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A PLASTICITY MODEL AND ALGORITHM FOR MODE-I 
CRACKING IN CONCRETE 

PETER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. FEENSTRA AND RENE DE BORST. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Delft University of Technology, Faculty of Civil Engineering, P.O. Box 5048, 2600 G A  Delft, The Netherlands 

SUMMARY 

A class of plasticity models which utilize Rankine’s (principal stress) yield locus is formulated to simulate 
cracking in concrete and rock under monotonic loading conditions. The formulation encompasses isotropic 
and kinematic hardenindsoftening rules, and incremental (flow theory) as well as total (deformation theory) 
formats are considered. An Euler backward algorithm is used to integrate the stresses and internal variables 
over a finite loading step and an explicit expression is derived for a consistently linearized tangent stiffness 
matrix associated with the Euler backward scheme. Particular attention is paid to the corner regime, that is 
when the two major principal stresses become equal. A detailed comparison has been made of the proposed 
plasticity-based crack formulations and the traditional fixed and rotating smeared-crack models for 
a homogeneously stressed sample under a non-proportional loading path. A comparison between the 
flow-theory-based plasticity crack models and experimental data has been made for a Single Edge Notched 
plain concrete specimen under mixed-mode loading conditions. 

KEY WORDS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconcrete; cracking fracture; mode-I; plasticity; softening 

INTRODUCTION 

Since the first applications of non-linear finite element analyses to concrete structures in the late 
1960s,1*2 many new developments and improvements have been published. This holds true for the 
discrete crack approaches, where the interior of the structure is kept linear elastic and crack 
propagation is simulated by changing the topology of the structure, as well as for the smeared- 
crack approach, on which class of crack models our attention will be focused in this contribution. 
In smeared-crack models, it is assumed that the non-linearities due to cracking can be distributed 

over an area that belongs to a sampling point in a numerically integrated finite element. Cracking 
is then monitored via certain internal parameters which are updated in the sampling point upon 
progressive cracking. 

In the first use of the smeared-crack approach by Rashid,’ the major principal stress was set 
equal to zero immediately upon violation of the tensile strength of the concrete. Also, the shear 

capacity in this direction was assumed to have vanished, and a zero shear stiffness was inserted in 
the anisotropic elastic stress-strain relation. Later, enhancements were proposed like the partial 
retention of shear stiffness across the crack face via a shear retention factor,’ and the gradual 
decrease of the tensile carrying capacity in the direction normal to the crack instead of the sudden 
drop to zero adopted originally. In this contribution, we shall focus on a side effect of the 
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introduction of a shear retention factor and a softening branch, namely the fact that the principal 
stress direction after cracking now no longer coincides with the normal to the crack and that the 
major principal stress may even exceed the tensile strength in another direction. Neglecting this 
effect causes spurious stresses to occur and tends to result in collapse loads that severely 
overestimate the true failure load. 

Probably, this phenomenon was first recognized by Cope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1.: who, in an engineering approach, 
suggested to corotate the crack axes with the axes of the principal stress directions. A direct 
consequence of this approach is that the shear stiffness can no longer be specified independently, but, 
under the physically realistic assumption of coaxiality of stress and strain tensors, becomes an implicit 
function of the rotation of the principal stress axes. In a different approach, de Borst, Nauta and 
Rots5-' departed from the total stress-strain relations employed hitherto, and changed to an 
incremental formulation. In this approach, they assigned a part of the strain increment to the 
uncracked concrete, and a part to each individual crack (primary, secondary, etc.). The advantages of 
the model over the rotating crack approach are that it allows for a transparent combination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith 
other non-linear phenomena, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas creep, shrinkage and thermal loading,' and that it incorporates 
path-dependent behaviour which in principle can properly accommodate non-proportional loadings. 
Disadvantages of the model are the complications involved in programming the model properly, the 
fact that a robust algorithm could not be devised for cases where both cracking and plasticity (which 
arises due to large compressive stresses parallel to the cracks) occur in one sampling point, and the 
numerical difficulties that appeared during state changes.' 

To solve both the problem of the overestimation of the failure load and the numerical 
difficulties associated with the multiple-crack a constitutive model has been developed 
which describes the formation of cracks within the framework of plasticity theory. Rankine's 
(principal stress) yield criterion is invoked to initiate cracking and to monitor crack propagation. 

