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The reductive perturbation method developed in Part I of this series is applied to 

plasma waves with long wavelength, where the fluid model will be used throughout. As 

typical examples, we consider the ion-acoustic, magneto-acoustic, and Alfven waves. 

The ion-acoustic wave belongs to the ordinary case to which the general theory can directly 

be applied, while the magneto-acoustic and Alfven waves belong to the exceptional cases 

noted in Part I. 

§ 1. Introduction 

97 

Amongst various nonlinear waves sustained m plasma, the ion-acoustic 

wave in a collisionless plasma is a typical example to which the reductive 

perturbation method developed in I §4 (Section 4 in Part I of this series 

will be referred to as I§4 and so on) can directly be applied. Such an applica,. 

tion was first made by Washimi and Taniutil> who succeeded in reducing the 

original system of equations for the ion-acoustic wave into a single Korteweg-de 

Vries equation under the long wave approximation. Another example to 

which the reductive perturbation method can also be applied is the hydro

magnetic wave in a cold collisionless plasma under a uniform magnetic field. 

It is well known that there exist two types of low frequency modes in hydro

magnetic waves; one is the magneto-acoustic wave and the other the Alfven 

wave. As will be shown in §3, both modes belong to the exceptional cases 

noted in Part I, more precisely, for magneto-acoustic wave the coefficient 

of dispersion term, p., becomes zero, while for Alfven wave the coefficient of 

nonlinear term, a, vanishes. Hence one needs some modifications of the 

general method in Part I for each case. Historically speaking, the magneto

acoustic wave is nothing but the first example for which Gardner and 

Morikawa2) derived the classical Korteweg-de Vries equation which was 
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98 T. KAKUTANI 

originally obtained at the end of the last century by Korteweg and de V ries3) 

for the shallow water wave. 

In this review, we first consider the ion-acoustic wave in §2 and show how 

the reduction to the Korteweg-de Vries equation can be made along the general 

method. Brief discussion will then be given on comparison between the 

Korteweg-de Vries soliton a1,1d the observed ion-acoustic soliton found ex

perimentally by Ikezi et al.4),5) Finally a modification of the Korteweg-de 

Vries equation will be remarked when we include effective electron-ion 

collisions. 6) 

Section 3 of this paper will be devoted to the hydromagnetic waves in

cluding magneto-acoustic and Alfven waves. We show how the general 

method in Part I should be modified for these exceptional cases. It is found 

that the magneto-acoustic wave is again described by the Korteweg-de Vries 

equation 7) except for the critical propagation angle relative to the external 

magnetic field. For the critical angle the Korteweg-de Vries equation is 

modified by an analogous equation with the dispersion term replaced by the 

fifth order derivative.S> It should be noted that this equation has a solitary 

wave solution with oscillatory structure9) instead of the usual "monotone" 

Korteweg-de Vries soliton. On the other hand, the Alfven wave is found to be 

governed by the modified Korteweg-de Vries equation, 8) which has two types 

of solitary wave solution, one being compressive the other rarefactive. Some 

relating extensions will be mentioned such as inclusion of a finite temperature 

effect,lO),ll) an inhomogeneity effect,12) and an effect of electron-ion collisions.13> 

§ 2. Ion-acoustic wave 

We consider a fully ionized collisionless plasma which consists of cold 

ions ( T1=0) and isothermal warm electrons ( Te=const~O). There is assum

ed to be no external magnetic field. In such a plasma, Landau damping due 

to ions cannot occur, while effect of Landau damping due to electrons may be 

of the order of Ymefmi~, mi and me being, respectively, masses of ion and of 

electron. In fact, Andersen et al.14) confirmed experimentally that the effect 

ot Landau damping is very small provided that Te/ Ti-;:::,10. Therefore if we 

ignore the effect of Landau damping, the behaviour of the plasma under 

consideration may be described by the following two-fluid equations, 

equations of continuity: 

ani . . 
-at+d1v (niVi)=O, (2·1) 

_?~!!..+div(neVe) 
at 

(2·2) 

equations of momentum: 
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Plasma Waves z'n the Long Wave Approximation 

_a~i +Cv-rgrad)vi=R~iE, 

_?ne ~~~t!__+(ve·grad)vel= 
mt at . 

together with Maxwell's equations: 

rot E=O, 

99 

(2·3) 

(2·4) 

(2·5) 

(2·6) 

(2·7) 

where ions are assumed, for simplicity, to be monovalent. In the above 

equations, E is the electric field, ni and ne are the number densities of ion and 

of electron, respectively, V-t and Ve are the velocities of ion-fluid and of 

electron-fluid, respectively. All quantities have been normalized with respect 

to characteristic number density n't,, characteristic speed U(,, and characteristic 

length L(,, whereby characteristic electric field is defined as E(,=4rren(,L(,, e 

being the unit electronic charge, and characteristic frequency is defined as 

wi)= U0fL(,. The non~dimensional parameter Rpi denotes the normalized 

frequency of ion-plasma oscillation, i.e., Rpt=Wptfw0, wpi=~4rre 2 n 0 fmt, and 

the Mach number M is defined as M= UMa, a=VKTe/mt ·being the ion

acoustic speed, K the Boltzmann constant. 

