing [14], this 
research is the first to show that MDPs offer a plausible 
approach to the modeling of a planning system to guide users 
with dementia through ADLs. The benefits of using an MDP 
system include the model's implicit ability to handle stochastic 
dynamics, the ability to capture tradeoffs between conflicting 
objectives (both short- and long-term), the potential 
generalizability to other ADLs, and its role as a precursor to 
more robust models and techniques for policy construction, 
like POMDPs. 

Although no individuals with dementia were implicated at 
this stage, the efficacy study not only provided a preliminary 
assessment of planning device performance through feedback 
from professionals, but served to identify other areas of 
research that should be investigated to support the 
development of the field of assistive technology. The data 
from this study is valuable for validating and improving the 
system before use with a clinical population with dementia. 
Studies with a clinical population should examine the effects 
of: 1) the administration / misappropriation of positive 
reinforcement on activity completion, 2) the incorporation of 
gesturing through the use of visual prompts demonstrating a 
step on a screen, 3) the exact wording of prompts on care 
recipient responsiveness, and 4) the implications of permitting 

multiple regressions in the activity. Such studies would be 
insightful in attempting to balance aspects such as user 
compliance, user irritability, and activity completion as a 
result of device design and implementation. 

This paper adds to the mounting evidence that assistive 
information technology has promising potential to 
substantially augment caregiving duties. Although the system 
presented here would not guide a person with dementia in the 
same manner as a professional caregiver, it is plausible that 
any deficiencies in guidance efficiency would be compensated 
by increases in independence for both the user and his/her 
caregiver. As such, technologies like the one described in this 
paper are leading the way to achieving aging-in-place. 
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