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Abstract

The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male
gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative
cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant
reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification.
Here, we investigate the role of the Arabidopsis male germline-specific Myb protein DUO POLLEN1, DUO1, as a positive
regulator of male germline development. We show that DUO1 is required for correct male germ cell differentiation
including the expression of key genes required for fertilisation. DUO1 is also necessary for male germ cell division, and we
show that DUO1 is required for the germline expression of the G2/M regulator AtCycB1;1 and that AtCycB1:1 can partially
rescue defective germ cell division in duo1. We further show that the male germline-restricted expression of DUO1 depends
upon positive promoter elements and not upon a proposed repressor binding site. Thus, DUO1 is a key regulator in the
production of functional sperm cells in flowering plants that has a novel integrative role linking gametic cell specification
and cell cycle progression.

Citation: Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, et al. (2009) A Plant Germline-Specific Integrator of Sperm Specification and Cell Cycle
Progression. PLoS Genet 5(3): e1000430. doi:10.1371/journal.pgen.1000430

Editor: Gregory P. Copenhaver, The University of North Carolina at Chapel Hill, United States of America

Received January 8, 2009; Accepted February 18, 2009; Published March 20, 2009

Copyright: � 2009 Brownfield et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the UK Biotechnology and Biological Sciences Research Council (Grant no. BB/C004205/1). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: twe@le.ac.uk

Introduction

The gametes of flowering plants are formed by discrete haploid

gametophyte structures consisting of only a few cells that develop

within the diploid reproductive floral organs. During spermato-

genesis, each single haploid microspore divides asymmetrically to

produce a larger vegetative cell that eventually gives rise to the

pollen tube and a smaller germ, or generative, cell (Figure S1;

reviewed in [1,2]). In contrast to germline cells in metozoans [3],

angiosperm male germ cells do not undergo regenerative stem cell

divisions, but divide once to form a pair of sperm cells. These

sperm cells are delivered to the embryo sac via the pollen tube,

where they fuse with egg and central cells to produce embryo and

endosperm respectively. This process of double fertilization

depends upon two functional sperm cells and is considered one

of the major advances in the evolutionary success of flowering

plants. Despite this importance, the molecular mechanisms

underlying many component processes, including the production

of both male and female gametes, remain largely unknown.

Recent transcriptomic analysis of isolated Arabidopsis sperm cells

shows that sperm cells express a distinct and diverse set of genes

[4] and there is evidence for extensive male germ cell gene

expression in maize and lily [5,6]. Several male germline-specific

genes have been characterized in Arabidopsis including AtMGH3,

encoding a histone H3.3 variant [7,8], AtGEX2, encoding a

putative membrane associated protein [9], and AtGCS1 (HAP2),

encoding a sperm cell surface protein required for fertilisation

[10,11]. Homologues of AtGCS1 are found in many genera

[5,12,13] that include the green alga Chlamydomonas and the rat

malarial parasite Plasmodium berghei, where they are required for

gamete interactions and membrane fusion [13]. Although gene

expression in angiosperm sperm cells is extensive and essential for

gamete functions little is known about its regulation. A

transcriptional derepression mechanism, in which expression of

male germline expressed genes is repressed in all non-germline

cells by a protein called Germline Restrictive Silencing Factor

(GRSF), has recently been proposed [14]. A binding site for the

GRSF protein was identified in the promoter region of the Lily

male germline gene LGC1, and mutations in this sequence led to

the ectopic activation of the LGC1 promoter in non-germline cells

in lily and Arabidopsis. Although similar binding sites have been

found in the promoter regions of several germline genes in

Arabidopsis, including the germline-specific transcription factor

gene DUO1 [14], a functional role for these sites or of GRSF

activity in regulating gene expression in Arabidopsis pollen has not

been shown.

Germ cell division resulting in the sperm cell pair in each pollen

grain, is essential for double fertilization and recent data supports

the capacity of both sperm cells to fertilize the egg cell in Arabidopsis

[15]. Several mutants have been described in which germ cell

division is disrupted [16–18]. Mutations in the conserved cell cycle

regulator CDKA1 [16,17] and in the F-BOX protein FBL17 [18]

prevent germ cell division and result in mature pollen with a single

germ cell. Defects in Chromosome Assembly Factor 1 (CAF1) can
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also disrupt germ cell division [19]. Interestingly, the single germ

cells in these mutants are capable of fertilization, with cdka1 and

fbl17 mutant germ cells fertilizing the egg cell to produce an

embryo that aborts early in development due to the lack of

endosperm production. These mutations clearly demonstrate that

germ cell division and specification can be uncoupled, but do not

identify how these processes may be coordinated to produce twin

sperm cells competent for double fertilization.

DUO POLLEN1 (DUO1) is a unique male germ cell-specific

R2R3 Myb protein that is also required for germ cell division in

Arabidopsis [20]. Unlike cdka1 and fbl17 single germ cells, duo1 germ

cells do not lead to successful fertilization, suggesting that in

addition to germ cell cycle defects, key features of gamete

differentiation and function are impaired in duo1. Here we further

characterize DUO1 as an essential, positive regulator of sperm cell

production in plants. We use various molecular markers and

ectopic expression assays to show that DUO1 is both necessary

and sufficient for the expression of male germline genes. We show

that DUO1 is required for the expression of the Arabidopsis G2/M

regulator CyclinB1;1 (AtCycB1;1) in the male germline and that

AtCycB1:1 can partially rescue defective germ cell division in duo1.