Since me/mt<f:..l for most pr~ctical plasmas, the electron inertia (the left

hand side of Eq. (2·4)) is negligible, which is compatible with the neglect of 

Landau damping. It should be noted here that the Mach number M can also 

be expressed in terms of Rpt and the normalized Debye length, that is, M= 

(RpilD)-1, where lD=LDfL0 and LD=VKTe/(4rre2ni)). By taking the 

divergence of Eq.(2·6) and by employing Eq.(2·7), it is shown that only three 

equations are independent of each other out of four equations (2·1), (2·2), (2·6) 

and (2·7). 

Let us now consider the one-dimensional plane waves, in which all physical 

quantities such as E(E, 0, 0), n.i, ne, Vt(Ut, 0, 0), and Ve(ue, 0, 0) are functions 

of one space coordinate, say x, and the timet only. Then the system of Eqs. 

(2·1)'--{2·7) can be written in component form as follows: 

ant + ac nt~2- =0 
at ax , 

(2 ·1') 

(2·3') 

1 ane +. R2 E-O 
M 2ne ax Pi - , 

(2·4') 
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100 T. KAKUTANI 

It should be noted that Eq. (2·5) is automatically satisfied by virtue of the 

one-dimensionality and that the redundant equation (2·2) has been discarded. 

The electron inertia term in Eq. (2·4') has- been omitted. We assume here 

that the plasma is in undisturbed uniform state upstream at infinity, so that we 

impose the following boundary conditions: 

E~O, 

n., __.......,.. 1, 

ne __.......,.. 1, 

· Ut __.......,.. 0, 

Ue __.......,.. 0 

as x __.......,.. -oo. (2.·8) 

Assuming now a sinusoidal wave proportional to exp [i(kx-wt)], k and w 

being, respectively, wavenumber and frequency, and linearizing the system 

of Eqs. ·(2·1')~(2·7'), we can obtain the following linear dispersion relation: 

(2·9) 

where V p denotes the phase velocity. It is evident from this that the dispersive 

character of the ion-acoustic wave is due to the charge separation, since the 

Debye length ln is a measure of local non-neutrality. For long wavelength 

(k<{1), Eq. (2·9) can be expanded as 

Vp=± vo{I--'f k2+0(k4)), (2·10) 

which satisfies the necessary condition under which the system may be reduced 

to the Korteweg-de Vries equation (cf. Eq. (1.4·10) with P=3; Eq. (4·10) in 

Part I will be referred to as Eq. (1.4·10) and so on). In fact, eliminating E, 

nt and ue from the system of Eqs. (2·1')~(2·7'), we have the following set of 

equations for ne and Ui :15) 

ane +--?··(neui)-l~-a-(-~+ui_1__)(_!_lne )=o, 
at ax ax at ax ne ax 

aut + Ut aui · + ···-- !____ ~rt_e_ = Q 
at ax M 2ne ax ' 

) (2 ·ll) 

which can be written in matrix form: 
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with 

Plasma Waves in the Long Wave Approximation 

u =( :; ) ' 
A -( Ut ne), 

- M-2n;l Ut 

H1=0, 

Kt=( -:t ~), 

H2=( ~ ~), 

K2=( ~i ~), 

Ha=O, 

( 

-1 0) 
Ka= nO 0 ' 

101 

(2·12) 

which is nothing but a special case of Eq.(1.4·1) with p=3 and s=1, and all 

the conditions presumed in I §4 are satisfied for the matrix form given by (2·12) 

and (2·13). Therefore it is a straight-forward matter to reduce Eq.(2·12) into 

the Korteweg-de Vries equation along the prescription described in 1§4. In 

fact, Uo=(fi), so that eigenvalues of Ao are given by "-o= 1/M= Vo, 

which shows that the eigenvalues of A o represent the phase velocity of the 

"dispersionless" wave in the long wave limit k~O. The right and left eigen

vectors for "-o = Vo become 

R=( 1 /~) and L=(1/M 1), (2·14) 

respectively. The other root Ao=- Vo, which corresponds to the wave 

propagating along negative x-direction, leads to essentially the same results. 