Since tensile loading in one direction leaves the tensile capacity intact in the transverse direction, 
the evolution of the yield locus by an isotropic hardening/softening rule is questionable and 
therefore the use of a kinematic hardening/softening rule has been investigated as well. Further- 

more, in addition to the flow theory of plasticity that has been employed, the Rankine plasticity 
model with kinematic/isotropic hardening/softening has been developed into an algorithmic 
setting also for a deformation theory of plasticity. The latter model will be discussed to show the 
analogy with the rotating crack model. 

This paper is ordered as follows. Firstly, a concise description is given of the integration of 
a flow theory of plasticity using an Euler backward scheme. Then, the algorithmic treatment is 
specialized to the Rankine yield criterion. For use within the framework of the Newton-Raphson 
method the stress-strain relation for finite increments is consistently linearized. It is shown how, 

with some minor modifications, the algorithm can be used to simulate a deformation theory of 
plasticity. Next, a comparison is made of the proposed plasticity-based crack formulations and 
the traditional fixed and rotating smeared-crack models for a homogeneously stressed sample 
under a non-proportional loading path. Finally, finite element simulations using the Rankine 
flow theory are compared with experimental data for a Single Edge Notched (SEN) plain concrete 
specimen under mixed-mode loading conditions. 

INCREMENTAL FORMULATION 

Assuming small strains, we adopt the additive decomposition of the strain rate vector 8 into an 
elastic, reversible part 8, and an inelastic, irreversible part C,, 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, + EC (1) 
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The elastic strain rate determines the stress rate through the elastic stiffness ratio matrix D,, 

which is assumed to be isotropic throughout this article, 

The evolution of the inelastic strain is dependent upon the assumption of the constitutive model 
and is in general a function of the stress and strain state and the internal variables. The inelastic 
strain rate will now be determined with an incremental formulation based on the flow theory of 
plasticity. 

A fundamental notion of plasticity theory is the existence of a yield function 

which depends on the stress vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, the back-stress vector q, which allows for a kinematic 
hardening behaviour, and on a number of scaled-valued internal variables, conveniently collected 
in a vector q. The evolution of the inelastic strain rate is given by the associated flow rule 

where the notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, f is used to denote the derivative of the yield function fwith respect to the 

stress vector a. The rate of the inelastic multiplier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx has to comply with the Kuhn-Tucker 
conditions 

X 2 0 ,  f G 0 ,  i f = O  (5 )  

The evolution of the back stress is assumed to be given by a generalization of Prager's kinematic 
hardening rule with the direction of the back-stress rate determined by a function g, 

(6) fi = (1 - y)EkXd,g 

in which Ek is the kinematic tangential hardening modulus and y is the proportion of isotropic 

and kinematic hardening, y = 0 implying full kinematic hardening and y = 1 setting the other 
limiting case of pure isotropic hardening. The evolution of the internal variable vector is assumed 
to be given by a general evolutionary equation 

i = wJ,11,q) (7) 

The evolution equations given above can be regarded as strain-driven in the sense that the total 
strain vector, the inelastic strain vector and the internal variables are known at time t, and that 
the incremental strain vector Adi+') in the current iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi + 1 follows from the loading 
regime. The basic problem in computational elastoplasticity is that the elastoplastic constitutive 
equations have to be updated in a consistent manner: 

(ru, I&, t,,, tq; A&('+ 1)) + 
I), &(i+ I), ,f+ + 1)) 

By applying the fully implicit Euler backward algorithm, this problem is transformed into 
a constrained optimization problem governed by discrete Kuhn-Tucker conditions." It has been 
shown in different studies' 1-14 that the implicit Euler backward algorithm is stable and accurate 
for J2-plasticity. But even when the yield surface is highly distorted, the Euler backward 
algorithm is unconditionally stable and accurate."16 Application of the Euler backward 
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algorithm results in a discrete set of equations: 

&( '+ I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f E  + A&(i+I) 

&+ 1) = ~ ~ ( & ( i +  1) - &$+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)) 

&(i+ 1) = f &, + A$'+ 1) auf ( i+  1) 

, ,( i+U = f + AA(i+l) (1  - y)E,J,g"+" 

C 

q(i+ 1) = f + Al(i + 1) h(i + 1) 

with Eks the secant hardening modulus. The discrete Kuhn-Tucker conditions read 

A F +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 

(9) f (#+ l ) ,  ( i+ l ) ,q ( i+U < P ),O 
AA(i + 1) f Ia"  + 1) P(i+l) ,q( i+ l ) )  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 

Because the algorithm is considered within an elastic-predictor-plastic-corrector algorithm, an 

elastic trial state is introduced as 

zE = f&,  + A&(i+l) 

GE = De&E 

P E  = 'q 

q E  = 'q 

which can be obtained by freezing inelastic flow during the time step. 