Our findings reveal a novel integrative role for the germline-

specific DUO1 protein, in cell specification and cell cycle

progression necessary for twin sperm cell production. Further-

more, we show that restriction of DUO1 expression to the male

germline is not dependent on a putative GRSF binding site but

involves positive elements in the promoter.

Results/Discussion

DUO1 Is a Key Regulator of Sperm Cell Specification
To investigate the potential role of DUO1 in regulating sperm

specification we examined the expression of three male germline

markers, AtMGH3, AtGEX2 and AtGCS1, in mutant duo1 pollen.

We exploited marker lines with promoter regions of these germline

genes linked to GFP. First we characterised the expression of these

markers in a coordinated manner using confocal laser scanning

microscopy (CLSM) throughout development of wild-type pollen

(Figure 1A–C), and compared their profiles with the expression of

a DUO1:mRFP fusion protein under control of the DUO1

promoter (DUO1-DUO1::mRFP; Figure 1D). The expression of

all three germ cell markers is undetectable in free microspores

when DUO1 is not expressed (Figure 1, Panel 1). Fluorescence is

first detected in the germ cell during or soon after engulfment by

the vegetative cell, appearing at a similar time to the expression of

DUO1 (Figure 1, Panel 2). As the pollen matures the level of GFP

accumulates in germ cells before mitosis and remains high in

mature sperm cells (Figure 1A–C, Panels 3–5). The accumulation

of GFP in progressive stages is illustrated by the reduced

autofluorescence signal arising from the pollen wall, reflecting

the reduced exposure needed to capture a relatively unsaturated

germ cell GFP signal. DUO1 expression persists during pollen

development, although its abundance does not obviously increase

in tricellular and mature pollen (Figure 1D). Our analysis shows

that in common with AtMGH3 and AtGEX2, the expression of

AtGCS1, previously thought to be sperm cell-specific in Arabidopsis

[11], is detected in germ cells soon after asymmetric division

(Figure 1C). The expression of all male germ cell markers shortly

after the asymmetric division shows that sperm cell specification

begins early after inception of the germline prior to passage of

germ cells through mitosis.

The three male germline markers were introduced into

heterozygous duo1 plants that produce 50% wild type pollen and

50% mutant pollen, and GFP expression was scored. Virtually all

the wild type pollen showed GFP fluorescence in twin sperm cells

while there was no fluorescence, or rarely a weak GFP signal, in

the single germ cell in duo1 pollen (Figure 1E–G, I–K; Table S1).

When these markers were introduced into the cdka;1 mutant in

which the arrested germ cell is able to fertilize the egg cell,

fluorescence was observed in the single germ cells in mutant pollen

(Figure 1E–G, Table S1). This result confirms that germ cell

division and cell fate specification are uncoupled in cdka;1 mutant

pollen, similar to the observed expression of germ cell markers in

arrested but functional germ cells in CAF1 mutants [19]. The

absence of GFP in mutant duo1 germ cells demonstrates that

DUO1 is necessary for the expression of several germline-

expressed genes, and explains why duo1 pollen is infertile (it lacks

proteins including AtGCS1 that are essential for fertilization). In

contrast, when the DUO1 promoter was used to express a nuclear-

targeted histone H2B::mRFP marker protein, fluorescence was

detected in mutant duo1 germ cells, similar to its expression in wild

type sperm cells and in cdka;1 germ cells (Figure 1H,L; Table S1),

indicating that DUO1 promoter activation does not depend upon

DUO1 itself.

To independently confirm the regulation of germline genes by

DUO1 we ectopically expressed DUO1 in seedlings, and in pollen

vegetative cells, where AtMGH3, AtGEX2 and AtGCS1 are not

normally expressed. As DUO1 contains a recognition site for

microRNA159 we used a resistant DUO1 cDNA (mDUO1) with an

altered nucleotide sequence at the miR159 binding site, but

encoding the native amino acid sequence [21]. Transgenic

seedlings in which the mDUO1 cDNA was placed under the

control of an estradiol inducible promoter [22] showed mDUO1

induction when exposed to estradiol (Figure 2A). Expression of the

male germline genes, AtMGH3, AtGEX2 and AtGCS1, was also

induced, with high levels of transcripts present only in plants

exposed to estradiol and containing mDUO1 (Figure 2A). Similarly,

when a DUO1::mRFP fusion was ectopically expressed in pollen

vegetative cells using the LAT52 promoter [23], we observed

ectopic expression of the AtMGH3 marker in vegetative cell nuclei

(Figure 2B,C; Table S2). Thus ectopic expression of DUO1 is

sufficient for activation of germ cell-specific gene expression in a

range of non-germline cells.

Author Summary

Flowering plants, unlike animals, require not one, but two
sperm cells for successful fertilisation—one sperm cell to
join with the egg cell to produce the embryo and the
other to join with the central cell to produce the nutrient-
rich endosperm tissue inside the seed. A mystery in this
‘‘double fertilization’’ process was how each single pollen
grain could produce the pair of sperm cells needed for
fertility and seed production. Here, we report the discovery
of a dual role for DUO1, a regulatory gene required for
plant sperm cell production. We show that the DUO1 gene
is required to promote the division of sperm precursor
cells, while at the same time promoting their differentia-
tion into functional sperm cells. DUO1 is required for the
expression of a key cell cycle regulator and for the
expression of genes that are critical for gamete differen-
tiation and fertilisation. This work provides the first
molecular insight into the mechanisms through which cell
cycle progression and gamete differentiation are coordi-
nated in flowering plants. This knowledge will be helpful in
understanding the mechanisms and evolution of gamete
development in flowering plants and may be useful in the
control of gene flow and crossing behaviour.