Introducing the coordinate-stretching defined by (note that P=3 in Eq. (1.4·3)) 

~=s112(x- Vot), (2·15) 

and expanding 

(2·16) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

5
.9

7
/1

9
1

1
4
4
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



102 T. KAKUTANI 

we obtain 

(2·17) 

where 

( 
n~l) ) (l)( 1 ) 
u~l) =<p M-1 ' 

a=[L(R·P" uAo)R]/(LR)=M-1= Vo, 

l'i; V0l'i; p.=(LK oR)/(LR)= 
2
M=-----

2
-, 

(2•18) 

ns ( ( V 0 l~ 0) 
Ko= a=l- VoH ao+K ao)= O O · 

Soliton solution to Eq.(2·17) was first found experimentally by Ikezi et al.4) 

in the UCLA double plasma device. After refining the preliminary experi

ment, Ikezi 5) confirmed recently under the experimental condition Te/ Tl ~ 30 

that the observed relations among width, speed, and amplitude of soliton and 

the observed number of emerged solitons show fairly good agreement with 

those obtained theoretically from Eq.(2·17). He observed, however, there are 

some systematic deviations of the observed results from those due to theoretical 

prediction. For exampleJ the observed width of soliton versus its amplitude 

always shows lower value than the corresponding theoretical value, whilst the 

observed speed of soliton versus its amplitude always exceeds the corresponding 

theoretical value. They argued that these discrepancies are due to finite 

ion.:.temperature effects such as ion reflection by the wave potential. and the 

Landau damping due to ions. In order to clarify this point, one must give up 

the fluid model and appeal to kinetic-theoretic approach. Such a treatment 

will be discussed in Part IV B. 

In concluding this section, let us mention that an effect of electron-ion 

collisions modifies the Eq. (2 ·17) as 

l)Mz2 _1_( acp<~+-l-cp<l> acp<l> )-o (2·19) 
nag aT M ag - ' 

where lJ is a parameter characterizing the effective collision frequency.6) It is 

found ~hat, instead of the soliton or cnoidal wave solution to Eq.(2·17), Eq.(2·19) 

has either oscillatory or quasi-monotone shock wave solution according to 

dispersion-dominant or dissipation-dominant case. It is interesting to note 

that the larger the effect of dissipation becomes, the steeper becomes the shock 

profile. This unusual character must be due to the fact that the dissipation 

term (the last member of Eq. (2·19)) contains the nonlinear term which con

tributes to steepen the profile. 
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Plasma Waves in the Long Wave A pproxz'mation 103 

§ 3. Hydroma~netic wave 

We consider a cold collisionless plasma under a uniform magnetic field. 

Since the velocity distribution function takes a form of the delta function, we 

may describe the behaviour of such a plasma by the following two-fluid model, 

equations of continuity: 

1:zi_+div(ntVt)=0, 
ot. 

d~e +div(neVe)=O, 

equations of momentum: 

av, 
at+(vrgrad)Vt=Rt(E+vt X B), 

d~e +(ve·grad)Ve=-Re(E+veXB), 

together with Maxwell's equations: 

( U6)2 
aE M~RtRe 

rot B= c at+ Rt+Re (ntVt-neVe), 

aB 
rot E=-at' 

div B=O, 

R2 
div E= Ree (nt,-ne), 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

(3·6) 

(3·7) 

(3·8) 

where ions are assumed, as before, to be monovalent. In the above equations, 

B is the magnetic field, E the electric field, n~, and ne the number densities 

of ion and of electron, respectively, Vi and Ve the velocities of ion-fluid and of 

electron-fluid, respectively. All quantities have been normalized with respect 

to characteristic number density n6, characteristic speed U0, characteristic 

length L0, and characteristic magnetic field B0, whereby characteristic frequen

cy is defined as w0= U0/ L0 and characteristic electric field as E0= U0B0. 
The nondimensional parameters Rt, Re, and Rpe are, respectively, the normal

ized ion-cyclotron, electron-cyclotron, and electron plasma frequencies, i.e., 

Ri =w,/w0, Re=we/w0, and Rpe=Wpefw'iJ, where wi=eB0/(mic), we=eBOf(mec), 

and wpe=·{4;n0e2fme; mi and me being, respectively, masses of ion and of 

electron, e the unit electronic charge, and c the speed of light. Another 

nondimensional parameter M A denotes the Alfven Mach number defined as 

MA=U0fVA, VA being the Alfven speed, i.e., VA=B0j'./4TTn0(mi+me)· 

Since we are concerned with hydromagnetic waves, for which U'fJjc<{l 
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104 T. KAKUTANI 

and Rpe}>1, we may neglect the displacement current in Eq. (3·5) and assume 
the quasi-neutrality ni~ne=:.n by virtue of Eq. (3·8). It should be noted 
that Eq.(3·6) implies that Eq.(3·7) remains valid when it is valid initially. 
Thus Eqs.(3·1)~(3·8) constitute the consistent system of fundamental equations 
for the present problem. Eliminating E and Ve from Eqs.(3·1)~(3·8), we h<:tve7) 

~; +div(nvi)=O, (3·9) 

M~ d~!--=-lrotBx B+-
1
-!(_lrotB·grad)vi+_!j__-(J-rotB)} dt n Re · n dt n 

(3·10) 