A RANKINE FLOW THEORY 

The maximum tensile stress criterion of Rankine will be used to bound the tensile strength 
of concrete. Consider a plane-stress situation in which the major principal stress o1 is defined 
by means of Mohr's circle, Figure 1. The hardening behaviour is assumed to be described by 
an internal variable K which governs the major principal stress. The yield function is then 

Figure 1. Mohr's circle 
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given by 

In the formulation presented here, a single stress-based function is defined which is governed by 
the major principal stress, and with an equivalent stress which describes the hardening behaviour 

of the material. The assumption of isotropic behaviour is not completely valid for a material 
which is intrinsically anisotropic since it can be loaded to the virgin tensile strength even if in the 
transverse direction the stress has been reduced due to softening of the material. For this reason, 
a kinematic hardening model in which the yield surface is shifted in the direction of the major 

principal stress may be more adequate for modelling fracture in concrete. 
In a plane-stress configuration with an expanded stress vector a' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{cxx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcyy, a,,, ax,.}, the 

major principal stress can be expressed in terms of the stress vector with the aid of Mohr's circle. 
This results in a yield function with mixed hardening, which reads 

with the reduced stress 4 = (r - q and the equivalent stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 as a function of the internal 

parameter K. With 5' = {tXx, t,,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,,, t xy } .  the projection matrix P and the projection vector n are 
given by 

p = f  2 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

1 

1 
2 

- 5  
- 

0 

0 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:I 2 

(13) 

and 

respectively. The equivalent stress 5(yrc)  is the uniaxial tensile strength which is assumed to be 
given by a non-linear function of the internal parameter K. 

The incremental back-stress vector has been defined in equation (8) as 

in which the direction of the incremental back-stress vector is determined by the derivative of 

a function g with respect to the stress vector at the final stress. Assuming that the direction of the 
incremental back-stress vector is given by the major principal stress direction at the final stress, 
g can be determined. Consider the following expression in which the stress vector a is expressed as 
a transformation of the principal stress vector: 

d = a; 

sin2 4 

+ 0 3  
0 

sin 4 cos 4 - sin #I cos 4 
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The direction of the incremental back-stress vector is now assumed to be given by the direction 
vector which is related to the major principal stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcl, so 

( s in4cos4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 
We now note that the gradient to the yield function 

can be expressed in terms of the angle between the normal directions and the principal directions: 

see also Figure 1 for the definition of the angle fp. Comparing equations (16) and (18) we observe 

that 

Atl = A1(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ) E k , A M & 7 f  

AM = diag[l, 1, l,;] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(19) 

where 

(20) 

It is assumed that the internal damage in the material as reflected in the internal parameter K is 
governed by a work-hardening hypothesis. In a work-hardening hypothesis the internal variable 
is determined by the inelastic work rate Wc defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ti.I, = &'&, = C ( Y K ) l i :  (21) 

or, utilizing Euler's theorem, we obtain 

k = 1  (22) 

so that for finite loading steps the general evolutionary equation, equation (7), simplifies to 

(23) 

in the case of the Rankine yield criterion. 
The updated stress vector di") and the updated back-stress vector w f i + ' )  are obtained by 

substituting equations (lo), (17) and (19) into the discrete set of equations, equation (8). This 
results in 

A x  = A 1  

(24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI""+''] = [i:; A12]-' { t ~ ~ - i A A ( ~ + ' ) D ~ l t  

(1 - ?) Eks 
,fi+ 1)  A22 tlE + $AA(i+1) 
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with the matrices 

where the denominator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is defined as 

Equation (25) for Y is not very convenient because the updated stress in equation (24) is then 
not related linearly to the trial state. To arrive at a more suitable form we express the 
denominator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY in terms of the inelastic multiplier via premultiplication of di+ ') and q('+') by nT 
(Reference 1 8): 

R T u ( i + l )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII T UE - + A P + ~ ) I I ~ D , R  
R T , , ( i + l ) =  T 1 A ( i + l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(26) 

R q E  + 3 A  (1 - Y ) R * E k , I I  

because nTD,P = OT. The denominator now reads 

and is expressed solely in terms of the variables in the trial state and the inelastic multi- 
plier. Accordingly, equation (24) is a linear system of equations in the unknowns a( '+ ' )  

and tfi''). 