Plant Germline Development
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Figure 1. Expression of male germline-specific genes in wild type and duo1 pollen. Expression of AtMGH3-H2B::GFP (A), AtGEX2-GFP (B),
AtGCS1-AtGCS1::GFP (C) and DUO1-DUO1::mRFP (D) during wild type pollen development, observed with CLSM. Panels are numbered 1 (left) to 5
(right). For all markers, fluorescence is not detected in microspores (MS; Panel 1), a weak signal is detected in the germ cell during or soon after
engulfment (early-BC; Panel 2), fluorescence increases in mid-bicellular pollen (mid-BC; Panel 3) and remains in tricellular (TC; Panel 4) and mature
pollen (MP; Panel 5). (E–L) Expression of germline expressed genes in heterozygous duo1 plants. The percentage pollen showing GFP or RFP in sperm
cells of wild type (WT) pollen or the single germ cell in cdka;1 and duo1 mutant pollen in plants homozygous for AtMGH3-H2B::GFP (AtMGH3, E),
AtGEX2-GFP (AtGEX2, F), AtGCS1-AtGCS1::GFP (AtGCS1, G) and DUO1-H2B::mRFP (DUO1, H). Individual examples viewed by fluorescence microscopy
in I to L. AtMGH3-H2B::GFP (I), AtGEX2-GFP (J) and AtGCS1-AtGCS1::GFP (K) are not expressed, or have reduced expression in duo1 pollen while DUO1-
H2B::RFP (L) is expressed. Each image has a wild type pollen grain to the left and a duo1 mutant grain to the right (see lower DAPI images).
doi:10.1371/journal.pgen.1000430.g001

Plant Germline Development

PLoS Genetics | www.plosgenetics.org 3 March 2009 | Volume 5 | Issue 3 | e1000430



DUO1 Is Required for AtCycB1;1 Expression in the Male
Germline
The phenotype of duo1 shows that in addition to the activation

of male germline genes, DUO1 is required for germ cell division.

Mutant duo1 germ cells complete DNA synthesis (S) phase but fail

to enter mitosis (M) [20,24], suggesting that DUO1 may regulate

the expression of essential G2/M factors. As the Arabidopsis CDK

regulatory subunit AtCycB1;1 shows enhanced expression at G2/

M [25,26] and is expressed in developing pollen (Figure S2), we

investigated AtCycB1;1 as a potential downstream target of DUO1.

To monitor the expression of AtCycB1;1 we used the pCDG

marker which contains the AtCycB1;1 promoter region and mitotic

destruction box fused to the b-glucuronidase (GUS) reporter [25].

First we analysed the marker in wild type pollen (Figure 3A–F).

Individual pollen grains at different stages of development (as

determined by DAPI staining) were analysed for GUS activity,

which results in the formation of indigo microcrystals. Microspores

and bicellular pollen shortly after mitosis contain numerous indigo

crystals, with the number peaking close to mitosis (Figure 3A–C),

indicating that expression of AtCycB1;1 is linked to asymmetric

division. Expression is then abolished in bicellular pollen

(Figure 3D). Close to germ cell mitosis, single indigo crystals are

present specifically in germ cells (located by DAPI staining;

Figure 3E) indicating expression of AtCycB1;1 in the germ cell

before division. The protein is degraded after mitosis and is absent

in tricellular pollen (Figure 3F).

We then counted the number of pollen grains with GUS

staining at different stages of development in wild type and

heterozygous duo1 plants. In both wild type and heterozygous duo1

plants, polarized microspores and vegetative cells shortly after

asymmetric division showed almost 100% staining, indicating

expression of AtCycB1:1 (Figure 3G). Thereafter vegetative cell

staining declined and was absent from late-bicellular stage pollen

(Figure 3G). Germ cell staining was subsequently observed in

,100% of pollen from wild type plants close to mitosis, but was

reduced by approximately half in heterozygous duo1 plants at this

stage (Figure 3H). As half of the pollen population is mutant in

heterozygous duo1 plants, and wild type pollen show GUS staining,

this reduction in staining is consistent with a lack of AtCycB1;1

expression in mutant duo1 pollen. This indicates that DUO1 is

required for the expression of AtCycB1;1 in male germ cells.

We then analysed the expression of AtCycB1;1 transcripts in

seedlings after steroid induction of mDUO1. In contrast to the

germline markers, AtCycB1;1 was expressed at a low level in

seedlings not exposed to estradiol and the presence of DUO1 did

not affect the level of AtCycB1;1 transcripts (Figure 2A). Thus,

although DUO1 is required for germline expression of AtCycB1;1

the presence of DUO1 is not sufficient to induce AtCycB1;1 mRNA

in seedlings. Transcription of the AtCycB1;1 gene is known to be

regulated by a number of factors, including activators such as three

repeat [27] or other Myb proteins [28] and TCP20 [29] and

repressors such as TOUSLED [30]. Thus, DUO1 may be unable

to overcome these controls in seedlings, and may affect AtCycB1;1

transcription in the male germline through an indirect mechanism

or through effects on AtCycB1;1 protein stability.