(3 ·11) 

where dfdt=:.ofot+(vrgrad). Thus we arrive at a one-fluid model, that is, we 
can formulate the problem in terms of the magnetic field and the variables of 
ion-fluid only. In this sense, one may call it "magneto-ion-dynamics"16) in 
analogy with the usual magnetohydrodynamics. It is interesting to note that, 
in the limit of Ri--+ (X) andRe--+ CXJ, the system of equations (3·9)~(3·11) takes 
the same form as that of the ideal (lossless) magnetohydrodynamics of 
negligible pressure (note that we have assumed cold plasma). Moreover Ri 
and Replay a similar role to that of the hydrodynamical and magnetic Reynolds 
numbers, in the sense that their roles become appreciable for high frequency and 
short wavelength. The essential difference is that the hydrodynamical and 
magnetic Reynolds numbers are measures of dissipation while Ri and Re are 
those of dispersion. In this sense, the magneto-ion-dynamics is a sort of 
"dispersive magnetohydrodynamics" and Ri andRe may be called, respectively, 
dispersive ion and electron Reynolds numbers. A systematic derivation of 
the magneto-ion-dynamics was first made by Kawahara, Taniuti and the 
present author with including an effect of isothermal electron pressure.16) 
The conditions for the validity of the equations, in particular, the conditions 
for the validity of the neglect of the displacement current and of the charge 
separation are established in their paper. 

Let us now consider one-dimensional plane waves and take Cartesian 
coordinates (x, y, z) with the x-axis parallel to the wave normal under the 
presence of a uniform magnetic field Bo(cosB, sinO, 0), where B(O<BS:.Tr/2) is 
an angle between the wave normal and the applied uniform magnetic field. 
Then all quantities n, Vi(u, v, w), and B(Bx, By, Bz) may be assumed to be 
functions of one space coordinate x and the time t, except for B x( =cos B) which, 
by virtue of Maxwell's equations, can be shown to be identically constant. The 
basic system of equations (3·9)~(3·11) then reduces to 
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Plasma Waves z"n the Long Wave Approximatz"on 105 

on+ a(nu) 0 
ot ax ' 

(3·9') 

: + M~n :x 1-!·(B~+B~)l=O, (3·10'a) 

dv Bx aBy + 1 ._!__(_!_ aBz )=o 
dt M~n ax M~Re dt n ax ' 

(3·10'b) 

1 d (_!_ oBy )=o 
M~Re dt n ox ' 

dw Bx oBz 
dt --M~n ox 

(3·10' c) 

(3·11' a) 

(3·11'b) 

where dfdt=ofot+uo/ox. We assume, for simplicity, that the plasma is in a. 

uniform state upstream at infinity, so that we impose the following boupdary 

conditions : 

n ~ 1, 

u ~o, 

v ~o, 

w ~o, 

By~ sinO, 

Bz~o 

as x ~ -oo. (3·12) 

As for the case of ion-acoustic ·waves, it is instructive to investigate first 

the dispersion relation in the linearized limit. Linearizing the system of 

·equations (3·9'}-'(3·11') and assuming a sinusoidal wave proportional to 

exp [z"(kx-wt)], we obtain the following dispersion relation: 

Vjj=!!!_ 
k 

1 
2M Ao: + MA.2 R"il R;lk2) 

x[/ci+~~s8) 2 +!( ~; + ~:}os 2 8+sin 2 8+2cos8lM:< 2 Rj 1 R;W 

where Vji are the phase velocities, k the wavenumber, and w the angular 

freuqency, and where we have discarded the wave propagating along the 
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106 T. KAKUTANI 

negative x-direction, because it leads, as for the case of ion-acoustic wave, to 
essentially the same results. Inspection of the relation (3·13) shows that there 
are three cases for_ which the phase velocity coincides with the group velocity. 
Two of them occur at k--+0 and the other at k=ko, say. Since we are concerned 
here with long waves, we shall consider the_ former only, while the latter has 
been dealt with by Mizutani and Taniuti17) for steady oblique propagation 
and by Taniuti and WashimilS) for parallel propagation including unsteady 
regime(see also Part III B). 

For long waves with small values of k, we can expand (3·13) as power series 
in k2 as follows : 

with 

(3·13') 

We may interprete V~ as the phase velocity of the magneto-acoustic wave while 
Vt; as that of the Alfven wave, because V6 and Vi} represent, respectively, 
the phase velocities of the magneto-acoustic and Alfven waves for ideal (non
dispersive) magnetohydrodynamics. 

It is obvious from (3·13') that the coefficient of k2 for the magneto-acoustic 
wave, V~fJ+, vanishes at the critical angle Be given by 

(3·14) 

while the coefficient for the Alfven wave, V 0{3-, is negative definite. There
fore the . Alfven . wave has a uniform negative dispersion irrespective of the 
propagation direction relative to the external magnetic field, whilst the 
magneto-acoustic wave has positive or negative dispersion depending upon 
the propagation angle. We have adopted here the convention that a dispersion 
effect is called to be positive if the phase velocity increases with the wave number. 
When 8=8c, the phase velocity for the magneto-acoustic 'wave, Vt, may be 
expressed as follows : 

Vt= Vt{1+f3ck4+0(k6
)}, 

1 
f3c=-: 2M~R~R~ sin28c · l (3·15) 

It should be remarked here that the expansions (3·13') are valid under the 

condition 
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Plasma Waves z'n the Long Wave A pproxz'mation 107 

1 {( Re +. Rt ) . } (1-cos 0)2}> M~R,Re R, Re cos2fJ+sln2fJ-2cosfJ k2, (3 ·16) 

which is roughly equivalent to 

04}> 4m,k2 
meM~RtRe 

(3·16') 

for O~J and me/mt<t:..l. Therefore as (J approaches zero, the wave becomes 

arbitrarily "smooth". In this sense one must regard the limit (J_,..O as an 

asymptotic one. 