The matrix defined in equation (24) will henceforth be denoted as the mapping matrix. The 
calculation of the mapping matrix can result in numerical problems because the calculation of the 
submatrices of the mapping matrix involves a division by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY.  This factor becomes equal to zero in 
the comer of the yield surface. However, if Y is equal to zero, the inverted mapping matrix is still 
defined, which can be shown by application of a spectral decomposition of the sub mat rice^.^. l9 

The algorithm for the regular region of the yield surface will be derived below and the corner 
regime will be discussed in the Appendix. 

Because of the assumption of isotropic elasticity, it appears that the linear-elastic stiffness 
matrix D, and the projection matrix P have the same eigenvector space. This means that the 
spectral decomposition is given by the same transformation matrix, according to 

De = QADQ' (28) 

and 
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with the orthogonal matrix 

1 - 1  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$77 

1 0  0 0 1  

which satisfies Q-’ = QT. The diagonal matrices A D  and Ap are given by 

“ 1  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE E 
AD=diag[(1+ - - ~ 

v)’ (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv)’ (1 - 2v)’ 2(1 + v) 

and 

Ap = diag [0,1,0,2] 

respectively. Because the elastic stiffness matrix and the projection matrix have the same 
eigenvectors, the matrices A, simplify to 

Setting 

the mapping matrix can be written as 

Q 0 Ai l  QT 0 [i:: = [ O  Q][AzI 0 QT] 
(33) 
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and the inverted mapping matrix is calculated as 

(34) 
A21 A22 0 QT 

with the inverted tridiagonal matrix given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
] (35) [̂ " A21 A121-1 A22 = [ -(A11A22 - A12A21)-1A21 (A11A22 - A12A21)-1A11 

(A11A22 - A12Azd-'A22 -(A11A22 - A12Azd-l A12 

The matrix product (A l lAzz  - A12A21)-1 can be computed explicitly as 

With this procedure the return-mapping algorithm has been given and the updated stress vector 

and the updated back-stress vector are both expressed in terms of the inelastic multiplier and the 
trial state variables. This provides a scalar expression in the inelastic multiplier which has to be 

determined by enforcing the constraint condition 

(37) + 1) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,fi+ I), ,&i+ 1))  = f(An(i+ 1)) = 0 

which can be solved with a local Newton-Raphson iteration. Since the gradient J = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd b l f  is 
expensive to calculate it is approximated by a secant Newton-Raphson method which needs only 
a few scalar evaluations to approximate the derivative by the secant stiffness. The initial gradient 
is calculated from the development of the yield function in a Taylor series, and reads 

J'''= -d,EfTDed,,f-(l - -Y )Ek  +d,,f' (38) 

The set of non-linear equations following from the finite element discretization will be solved 
using the Newton-Raphson method. The non-linear problem is then linearized in a sequence of 
iterations until the problem is converged. The linearization of the equations results in the tangent 
stiffness matrix which plays an important role in the performance and robustness of the 

Newton-Raphson method. It has been emphasized by Simo and Taylor2' that the quadratic 
convergence of Newton's method depends crucially on the consistent linearization of the stress 
resulting from the return-mapping algorithm to set up the tangent stiffness. The updated stress at 
the end of iteration (i + 1) reads 

1) = D, {&+ 1) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf E ,  - Al( i+  1) 
8 U . f  1 (39) 

(40) 

d f = 8 , f T d a + a , f T d f l + a , f d K = 0  (41) 

which is linearized by calculating the total derivative 

da"+ 1 )  = D, { de(i+') - d l  8,f- AA(i+l) 82,fddi+')) 

With the consistency condition enforced at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  + 1) 

we obtain 

a, f a , p  dd i+  I ) }  (42) 
1 

E s  

da(i+ 1) = H de(i+ 1) - - 

with the hardening parameter 

E s  = -8,f-k (1 - Y ) E k  (43) 
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and the modified stiffness matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[C, + A3, ( i+ ' )a~Of ] -1  (44) 

The consistent tangent stiffness relation is finally computed using the Sherman-Morrison- 
Woodbury formula 

TOTAL FORMULATION 

The fundamental difference between the total formulation of the constitutive model and the 
incremental formulation discussed in the previous paragraph is the formulation in strains rather 

than in strain rates. If an additive decomposition of the total strain vector is assumed into an 
elastic, reversible part E,, and an inelastic, irreversible part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,  the strain vector is given by 

E = E ,  + E, (46) 

a = DeE, (47) 

The stress vector in the final state is given by 

with D, the elastic stiffness matrix. The inelastic strain vector is dependent upon the assumption 
of the constitutive model and is in general a function of the strain vector. 