To investigate the role of AtCycB1;1 in the failure of duo1 male

germ cells to enter mitosis we determined whether AtCycB1;1 is

sufficient to rescue the germ cell mitosis defect in duo1 pollen. We

used the DUO1 promoter to drive AtCycB1;1 expression in the male

germline. The proportion of bicellular or tricellular pollen grains

from heterozygous duo1 plants either not transformed or

transformed with either of two control constructs (MGH3-

AtCycB1;1::GFP, which is not expressed in mutant pollen, and

LAT52-AtCycB1;1, which is expressed only in the vegetative cell)

did not vary significantly from 50% (Chi2 p,0.05) (Figure 3I,

Table S3). In contrast, in heterozygous duo1 plants transformed

with DUO1-AtCycB1:1 the majority of lines (31/49) showed a

significantly reduced frequency of bicellular pollen and a

corresponding increase in tricellular pollen (Figure 3I, Table S3).

This suggests that restoring AtCycB1;1 in duo1mutant germ cells is

Figure 2. Ectopic expression of DUO1 results in expression of
male germline specific genes. (A) RT-PCR analysis of mDUO1,
AtMGH3, AtGEX2, AtGCS1 and AtCycB1;1 expression in whole seedlings
transformed with the mDUO1 cDNA (see methods) under the control of
an estradiol inducible promoter grown on media without estradiol (2)
or with estradiol (+). Histone H3 was used as a control. (B, C) Mature
pollen grains showing AtMGH3-H2B::GFP expression specifically in
sperm cells in the absence of LAT52-DUO1::mRFP (B), or in both the
vegetative cell nucleus and sperm cells in the presence of LAT52-
DUO1::mRFP (C). Left and right panels correspond to RFP and GFP
signals viewed by CLSM.
doi:10.1371/journal.pgen.1000430.g002

Plant Germline Development

PLoS Genetics | www.plosgenetics.org 4 March 2009 | Volume 5 | Issue 3 | e1000430



sufficient to promote mitosis in a proportion of the population.

Complementation was however incompletely penetrant, which

may result from the use of the DUO1 promoter that may not

produce native amounts of AtCycB1;1. It is also possible that other

factors with a role in G2/M transition, such as other AtCycB

family members that are also expressed during pollen development

[31], may also be absent in duo1 pollen.

To determine if the presence of DUO1-AtCycB1;1 in duo1

pollen restored only the ability to proceed through mitosis or

germline specification as well, we analysed expression of the

AtMGH3 and AtGCS1 markers in duo1 plants showing partial

complementation (Figure 3J, Table S4). In contrast to plants

without DUO1-AtCycB1;1 where almost all tricellular pollen

expresses GFP, plants displaying partial complementation produce

,10% of pollen that is tricellular but does not express the markers.

As there is also a,10% decrease in bicellular pollen, this new class

of tricellular pollen is most likely duo1 pollen in which the division

defect has been complemented by the DUO1-AtCycB1;1

construct, but in which the markers have not been activated.

Consistent with this, DUO1-AtCycB1;1 complemented duo1

pollen showed no male transmission (Table S5). Thus, comple-

mentation of the bicellular phenotype by AtCycB1;1 only affects

cell division and does not restore expression of germline gene

expression and sperm cell function.

Figure 3. AtCycB1;1 expression in developing pollen. (A–F), pCDG-dependent GUS staining (upper panel) and DAPI staining (lower panel) in
isolated spores: (A, B), unicellular microspores, (C, D, E), early, mid-and late bicellular pollen and (F), tricellular pollen. (G, H) The frequency of pCDG-
dependent GUS staining in microspores and vegetative cells close to mitosis is similar in duo1 heterozygotes and wild type plants (G), whereas GUS
staining in germ cells, is reduced by approximately half in duo1 heterozygotes, where 50% of the pollen is WT and the other 50% mutant (H). The
stage of pollen development is indicated below each graph and the approximate time of mitosis is indicated by grey squares with a dashed line. (I)
DUO1-AtCycB1;1 is able to partially complement the bicellular phenotype of duo1 pollen. The amount of tricellular pollen (T) increases and the
amount of bicellular pollen (B) decreases when heterozygous duo1 plants are transformed with DUO1-AtCycB1;1 (n = 31 T1 lines) compared with
plants either not transformed (n = 3 individuals) or transformed with control constructs AtMGH3-AtCycB1;1::GFP (n = 17 T1 lines) or LAT52-AtCycB1;1
(n = 17 T1 lines). Bars represent the average percentage of pollen with error bars showing standard deviation. (J) Germline markers are not activated
in the complemented tricellular pollen. In non-complemented plants ,50% of the pollen is tricellular (T) with marker expression and ,50% is
bicellular (B) without marker expression. When the bicellular phenotype is partially complemented by DUO1-AtCycB1;1, ,10% of pollen is tricellular
without marker expression, while there is a decrease in the amount of bicellular pollen. Bars represent the average percentage of pollen from 3–6
individual plants with the error bars showing standard deviation.
doi:10.1371/journal.pgen.1000430.g003
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DUO1 Expression Is Restricted to the Male Germline
Independent of a Putative GRSF Binding Site
Closer examination of mature pollen grains ectopically

expressing DUO1 in the vegetative cell revealed a distinctive

morphology with reduced cytoplasmic density, larger vacuoles and

numerous large cytoplasmic inclusions (Figure S3). This phenotype

was only found in pollen containing vegetative nucleus GFP (Table

S6) and analysis of pollen viability revealed up to 50% non-viable

pollen with the aberrant pollen not being viable (Figure S3E, F,

Table S7). Similar phenotypes are not seen in pollen of plants

transformed with LAT52-H2B::GFP where the transgene is

transmitted normally (data not shown). Furthermore, Arabidopsis

plants constitutively expressing DUO1 (driven by the 35S

promoter) show severe seedling patterning defects, twisted and

curled leaves and floral defects [21]. These phenotypes demon-

strate the importance of restricting high level expression of DUO1

to male germ cells.