In view of the relation 

d ( a ) a ( d ) au a 
dt ox =ax dt' - ax ax ' (3·17) 

together with Eq. (3·9'), the system of equations (3·9}-.{3·11') can be trans-

for~ed into the matrix form:7> · 

with 

au au 2 ( a a ) ·-·-+A(U)-+ TI Ha-+Ka- U=O ot OX a=I ot . . OX 

n 

u 

v 
U= By ' 

w 

Bz 

(
A+ B) 

A= C A- ' 

( 

u n 

A+= 0 u 
0 0 
0 By 

A--( u 
- -Bx 

B-(~ - 0 

0 

0 

0 

u 

-Bx 

0 

M -2 -IB ) An Y 

M -2 -IB , 
- An X 

u 

M -2 -IB ) - An X 

u ' 

(3·18) 

(3·19) 
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Kl =(it 
K+=(·o o 

1 0 0 

0 

Kl=( ~ 
-Ril 

H2=l, 

K2 =ul, 

T. KAKUTANI 

K].) 
0 ' 

0 -MA.2R-e1n-1
) 

Ril 0 ' 

0 

MA2 f.ln-1 ) ' 

where I stands for the unit matrix. This is of the standard form of Eq.(l.4·1) 

with P=2 and s=l. 

Let us now consider a solution in the neighbourhood of the uniform state 

1 

0 

Uo= 
0 

(3·20) 
sinO 

0 

0 

(cf., the boundary conditions (3·12)). Then the matrix Ao takes the following 

irreducible form: 

Ao=( Aot o ) A-o , (3·21) 

and the eigenvalues of A o become 

Ao=O, ±. v+· 
0' ±Vo, (3·22) 

which correspond, respectively, to the contact surface, magneto-acoustic wave, 

and Alfven wave. Since we consider here the progressive waves, we shall 

discard the contact surface specified by .\o=O. 

3.1 Magneto-acoustz'c wave (8~8c) 

Let us first consider the magneto-acoustic wave specified by Ao= Vt under 

the condition 8~8c. Historically speaking, this is the first example for which 

Gardner and Morikawa2) obtained the ~orteweg-de Vries equation for the 

special case of transverse propagation 8=7r/2. Then Berezin-Karpman,l9) 

Morton20) and Kakutani-Ono-Taniuti-WeF> have extended the results to 

_general propagation angle 8~1rj2. In their analysis Berezin-Karpman restrict

ed themselves to the propagation angle which satisfies Vme/m~ <{1Tj2-8<{1, 
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Plasma Waves in the Long Wave Approximatz'on 1.09 

for which electron inertia is negligible.. In this connection, it should ·be 
noted that when cot8-:;Sme/mt electron inertia cannot be neglected even if 
me/mt<f:J ( cf., (3·13') and (3·14)\ On the other hand, Morton did not 
discriminate clearly between magneto-acoustic and Alfven modes. 

Now that the system has been reduced to the standard matrix form given 
by Eq.(L4·1), let us try to proceed along the prescription described in I§4. 
It should be noted, however, that 

0 M-;lR;1
) 

-M-;lR-:t1 0 ' 

0 

-MrR;l ). 
which represents the interchange between the two invariant subspaces as
sociated with At and A0 (cf., (3·21) ). On· the other hand, the right and left 
eigenvectors for the magneto-acoustic wave, .\0 . V6, become respectively 

R=( ~+) and L=( L+ 0 ), 

where 

( 

Ml-1 ) 
R+= A ' -M-;lcot 8 

cosec(} 

(3·24) 

Therefore a direct application of the general theory developed in I§4 leads to 

p=(LK0R)/(LR)=0. 

It is thus found that the magneto-acoustic wave belongs to the· exceptional 
case. for which the coefficient of dispersion term becomes· zero, hence, for 
magneto-acoustic wave, the ordering specified by the expansion (1.4·2) and the 
coordinate-stretching (!.4·3) with P=2 is not valid. In fact, the dispersion 
relation (!.4·10) with p 2 shows that the lowest order dispersion first appears 
from the order of O(k2P-l), that is, the dispersion relation .takes the explicit . 
form given by (3·13'), which suggests the following coordinate-stretching 

(3·26) 

instead of (I.4·3) with p=2. On the other hand, a simple dimensional argu-
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110 T. KAKUTANI 

ment then suggests that the expansion of the dependent variables should be 

00 

:E si ut, 
j=O J 

u-=ell2 £: ei Uj, 
J=l 

instead of (1.4·2), where 

and 

U-=( ;z ) with 

(3·27 a) 