The fundamental notion of the existence of a yield function is also used in the deformation 

theory of plasticity and the basic difference with the flow theory is the assumption that the plastic 
strain vector is given by a total formulation rather than by a rate formulation, i.e. 

E ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAna,f (48) 

120, f(a,tl,3<0, If(a,,,,d=O (49) 

with the plastic multiplier 3, to be determined by satisfaction of the Kuhn-Tucker conditions 

The internal variables are again collected in a vector q and evolve according to the general 
hardening law 

9 = lh(a,,,,q) (50) 

The system of equations which is obtained after applying the Euler backward algorithm reads 

&( i+  1) = tE + 1) 

= ~ , ( & ( i + l )  - &f+ l ) )  
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An elastic-predictor-plastic-corrector algorithm is again considered in which the elastic trial state 
is now assumed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

gE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 8  + A&('+') 

Accordingly, the elastic trial strain vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE~ now gwen by the total strain at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i + 1) and in the 
elastic trial state the internal variables, collected in the vector q, and the back-stress vector q, are 

equal to zero. In this fashion the updated stress vector is computed in the same manner as in the 
algorithm for flow theory, but for a different definition of the trial state. Consequently, deforma- 
tion-type plasticity models can be analysed without major modifications of the algorithm 
described for the flow theory of plasticity. 

The damage in the material is reflected in the internal parameter K which can be derived from 
the assumption of work hardening 

w, = GTE, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f ( Y K ) K  

which can be elaborated as 

The tangent stiffness matrix is again developed from the updated stress at ( i  + l), 
a( i+ l )  = D (&( i+l )  - A(i+l)a,  f )  

da"+ 1) = D, {d&('+ 1) - dAa, f - A(ifl)a:u f dd"')} 

(54) 

The total derivative then reads 

(55)  

During the process of plastic loading the consistency condition has to be satisfied: 

d f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, f d a  + 8, fTdq + aq f Tdq = 0 

which can be elaborated to 

1 
dA = - a, f d&+ " 

Es 

with the hardening parameter 

E , =  -aq fTh+( l - y )Ek  (57) 

The consistent tangent stiffness matrix is finally obtained by substituting equation (56) into 
equation (55)  and reads 

with the modified stiffness matrix 
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Figure 2. Tension-shear model problem: (a) tension up to cracking; (b) biaxial tension with shear beyond cracking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The limit of the consistent tangent stiffness matrix discussed for the model based on the flow 
theory of plasticity is also valid for deformation-type plasticity, because the structure of the yield 
function remains unaltered. 

TENSION-SHEAR MODEL PROBLEM 

The fundamental differences of the formulations discussed in this study will be discussed with an 
elementary problem,21 in which a plane-stress element with unit dimensions is loaded in biaxial 
tension and shear. This causes a continuous rotation of the principal strain axes after cracking, as 
is typical of crack propagation in smeared-crack finite element analysis. The element is subject to 
tensile straining in the x-direction accompanied by lateral Poisson contraction in the y-direction 
to simulate uniaxial loading. Immediately after the tensile strength has been violated, the element 
is loaded in combined biaxial tension and shear strain, see Figure 2. The ratio between the 
different strain components is given by A&,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABE,, : Ay,, = 0.5 : 0-75 : 1. The Young’s modulus of 

the concrete was taken as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  = loo00 N/mm2. Poisson’s ratio was taken as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0.2 and the 
tensile strength was assigned a unit value. A linear softening branch after the onset of cracking 
with a fracture energy Gf = 0.15 x 

The behaviour of the different formulations for mode-I cracking which have been given in this 
study can be studied in detail with this problem. The constitutive behaviour will be compared 
with respect to the shear-stress-shear-strain behaviour and the normal-stress-normal-strain 
behaviour in the x- and y-directions. Particularly the shear-stress-shear-strain response gives 
a good impression of the behaviour of the model when applied to the analyses of plain or 

reinforced concrete structures. Standard fixed crack models show a continued hardening in this 
representation, while the multiple fixed crack model and the rotating crack model exhibit 
softening beyond some strain leveL8 The first issue which will be treated is the different behaviour 
of the models formulated in the total strain concept. The comparison between the rotating crack 
model and the deformation-type-based Rankine plasticity model with isotropic or kinematic 
hardening should elucidate whether the plasticity-based crack model is capable of predicting 
a flexible shear-stress-shear-strain response. The second issue is the comparison of the rotating 
crack model and the plasticity-based crack model within an incremental format. Because the 
response of models with a total formulation is in general more flexible than the response of 
models with an incremental formulation, it is expected that the Rankine plasticity model with an 
incremental formulation shows a less flexible shear-stress-shear-strain response, but the compari- 
son should provide insight if this less flexible response is still acceptable. 