Such restriction may partially rely upon degradation of DUO1

mRNA by microRNA159 [21] in certain cell types but promoter

elements are also likely to be important. As such, restriction of

DUO1 expression to the male germline has been proposed to rely

on the repressor protein GRSF due to a putative GRSF binding

site in the DUO1 promoter [14]. Mutagenesis of similar sequences

in the LGC1 promoter led to ectopic activation of the LGC1

promoter in non-germ line cells in tobacco and Arabidopsis [14].

However, when we specifically mutated the putative GRSF

binding site in the DUO1 promoter this did not affect the

germline-specific expression of DUO1 (Figure 4A–D). Moreover,

sequences in the 150 bp proximal DUO1 promoter, excluding

putative GRSF binding sites, were sufficient for germline-specific

expression (Figure 4E). Although factors that bind to the lily LGC1

silencer appear to be present in non-germline cells in Arabidopsis

[14], the germline-restricted activation of DUO1 does not appear

to involve GRSF mediated repression. Since the DUO1 promoter

appears to be active only after asymmetric division in the newly

formed germ cell and that activation does not depend upon

DUO1 itself (see Figure 1), activation of the DUO1 promoter may

depend on proximal region-binding transcription factors that are

inherited and/or segregated during asymmetric division of the

microspore.

Conclusions
We have shown that DUO1 is both necessary and sufficient for

the expression of several male germline genes including AtGCS1

that is required for gamete fusion [13], thus DUO1 has a major

role in the specification of functional male gametes. DUO1 is not

involved in regulating microspore division and is first expressed in

germ cells after asymmetric division. DUO1 is also required for

the entry of male germ cells into mitosis and for the germline

expression of the G2/M regulator AtCycB1;1. Thus, the germ cell

programme under DUO1 control has an important role in

regulating core cell cycle machinery specifically in the male

germline. The discovery of the dual role of DUO1 as a positive

regulator in male germline specification and cell cycle progression

is a major advance in uncovering the molecular mechanisms

involved in plant sexual reproduction. DUO1 is currently the only

regulatory factor that has been shown to be required for gamete

specification in plants. Recently we described an independent

mechanism for male germ cell cycle regulation where the F-BOX

protein FBL17 controls germ cell entry into S-phase via the

degradation of the CDKA inhibitors KRP6 and 7 [4]. Taken

together these data establish a molecular framework for twin

sperm cell production in flowering plants (Figure 5).

Further analysis will shed light on how DUO1 activates its

targets, and how DUO1 itself is activated specifically in the male

germline. The identification of the role of DUO1 in germ cell

specification also provides an exciting platform to develop a

detailed regulatory network for male gametogenesis and for

comparative studies of the control of sperm cell production.

DUO1 homologs are found throughout the land plants from the

non-flowering plants Selaginella moellendorffii and Physcomitrella patens

(moss) through to the monocots and dicots (Figure S4). Exploring

the functional conservation of DUO1 in different species will

reveal if DUO1 has a conserved role in male gamete production,

in terms of both of germline mitosis and specification, where

DUO1 may regulate the expression of a similar suite of genes such

as the conserved GCS1 protein. Such studies may shed light on the

evolution of regulatory mechanisms in plant germline develop-

ment and their significance in double fertilization in flowering

plants.

Materials and Methods

Plant Material and Transformation
Arabidopsis plants were grown at 21uC with a 16 h-light and 8 h-

dark cycle or with 24 h light, with variable humidity. Experiments

were conducted in the duo1-1 (in No-0) or the No-0 backgrounds,

except for those involving the inducible ectopic expression of

mDUO1 and analysis of the DUO1 promoter that were

conducted in Col-0. The AtGCS1-AtGCS1::GFP, AtGEX2-GFP

and CDG marker lines are also in Col-0. Plants were transformed

with Agrobacterium tumefaciens (GV3101) using a standard floral

dipping method. Transformants were selected either on Mura-

shige and Skoog (MS) agar containing 50 mg/ml kanamycin or

20 mg/ml hygromycin or on soil with 30 mg/ml BASTA

(glufosinate ammonium, DHAI PROCIDA) fed by sub-irrigation.

Vector Construction
Gateway single and multi-site construction (Invitrogen) was used

to generate most vectors. DNA was amplified from genomic DNA,

cDNA or plasmid DNA by PCR with high fidelity Phusion DNA

polymerase (Finnzymes) and primers with suitable attachment site

(attB) adapters (Table S8, attB adapters in italics). Full-length attB

sites were added to each fragment in a second high fidelity PCR.

For site-directed mutagenesis of the putative GRSF binding site in

the DUO1 promoter a two-step recombinant PCR approach was

taken. Two overlapping PCR fragments were generated contain-

ing the mutated sequence (underlined in Table S8) and the two

fragments joined in a stitching PCR. PCR fragments were cloned

into pDONR vectors (Invitrogen; pDONR207 for AtCycB1;1

cDNA or pDONR221 for H2B and DUO1 and mDUO1 cDNA,

pDONRP4P1R for promoter regions and pDONRP2RP3 for

GFP and RFP) via a BP reaction using BP Clonase II (Invitrogen).