(3·27 b) 

u+-( ~ ) . o- 0 

sin 8 

(3·27 c') 

uo=(~)· (3·27 d) 

In terms of the new variables (~, T), Eq. (3·18) takes the form: 

au au 2 ! a a l 
s dT +(- Vti+A)ag-+s112 J]

1 
(- VtHa+Ka) ag +sHa-a

7 
U=O. 

(3·28) 

In view cf the property of H a and K a given by (3·19), the last term of Eq.(3·28) 

can be. expressed as 

(3·29) 

where Dq takes the form 

( 
o n

0
-q) 

Dq= Dt 

with 

D~=Kt[ :, !(-Vt+u) :, lJ. 
D ±-K± a2 

1 - 1 aga'T , 

D~=O. 

Hence Eq. (3·28) splits into the following two parts: 

(3·30 a) 
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(3·30 b) 

By virtue of the expansions (3·27), we may expand A, B, C, and Dq as the 

power series in s: 

in whiCh 

A±=~ siA[, 
j=O 

00 

B=s112 :E si Bt, 
j=l 

00 

C =sl/2 :E siCJ, 
j=l 

Dq= ~ s1d:q1, 
j=O 

A[= Ut·(P'u+A±)o, 

B1 = Ui·(P' u-B)0, 

C1 = Ui·(P' u-C)o, 

dq1 . Ut·(P' u+D~:) 0 , 

d~ 0 = d~ 0 o 2 /o' 2 , 

d"±_ v+K± 
o-- o 10· 

(3·31 a) 

(3·31 b) 

(3·31 c) 

(3·31d) 

Substituting (3·27) and (3·31) into Eqs;(3·30) and equating terms with the same 

powers in s, we obtain the following sets of equations for each power in s .. 

First we have for sl: 

(- v+J+A+) aut-o 
o o~·-, 

(- Vti+A 0 )· 0 ~i +dt0 Ut=O. 

Equation (3·32a) can be integrated at once, giving rise to 

Ut=R+r.pClJ+' 

(3·32 a) 

(3·32 b) 

(3. 33) 

_where r.p(l)+ is one of the components of Ut (here we set r.p(l)+ · n<l>), and where 

the boundary conditions (3·12) have been used to specify an arbitrary function 

of r resulting from the integration .. Substitution of (3·33) into Eq. (3·32b) 

gives an expression for Ui. in terms of r.p<l)+, that is, 

U - C v+J A-)-ld"+ + ar.p<I>+ 
1 =- - o + o ooR ar~·. (3. 34) 

Next we have for s2: 

(3·35 a) 
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112 T. KAKUTANI 

(- Vti+Ao) o~2 +dtoUt 

- a.ui A- aui c aut d+ u+ d+ u+ 
--~- 1 ag- lag- 10 1- 01 1' (3·35 b) 

Multiplying (3·35a) by the left eigenvector L+ of At, and remembering the 
relation (3·34) we obtain finally 

a~<l>+ <I>+ a~<l>+ a3~<1>+ 
OT +a~ -ag-+p ae3 o, 

where 

a=[L+{R+·(P'u;A+)0}R+]j(L+R+)= 
2
! A=~ Vt, 

p=-[L+d00(- Vti +A0)-1dt0R+]j(L+ R+) 

=- Vtp+ 2M~~~R· !1-(V ~; -V ~: r cot28}: 

(3·36) 

(3·37) 

Thus we arrive at a conclusion that the magneto-acoustic wave can also be 
governed by the Korteweg-de Vries equation under the long wave approxi
mation, and that the coefficient of the dispersion term, p,, exactly corresponds 
to the coefficient .of k2 in the dispersion relation (3·13'). 

The modification of the general method adopted in this section can be 
extended to more general case satisfying the following conditions :7),15) 

(1) For the equation given by Eq.(I.4·1) with s=l, the matrix A has the 
representation 

(
A+ B) 

A= C A- ' (3·38) 

in which A+ and A- are respectively m X m and (n-m) X (n-m) matrices, 
which arc functions of U+ only, while the elen1ents of the matrices B and Care 
linear combinations of the components of u- multiplied by functions of u+ 
only, where U± are defined by 

u=(· u+). u- , 
( 

Ul ) ( Um+l ) 
u+= ~2 ' u-= u;+2 . 

Um Un 

(3· 39) 

(2) There exists a uniform state given by 

u: =( ut )=·( ut) 0 u- o ' 0 
(3·40) 
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Plasma Waves in the Long Wave Approximation 113 

and U± can be expanded around the uniform state as power series in the scale 

parameter e: 

u+= i; s1 Uj, 
j=O 

u-=s1i2 i; s1 Uj. 
J=l 

(3) Ao has an irreducible representation: 

Ao-( At 0 ) 
- 0 A 0 ' 

(3·41 a) 

(3·41 b) 

(3·42) 

where the eigenvalues of At are real, at least one of them is nondegenerate, 

finite, and nonzero and is not equal to any eigenvalue of A 0. 