The shear-stress-shear-strain response for different models described in a total format is shown 
in Figure 3. The standard fixed crack model has been used with a shear-retention factor equal to 
0.05 which results in a monotonically increasing shear stress with increasing shear strain. The 
rotating crack model shows an implicit shear softening behaviour which has been observed 

N/mm was adopted. 
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Figure 3. Total formulation of the constitutive models: uxy-yry response 

rotating crack model 
fixed crack model 

Figure 4. Total formulation of the constitutive models: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,,-E,, response 

previously by Rots' and by Willam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1." It is interesting that the same behaviour occurs for the 
plasticity-based crack model with isotropic and kinematic hardening. The two formulations are 
in fact indiscernible until the shear stress has almost softened completely. Then, the isotropic and 
the kinematic hardening models yield different responses which is due to the fact that with 
isotropic softening it is impossible for the shear stress to become negative for positive increments 

of the shear strain component of the strain vector. It is obvious from Figure 3 that the differences 
between the deformation plasticity-based crack models and the rotating crack model are small. 
Only the fixed crack model gives a fundamentally different response. 

The axx-cxx response depicted in Figure 4 shows that the input stressstrain softening diagram 
is exactly reproduced by the fixed crack model. This is logical, since the softening has been 
monitored in the fixed crack directions which are aligned with the x, y-axes. The behaviour of the 

other models shows an implicit normal-stress-shear-stress coupling. The Rankine plasticity 
model with isotropic hardening shows an increasing degradation of the stiffness when the stress 
has been decreased until approximately 50 per cent which is accompanied with a zero shear stress. 
At this stage the apex of the yield surface has been reached and the stress components in the 
x- and y-directions are softening in the direction of the origin. The response in the lateral 
y-direction is shown in Figure 5 which shows the formation of a secondary crack perpendicular to 
the first crack for the standard fixed crack model which again reflects the input softening diagram. 
The rotating crack model and the Rankine plasticity model with kinematic hardening show 
a gradual degradation of the stiffness in the y-direction. This can also be observed for the Rankine 
plasticity model with isotropic softening until the shear stress becomes equal to zero and the 
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stress in the y-direction begins to soften linearly which is in accordance with the input softening 
diagram. 

The limiting case with no softening (G, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00) confirms that the different formulations within the 
total strain concept result in the same behaviour. The shear-stress-shear-strain responses of the 
rotating crack model and the Rankine plasticity model are shown in Figure 6. The response is 
identical for all models with a total formulation. It is clear from this figure that although no 
softening has been assumed, the shear-stress-shear-strain response shows an implicit softening 
behaviour. In Figure 6 the response of the Rankine model formulated within an incremental 

concept is also plotted. We observe a shear-stress-shear-strain response that is less flexible, but 
still shows an implicit shear softening. 

The plasticity model based on an incremental formulation has also been applied to the 
tension-shear model problem with the softening material parameters and is compared with the 
rotating crack model in the following figures. The first interest concerns the behaviour in shear 
which is depicted in Figure 7. It is clear from Figure 7 that the rotating crack model has the most 
flexible response in shear, but the differences between the rotating crack model and the plasticity- 
based crack model are minor. Again, the Rankine plasticity model with isotropic hardening 
results in a shear stress equal to zero when the apex of the yield surface has been reached. The 
normal stress-strain response in the x-direction, see Figure 8, again shows an implicit nor- 
mal-stress-shear-stress coupling for the models based on an incremental formulation. The 
normal-stress-normal-strain response in the lateral direction, Figure 9, shows a behaviour that is 
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Figure 7. Incremental formulations and the rotating crack model: uxy-yXy response 

rotating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcrack model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rankine isotropic 

Rankine kinematic 

1 1.0- 

0.8: 

8 0.6- 

0.4. 

0.2. 