The product of BP reactions was transformed into alpha-select

chemically competent cells (Bioline) and all clones were verified by

sequencing.

A multipart LR reaction using LR Clonase plus (Invitrogen) and

the destination vector pK7m34GW [32] was used to generate the

AtMGH3 marker, AtMGH3-H2B::GFP. This contains the region

upstream of the AtMGH3 coding region [7] driving expression of a

H2B::GFP fusion protein, with the H2B used to give a nuclear

GFP signal. The GCS1-GCS1::GFP marker was constructed by

inserting a PCR fragment of GFP (primers in Table S8) into an

AflII site in the 16th exon of a Arabidopsis GCS1 genomic DNA

fragment in the previously described binary vector [10]. The

AtGEX2-GFP marker, with the GEX2 promoter region driving

GFP expression was kindly provided by Shelia McCormick [9].

Plant Germline Development
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The vectors DUO1-DUO1::mRFP, DUO1-H2B::mRFP and

LAT52-DUO1::mRFP were also generated using gateway multi-

site cloning and the vectors pK7m34GW or pB7m34GW [32].

DUO1-DUO1::mRFP uses the DUO1 promoter region to drive

expression of a DUO1::mRFP fusion (used to follow the DUO1

protein during pollen development) while DUO1-H2B::GFP uses

the DUO1 promoter to produce a H2B::mRFP fusion protein (used

to follow the activity of the DUO1 promoter in duo1 pollen). The

LAT52 promoter is active in the vegetative cell [23] so was used to

ectopically express DUO1::mRFP in the vegetative cell. Vectors to

analyse the DUO1 promoter region were also constructed using

gateway multisite cloning.

The DUO1 mRNA contains a functional recognition site for the

microRNA miR159 [21], so for inducible expression of DUO1 a

miR159 resistant version of the DUO1 cDNA was used containing

silent mutations in the miR159 binding site. This was cloned in the

vector pMDC7 [33] that contains the XVE estradiol inducible

promoter system [22], using a single part LR reaction and LR

Clonase II (Invitrogen).

For experiments examining the ability of AtCycB1;1 to

complement the duo1 division phenotype the vectors pB2GW7

and pH2GW7 [34] were modified to contain the DUO1 and LAT52

promoters respectively. The 1.2 kb DUO1 and 609 bp LAT52

promoter fragments were amplified from cloned sequences using

restriction tagged oligonucleotide primer pairs (Table S8). A single

part gateway reaction was then used to clone AtCycB1;1 into the

vectors creating DUO1-CycB1;1 and LAT52-CycB1;1. MGH3-

CycB1;1::GFP was generated using a multipart gateway reaction.

Figure 4. Male germline specificity of DUO1 does not depend on putative GRSF binding sites. (A) Schematic of the DUO1 promoter
region illustrating the mutagenized putative GRSF binding site. (B,C) Expression of H2B::GFP in pollen driven by the native (B) or mutagenized DUO1
(C) promoters. Top panels show GFP signal, lower panels show DAPI staining. (D) RT-PCR analysis of native and mutagenized DUO1 promoter activity
in seedlings. PCR was conducted on cDNA from wild type plants (1), control plants transformed with a constituitive HistoneH3 promoter-H2B::GFP
fusion (2), and plants transformed with the native (3), or mutagenized (4), DUO1 promoters driving H2B::GFP expression. The primers used were
specific for GFP (upper panel) or native Histone H3 transcripts (lower panel). The native or mutagenized DUO1 promoters showed no sporophytic
expression of GFP transcripts. (E) Schematic representation of the of the DUO1 promoter 59 deletion series used to drive expression of H2B::GFP. The
first four deletions, including deletion 3 in which the putative GRSF binding site is removed, showed a similar expression pattern to that of the full-
length DUO1 promoter, with GFP signal only observed in sperm cell nuclei. The same expression pattern was observed in all independent lines
examined (n). GFP expression was not observed in any transformants harbouring the shortest promoter fragment (deletion 5).
doi:10.1371/journal.pgen.1000430.g004
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Inducible Expression of DUO1
T2 seed from transgenic Col-O plants were grown in MSO plates

containing 20 mg/ml hygromycin in standard conditions for 12 days.

25 seedlings were transferred to either control plants containing

0.002% v/v DMSO or induction plates contain 2 mM 17b-estradiol

dissolved in DMSO. Plants were returned to the growth room for a

further 24 h, before being snap frozen in liquid nitrogen.

RT-PCR Analysis
Pollen from ecotype Landsberg erecta at different stages of

development was isolated and RNA extracted as described [31].

For RT-PCR on seedling ectopically expressing mDUO1 and for

DUO1 promoter analysis, RNA was extracted from frozen samples

using the Qiagen RNeasy Kit. Samples of 750 ng or 1 mg of total

RNA for pollen stages and seedlings, respectively, were reverse

transcribed in a 20 ml reaction using Superscript II RNase H

reverse transcriptase (Invitrogen) and an oligodT primer as per the

manufactures instructions. For PCR amplification 1 ml of a 106

(pollen stages) or 56 (seedling) diluted cDNA was used in a 25 ml

reaction using Biotaq DNA polymerase (Bioline) and 12.5 pmol of

each primer (Table S9). PCR conditions were: 96uC for 1 min, 30

to 40 cycles at 96uC for 30 s, 55uC for 30 s, 72uC for 40 s followed

by 5 min at 72uC. Histone H3 (At4g40040) was used as a control.