(4) H a and K a are functions of U+ only, and the operator in the last term of 

Eq. (1.4·1) takes the following form: 

D-) 
0 

, say. (3·43) 

(5) U tends to the uniform state Uo as x~- oo. 

If the above five conditions are satisfied then the original system given by 

Eq. (1.4·1) can be reduced to the Korteweg-de Vries type equation under the 

coordinate-stretching defined by 

(3·44) 

where .\t is the nondegenerate, finite, nonzero eigenvalue of At, which is not 

equal to any eigenvalue of A 0. The procedure of the reduction is quite parallel 

to that given in this subsection for the magneto-acoustic wave (fJ~Oc)· 

3.2 Magneto-acoustic wave at the critical angle fJ=fJcS> 

As was already remarked, when the propagation angle fJ of the wave 

relative to the external magnetic field becomes the critical angle Oc given by 

(3·14), the dispersion parameter Vtf3+ becomes zero, so that one needs a further 

modification similar to that employed in the preceding subsection, §3.1. 

Since the dispersion relation at the critical angle is given by (3·15), which 

shows that the lowest order dispersion firs~ appears in the order of O(k4) instead 

of O(k2), we should stretch our coordinates as follows: 

(3·45) 

Equation (3·18) then takes an analogous but slightly different form from that 

of Eqs. (3·30). Employing the same expansions as those given by (3·27), and 
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114 T. KAKUTANI 

carrying out a similar procedure to that in the preceding subsection, one finds 
that 

(3·46) 

and that 

(3·47) 

where ~<2>+ is one of the components of Ut (we set here ~<2>+=n<2>). Equation 

(3·47) is of a generalized form of the Korteweg-de Vries equation in the sense 

that the dispersion term is replaced by the fifth order derivative. 

It was found by Kawahara9) that Eq. (3·47) has an oscillating solitary 

wave solution instead of the "monotone" Korteweg-de Vries soliton. He 

considered the following type· of equation: · 

(3·48) 

and found that the solitary wave solution becomes to have an oscillatory 

structure if an effect of l-'2 term dominates over that of 1-'1 term. 

A generalized system in which the lowest order dispersion first appears 

in the higher order in k2 can also be dealt with by a similar way if we modify the 

corresponding coordinate-stretching appropriately. 8) 

3.3 Aljven waveS> 

For the case of Alfven wave specified by Ao= V 0, it is natural to introduce 

the coordinate-stretching defined as 

(3·49) 

in analogy with that for the magneto-acoustic wave (cf., (3·26)). We have 

then an analogous system of equations to that of Eqs. (3·30a) and (3·30b) in 

which V6 is replaced by V0. If we attempt a similar procedure to that used 

in §3.1 based on the expansions of the d~pendent variables defined by (3·27a) 

and (3·27b ), then with the boundary conditions (3·12) we have 

Ut=O, (3· 50) 

and we obtain the following linear equation: 

(3·51) 

where ~(1)- is one of the components of U}., i.e., ~(1)- is either w(1) or B~ 1 ). It 

is thus found that the Alfven wave belongs to the exceptional case for which 

nonlinear term vanishes under the same ordering to that of the magneto-
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Plasma Waves z'n the Long Wave Approxz'matz'on 115 

acoustic wave. Physically speaking, this may reflect. the fact that in this 

ordering the Alfven wave is essentially "transverse" wave and is not accompani

ed by the density change. On the other hand, however, earlier investigations 

on steady regime by Kazantsev21) and also by Kellogg22) have shown that even 

the Alfven mode has a solitary wave solution associated with it, though this is 

obviously not possible for a linear equation such as Eq. (3·51). Therefore in 

order to take a nonlinear effect into account we must modify the ordering of 

the dependent variables. A dimensional argun1ent concerning the ·balance 

between nonlinear and dispersion effects suggests that the appropriate expan

sions of the depertdent variables should be 

where 

co 

U--"" 112u- ~ e 1' 
j=O 

and 

(3·52 a) 

(3·52 b) 

which are not constant but functions of ce, T). The boundary conditions (3·12) 

now imply that 

Ut-+( -~ ), U0-+(6) and Uj-+0 (}=1,2, ... ) 

Sln8 as e-+ -oo. · (3•53) 

The essential difference between the expansions (3·27) and (3·52) is that we ta~e 

into account in (3·52) "zeroth" order deviations of the dependent variables 

from the uniform state. It should also be noted that the series expansions 

(3·52) are not in integral powers of e but in half-integral powers of e, and that 

the perturbations of all quantities are of the same order of magnitude with 

respect to one another. 

Substituting (3·52) into the system of equations analogous to that of Eqs. 

(3·30a) and (3·30b) with V6 replaced by V0, and equating terms with the same 

powers in s112, we obtain the following sets of equations for each half-integral 

power of e. 