Figure 8. Incremental formulations and the rotating crack model: urr-yxx response 
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Figure 9. Incremental formulations and the rotating crack model: uyy-yyy response 

quite similar to that of the models based on the total formulation, cf. Figure 5. The response 
for the Rankine plasticity model with isotropic hardening again shows the linear softening 
relation when the apex of the yield surface has been reached. The response of the Rankine 
plasticity model with kinematic hardening shows a gradual degradation of the stiffness in the 
ydirection. 
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Figure 10. Finite element mesh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor SEN beam; measures in mm 

APPLICATION TO PLAIN CONCRETE 

The objective of the analyses presented here is to simulate curved mode-I fracture propagation 
with the rotating crack model and the plasticity-based crack models with isotropic and kinematic 
hardening/softening in an incremental format. 

RILEM committee 89-FMT has proposed an experimental round robin using a Single Edge 

Notched (SEN) specimen to study the mixed-mode fracture process in plain concrete. The 
proposed experimental set-up has been improved such that the experiments could be performed 
without friction in the roller bearings.” The experiments show a curved crack propagating from 

the tip of the notch to the opposite side of the loading platen. 
The scatter of the experimental results is small which makes the experiments very suitable for 

numerical simulation. The stress state in the specimen is mainly tension-shear with small 
compressive stresses, which justifies the assumption of !inear elastic behaviour in compression, 
made implicitly in our crack model. However, it is noted that this assumption is not necessary, as 

the model has been augmented with a separate yield contour in the tension4ompression and 
compression5ompression regime.23 

The SEN-specimen is 400 x 100 x 100 mm3 with a notch of 5 x 20 mm’. The distance between 
the inner supports is equal to 40 mm and the distance between the outer supports is equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
400 mm. The specimen has been discretized with 1655 three-noded plane-stress elements with 
a single integration point and a dense distribution of elements around the tip of the notch, 

Figure 10. The distribution of the loads has been modelled with F1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF at the centre loading 
platen and F2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF at the outer loading platen, with F the total load. Only the centre loading 

platen has been modelled because only this platen has an influence on the stress distribution. The 
middle support has been fixed in the vertical direction and the outer support has been fixed in 
vertical and horizontal directions. The experiments on the small beams with normal weight 
concrete, maximum aggregate 8 mm, have been chosen for the numerical simulation. In 
accordance with the experimental data,” the following material parameters have been selected: 
E, = 35000 N/mm2, v = 015, and tensile strength &, = 2-8 N/mm2. An exponential softening 
branch was used23 with a fracture energy Gf = 0.07 N/mm. The analyses have been performed 
using an advanced solution technique based on an incremental-iterative constrained 
Newton-Raphson method with line sear~hes.’~ The convergence characteristics of the calcu- 
lations were good, although for the rotating crack model a number of line searches appeared 
necessary. 

The comparison of the experiment and the numerical simulations focuses on the Crack- 
Mouth-Sliding-Displacement (CMSD) versus the total load which should be considered as 
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Figure 11 .  Load-CMSD diagram for SEN beam 

Figure 12. Crack pattern at final load for SEN beam 

a representative measure of the non-linear behaviour of the structure. The total-load-CMSD 
diagram, Figure 11, shows a pre-peak behaviour which is a little too stiff for all models and 

a failure load which is in accordance with the experimental result. The post-peak behaviour is 
simulated within acceptable boundaries for all models. It appears that the different formulations 
of the constitutive models do not differ very much. At peak load the crack has initiated at the 
right-hand side of the notch with a direction of approximately 45” which has also been observed 
in the experiments.” At the final load the crack has propagated through the specimen from the 
notch to the right-hand side of the loading platen which is shown in Figure 12 for the analysis 
with the Rankine model with isotropic hardening. The crack pattern of the analysis with 
kinematic hardening or the rotating crack model is almost equal to the crack pattern of the 
Rankine model with isotropic hardening. The differences between the models are small and only 
perceptible in the final load stage. 

CONCLUSIONS 

Two classes of plasticity-based crack models have been formulated, firstly within an incremental 
format and, secondly, with a total strain concept. In either case mixed hardening/softening was 
incorporated. As expected the deformation-type plasticity models show the most flexible response 
under loading paths where the principal strain axes rotate. Indeed, for the case of no harden- 
ing/softening the deformation theory coincides with the rotating crack model. Nevertheless, the 
fact that the crack model based on the flow theory of plasticity shows an only marginally less 
flexible response and the observation that it is easier to implement, make that the Rankine flow 
theory-based crack model is considered the best alternative. Moreover, it seems that the simpler 
case of pure isotropic hardening/softening can be used without significant loss of accuracy. 
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The Rankine-flow-theory-based crack model with isotropic hardening/softening not only 
performs well in simulations of mixed-mode crack propagation in plain concrete, as has been 
shown by a comparison with experiments, but it is also elegantly amenable for combination with 
other non-linear phenomena as creep, thermal effects, shrinkage, etc., it can be cast into a robust 
algorithm, and it can be combined rigorously with a plasticity model to bound the stresses in the 
tension+ompression and the compressionkcompression regimes. 
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APPENDIX I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Stress update in the corner regime 