Analysis and Imaging of Pollen
Mature pollen was stained with DAPI (49-6-Diamidino-2-

phenylindole) as described previously [35]. Staining for GUS

activity was performed as described [36] with inflorescences

incubated in GUS buffer (100 mM sodium-phosphate, pH 7;

5 mM EDTA, 0.1% Triton X-100) with 1 mM X-gluc (5-bromo-

4-chloro-3-indolyl b-D-glucuronide) and 0.5 mM K3Fe[CN]6, at

37uC for 1–3 days. Stained inflorescences were then cleared with

70% ethanol. Pollen was dissected out and stained with 0.8 mg/ml

DAPI in GUS buffer. Phenotypic analysis of pollen was conducted

on a Nikon TE2000-E inverted microscope (Nikon, Japan). Bright

field and DIC images were captured with a Nikon-D100 camera

(Model MH-18, Japan) and fluorescence images were captured

with HAMAMATSU – ORCA-ER digital camera (Model C4742-

95, Japan) using Openlab software version 5.0.2. (Improvision).

For confocal laser scanning microscopy (CLSM) pollen from

buds at different stages of development was teased out of the

anther with a needle and mounted in 0.3 M mannitol and mature

pollen was released directly into 0.3 M mannitol. Pollen was

viewed with a Nikon TE2000-E inverted microscope and C1

confocal system using Melles Griot Argon Ion (emission 488 nm)

and Melles Griot Helium-Neon (emission 543 nm) lasers,

detection filters for GFP and RFP, and EZ-C1 control and

imaging software.

Supporting Information

Figure S1 Male germline development in Arabidopsis. Following

male meiosis a tetrad of haploid microspores is produced

surrounded by a thick callose wall (yellow). Individual microspores

released by dissolution of the callose wall undergo two mitotic

divisions to produce mature tricellular pollen grains. The first

asymmetric division gives rise to a vegetative cell (blue) that will

form the pollen tube and a smaller male germ cell (pink) that

divides within the vegetative cell cytoplasm to form twin sperm

cells (red). Cell cycle progression in the male germ lineage is

illustrated below.

Found at: doi:10.1371/journal.pgen.1000430.s001 (0.14 MB

DOC)

Figure S2 Expression of AtCycB1;1 in developing pollen. RT-

PCR analysis of AtCycB1;1 expression in uninucleate microspores

(UNM), bicellular pollen (BCP), tricellular pollen (TCP) and

mature pollen (MPG). Histone H3 was used as a control, gDNA,

genomic DNA.

Found at: doi:10.1371/journal.pgen.1000430.s002 (0.08 MB

DOC)

Figure S3 Viability of LAT52-DUO1::RFP pollen. (A,B)

Hemizygous LAT52-DUO1::RFP pollen population showing

cosegregation of aberrant cell morphology (A) and ectopic

expression of MGH3-H2B::GFP (B). Arrows indicate aberrant

pollen. (C,D) Ultrastructure of wild type (C) and aberrant pollen

(D) in mature anthers of plants segregating for LAT52-

DUO1::RFP expression. (E,F) Hemizygous LAT52-DUO1::RFP

pollen population showing cosegregation of negative FDA staining

(E) and aberrant cell morphology (F).

Found at: doi:10.1371/journal.pgen.1000430.s003 (0.94 MB

DOC)

Figure S4 Alignment of DUO1 homologs from land plants. The

Arabidopsis DUO1 protein was used in BLAST searches of

databases through NCBI, TIGR plant genomes and JGI

Eukaryotic genomes to identify DUO1 homologs. Sequences were

aligned with CLUSTALW using default settings. DUO1 proteins

are characterized by a supplementary lysine (K66 in AtDUO1)

which is never observed in other plant MYB sequences [20],

indicated by * above the sequence. The two MYB domains are

indicated by a blue (R2) and red (R3) line under the sequence.

Figure 5. Regulatory events in plant male germ cell production
and specification. Model integrating the role of DUO1 and SCFFBL17

[18] in plant germ cell production and specification. The germline-
specific DUO1 protein (blue) activates the expression of several
germline specific proteins (red). In parallel, the CDKA inhibitors KRP6
and KRP7 (green) are expressed in the vegetative cell and germ cell
after asymmetric division, where they inhibit CDKA activity and S phase
progression. The F-box protein FBL17 is then transiently expressed in
the germline and forms an SCFFBL17 complex (blue) that targets KRP6/7
for proteasome dependent proteolysis, licensing S-phase progression
(green arrow). Further germ cell cycle progression is controlled by the
DUO1-dependent G2/M phase expression of the CDKA regulatory
subunit AtCYCB1;1 (red). Thus, while SCFFBL17 and DUO1 promote male
germ cell proliferation at successive stages of the cell cycle, DUO1
integrates germ cell specification and division to ensure the production
of functional twin sperm cells that are essential for double fertilization.
Arrows indicate a requirement for the protein rather than direct
binding.
doi:10.1371/journal.pgen.1000430.g005
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Species: At =Arabidopsis thaliana, Rc=Ricinus communis (Castor

bean), Pt = Populus trichocarpa (Poplar), Nt, Nicotiana tabacum

(Tobacco), Os =Oryza sativa (Rice), Ll = Lilium longiflorum (Lily),

Sm= Selaginella moellendorffii and Pp= Physcomitrella patens (moss).