For sO, we have 

( V-I A+) aUt B a Uo ._0 
- 0 + 0 -ar+ oar- ' (3·54 a) 
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116 T. KAKU'l'ANI 

(3·54b) 

Since A~, B 0, and Co are functions of U~ which are now not constant but 

functions of (g, T), there, seems to be no elegant method to integrate Eqs. 

(3·54) unlike the case for magneto-acoustic wave. It may, therefore, be 

more convenient to deal with Eqs. (3·54) in component form rather than in 

matrix form. Expressing the system of Eqs. (3·54) in component form, and 

remembering the boundary conditions (3·53), we obtain 

n<0>=1, 

u<O>=O, 

B~ 0 ) 2 + B~0> 2 =sin 28, 

M AvC0)+UJ)=sin8, 

MAwC 0 )+B~O>=O. 

Next for e112, we obtain 

n<I> cos8-M Au<1>=0, 

M AuCl) cos8-(B~> B~ 1 )+B~O> B~ 1 ))=0, 

1 oB~ 0 ) 

MARe ag ' 

1 aB~) 

MARe ag ' 

) 

n<2> cos 8-M Au<2> =M An(l>u<I>, 

MAu( 2 )cos8-(B~ 0 )BCJ')+B~0>B~ 2 ))= ~ (B~l)2+B~1)2), 

(3·55) 

(3·56) 

(3. 57) 
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(3·58) 

~ <2) ~BC2) ~ 1 ~·Bcm ~ M uw +_u_z ___ u_(B<O)· C2))= __ u_z_+_u_. ( c1>BC1)) 
A ae ae z n / V(i OT ae n z . 

1 o2
v<D . 1 o (· c1) oB. ~) )-_j__(B<O) <1)2) 

- Ri, ae2 MAR'/, ae n ae ae z n ' 

where (3·55),_,(3·57) have been used. Eliminating the higher order terms in 

(3·58) by means of the relations (3·55),_,(3·57), we have 

_1_(B<O) a!Jim _ B<O) a.B~))--1-(_!_ _ _!_) 2 
28_g_(_1_ aB~)) 

V(i y OT z OT 2M~ Re Rt cos ae BiO) ae 
B<O) u z -0 ~2BC0)) 

y ae2 - , (3·59) 

where 

!J<m =J e B<O) -Jc y,z- y,zus. 

It is now convenient to introduce new variables (B<O>, q><O>) defined as 

(3·60) 

The third line of (3·55) then gives 

(3·61) 

In view of (3·53) and (3·60), the boundary condition for 4)(0) is given by 4><0>--+-0 

as e--+-- 00 • 

In terms of the new dependent variable 4)(0), we can rewrite Eq. (3·59) as 

which can be integrated once with respect tog, giving rise to 
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118 T. KAKUTANI 

(3·62) 

where the boundary condition for cJ>(O) and the linear dispersion relation (3·13') 

have been used. Since n<1)=M;/(Rt'1-R;1)ocJ><Q);ag by virtue of (3·57) and 

(3·60), we can rewrite Eq. (3·62) as an equation for n<l>: 

~q_n (1~ + (1) 2 on (1) ()3n (~ -0 
O'T an ag +,u ags - I 

(3·63) 

where 

a= 

p= 
} (3. 64) 

. Thus we arrive at a conclusion that the Alfven wave is governed by the modified 

Korteweg-de Vries equation. It should be noted that not only the dispersion 

term but also the nonlinear term is affected by the dispersion effect, since a 

contains the dipersion parameter {:J-. It is also noted that there are two types 

of solitary wave solution to Eq. (3·63), one being compressive and the other 

rarefactive, and that they coincide exactly with the approximate steady solutions 

obtained by Kazantsev21) and roughly coincide with the exact steady solutions 

obtained numerically by Kellogg.22> 

The problem of hydromagnetic waves considered here has been extended 

to various cases. One involves the inclusion of the plasma temperature. 

Starting from the Vlasov equation, Kever-MorikawalO) showed that the 

magneto-acoustic wave is governed by the Korteweg-de Vries equation even 

in warm plasma. By taking account of the electron temperature, Kawahara H) 

also sho"\Ved that the magneto-acoustic wave is governed by the Korteweg-de 

Vries equation, whereas the Alfven wave is governed by the modified 

Korteweg-de Vries equation similar to Eq. (3·63). In these cases, the 

coefficients of the resulting equations are,. of course, functions of plasma tem

perature. The second extension involves the examination of an effect of 

electron-ion collisions. In this case, the governing equations describing the 

magneto-acoustic wave can be reduced to the Korteweg-de Vries-Burgers 

equation,13) which has either oscillatory or monotone shock wave solution 

according to dispersion-dominant or dissipation-dominant case. Another 

extension is concerned with the examination of an effect of inhomogeneity of 

the plasma density and that of the applied magnetic field.12) Effect of in

homogeneity of the wave media has been discussed in Part II B of this series 

from a ·generalized point of view. 

In concluding this paper, we refer the interested reader to Jeffrey and 

Kakutani23) who reviewed other examples, such as water waves and lattice 

waves, for which the reductive perturbation method can effectively be applied. 
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