The stress update in the apex regime of the Rankine yield surface can be treated without 
modifications of the return-mapping procedure given in equation (24) with the explicitly com- 
puted inverted mapping matrix given in equation (34). The inverted mapping matrix is always 
determined even if the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is equal to zero. Without loss of generality it is shown here for 
isotropic hardening that the mapping procedure is unconditionally stable in the singular region of 
the yield surface. The matrix product (A11Az2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- A12A21)-' now reduces to (cf. equation (36)) 

and the inverted tridiagonal matrix becomes 

r 1  0 0 0 0 0 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y o  0 A 1 G  0 

Y + A A G  I Y + A A G  
I 0  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0 0 0 0 0 

A 1  G 
Y + A A G  

0 0 y o  0 
Y + A A G  

0 0 0 0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 1 0 1 %  : 0 0 0 0 0 1 

with G = E/2(1 + v ) .  Transformation from the eigenvector space to the stress space results in the 
limit 
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A l l  A12 - I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tsa [A2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*J = 

$ + o o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - i o o  1 

f + o o  - 5  1 $ 0 0  

0 0 1 0  0 0 0 0  

0 0 0 0  0 0 0 1  

0 0 0 0  1 0 0 0  

0 0 0 0  0 1 0 0  

0 0 0 0  0 0 1 0  

0 0 0 0  0 0 0 1  

so that the update of the stress vector is given by 

see Figure 13. The return-mapping procedure is stable even in the corner regime where 
the stress is returned to the yield surface in approximately 10 iterations with an accuracy 
of with respect to the initial equivalent stress. The calculation of the mapping matrix 
is also possible with a numerical scheme, e.g. Gauss decomposition, which results already 
in the limit of equation (62) even if the factor AA/2Y is equal to 10. For this factor, with a 
Young’s modulus equal to 30000 N/mmz and a Poisson ratio equal to 0.15, the mapping matrix 
is given by 

5.000E - 01 5-000E - 01 O W E  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 O*WE + 00 

0-000E + 00 0.000E + 00 1.000E + 00 0WOE + 00 

LOOOOE + 00 0.000E + 00 O.000E + 00 3.833E - 06 J 

Figure 13. Return-mapping of the trial stress to the apex 
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which can be considered as accurate. The calculation of the inverted mapping matrix can now be 
performed with a numerical scheme in which the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAA/2Y should be less than or equal to 10. 

The next issue which has to be treated for the apex is the modified stiffness matrix, equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(44), which is not defined in the apex of the yield surface. We first consider the second derivative of 

the yield function 

This expression becomes singular if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ($ gT Pe)1/2 equals zero. Substitution of the second 
derivative in the expression for the modified stiffness matrix H, equation (44), results after some 

algebraic manipulations in 

- 1  

H = [., + (P - =ssT)] 1 (54) 

with s = P 5. We now introduce the normalized vector I such that 

s = IIPg110 = (5’PPrpL = (p5TPg)”’L = Y flI (65) 

with 1 1  . 1 1  designating the L,-norm. For the Rankine criterion f l  = 1 + 2 t;,,/sTs. With equation 
(65), the modified stiffness matrix becomes 

1- 
The apex of the yield surface is determined by the condition t,, = tYy; tx,, = 0. Then, the stress 
vector L reduces to the null vector and the limit of the modified stiffness matrix in the apex is 
given by 

l i m H =  lim [ C , + - P  ]-I =A;,’D, (67) 
Y + O  Y + O  

because of the assumption of isotropic elasticity. The gradient of the yield surface is also not 
defined for the apex, but it is assumed that the gradient is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a a f = f & t  (68) 

with the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f i  to obtain a consistent length of the gradient vector in the apex. Whereas the 
return-mapping algorithm is unconditionally stable even if the apex is encountered, the modified 
stiffness matrix cannot be calculated without a numerical approximation of the apex regime. It is 
therefore assumed in the algorithm for the calculation of the tangent stiffness matrix that a stress 
point lies within the apex region of the yield surface if the factor Y becomes less than times 

the initial equivalent stress. 
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