There are two DUO1-related proteins, named A and B, in P.

patens and S. moellendorffii.

Found at: doi:10.1371/journal.pgen.1000430.s004 (1.61 MB

DOC)

Table S1 Expression of male germline marker constructs in wild

type, cdka and duo1 pollen. Mature pollen from heterozygous cdka and

duo1 plants that were homozygous for individual marker constructs

was stained with DAPI and observed by fluorescence microscopy.

The phenotype of each pollen grain was determined and the

presence (+) or absence (2) of GFP or RFP in the germline scored.

Found at: doi:10.1371/journal.pgen.1000430.s005 (0.03 MB

DOC)

Table S2 Analysis of LAT52-DUO1::RFP pollen. Mature

pollen from plants homozygous for MGH3-H2B::GFP and

heterozygous for LAT52-DUO1::RFP (three separate T1 lines,

A1–A3) was analysed by fluorescence microscopy for GFP and

RFP expression. Control plants homozygous for MGH3-

H2B::GFP show 100% sperm cell-specific GFP signal (SC GFP).

Approximately 50% of pollen from each hemizygous LAT52-

DUO1::RFP line showed GFP signal in the vegetative nucleus

(VN GFP). RFP was also detected in the vegetative nucleus (VN

RFP) of these lines, although its detection levels varied between

individual lines. Data for each marker is presented as a percentage,

with the number of pollen grains indicated in parentheses.

Found at: doi:10.1371/journal.pgen.1000430.s006 (0.03 MB

DOC)

Table S3 Complementation of duo1 pollen by AtCycB1;1. DAPI

stained pollen from heterozygous duo1 individuals either not

transformed, transformed with AtMGH3-AtCycB1;1::GFP (a con-

trol not expressed in duo1 pollen, see Figure 1), LAT52-AtCycB1;1 (a

control expressed in the vegetative cell but not the germline) or

DUO1-AtCycB1:1 were counted to analyse the proportion of

tricellular and bicellular (duo1) pollen. The Chi-square test was

applied to determine if the ratio of wild type to mutant pollen was

significantly different from the expected 1:1 ratio (ns= not signifi-

cantly different (p,0.05); * = significantly different (p,0.05).)

Found at: doi:10.1371/journal.pgen.1000430.s007 (0.12 MB

DOC)

Table S4 Marker expression in duo1 pollen complemented with

DUO1-AtCycB1;1. Pollen from plants homozygous for AtMGH3-

H2B::GFP (AtMGH3) or AtGCS1-AtGCS1::GFP (AtGCS1)

without the DUO1-AtCycB1;1 construct (control) or showing

partial complementation by DUO1-AtCycB1;1 was stained with

DAPI and observed by fluorescence microscopy. The phenotype

of each pollen grain was determined and the presence (+) or

absence (2) of GFP in the germline scored.

Found at: doi:10.1371/journal.pgen.1000430.s008 (0.03 MB

DOC)

Table S5 Transmission of the duo1 allele after introduction of

DUO1-AtCycB1:1. When duo1 heterozygotes are selfed the F1

progeny display a 1:1 ratio of WT to duo1 plants. A similar ratio is

observed when duo1 heterozygotes partially complemented by

DUO1-AtCycB1;1 (+/duo1DC) are selfed. The duo1 allele is not

transmitted through the male in either heterozygous duo1 or duo1-

complemented plants (+/duo1DC). The DUO1-AtCycB1;1 trans-

gene (pptR) is transmitted as a single locus in selfed individuals and

normally through the male when crossed to wild type female.

TEmale represents the transmission efficiency of duo1 through

pollen (mutant/wild type X 100); na = not applicable.

Found at: doi:10.1371/journal.pgen.1000430.s009 (0.03 MB

DOC)

Table S6 Aberrant morphology of pollen containing LAT52-

DUO1::RFP. GFP and RFP signals along with cell morphology

were analysed for each pollen grain from line A3 (Table S2), that

was homozygous for MGH3-H2B::GFP and hemizygous for

LAT52-DUO1::RFP. Approximately 50% of pollen possessed

aberrant morphology (see Figure S3), and of these pollen grains all

were positive for vegetative nucleus GFP (+ VN GFP), indicating

the presence of LAT52-DUO1::RFP. Data is presented as

numbers of pollen grains scored from the population.

Found at: doi:10.1371/journal.pgen.1000430.s010 (0.03 MB

DOC)

Table S7 Viability of hemizygous LAT52-DUO1::RFP pollen.

Viability of mature pollen from plants homozygous for MGH3-

H2B::GFP and heterozygous for LAT52-DUO1::RFP (three

separate T1 lines, A1–A3) was analysed by fluorescence micros-

copy after FDA staining. Pollen from control plants homozygous

for MGH3-H2B::GFP is almost all viable. Pollen viability is

reduced by up to 50% in hemizygous LAT52-DUO1::RFP lines.

Data for each marker is presented as a percentage, with the

number of pollen grains counted indicated in parentheses.

Found at: doi:10.1371/journal.pgen.1000430.s011 (0.03 MB

DOC)

Table S8 Primers used for vector construction.

Found at: doi:10.1371/journal.pgen.1000430.s012 (0.05 MB

DOC)

Table S9 Primers used in RT-PCR analyses.

Found at: doi:10.1371/journal.pgen.1000430.s013 (0.03 MB

DOC)
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