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Abstract: With the rapid growth of population and the increasing demand for food worldwide,
improving productivity in farming procedures is essential. Smart farming is a concept that emphasizes
the use of modern technologies such as the Internet of Things (IoT) and artificial intelligence (AI)
to enhance productivity in farming practices. In a smart farming scenario, large amounts of data
are collected from diverse sources such as wireless sensor networks, network-connected weather
stations, monitoring cameras, and smartphones. These data are valuable resources to be used in
data-driven services and decision support systems (DSS) in farming applications. However, one
of the major challenges with these large amounts of agriculture data is their immense diversity in
terms of format and meaning. Moreover, the different services and technologies in a smart farming
ecosystem have limited capability to work together due to the lack of standardized practices for data
and system integration. These issues create a significant challenge in cooperative service provision,
data and technology integration, and data-sharing practices. To address these issues, in this paper,
we propose the platform approach, a design approach intended to guide building effective, reliable,
and robust smart farming systems. The proposed platform approach considers six requirements
for seamless integration, processing, and use of farm data. These requirements in a smart farming
platform include interoperability, reliability, scalability, real-time data processing, end-to-end security
and privacy, and standardized regulations and policies. A smart farming platform that considers
these requirements leads to increased productivity, profitability, and performance of connected smart
farms. In this paper, we aim at introducing the platform approach concept for smart farming and
reviewing the requirements for this approach.

Keywords: smart farming; precise agriculture; platform approach; interoperability; security and
privacy; reliability; scalability

1. Introduction

According to the United Nations’ Food and Agriculture Organization (FAO) [1], food
production should increase by 70% due to the expected growth in the world population by
2050. This population growth requires increasing productivity using solutions that con-
sider resource shortage and farm profitability [2]. Employing information communication
technology (ICT), smart technologies, in addition to the rapid development of the Internet
of Things (IoT) and artificial intelligence (AI) have led to digitalization in farming called
smart farming. Smart farming is considered to be the fourth revolution in farming [3,4].
By managing inputs, such as fertilizers, pesticides, and animal feed, a smart system can
help farmers to reduce waste, employ less workforce, decrease overall costs, and to reach a
more sustainable environmental impact to achieve higher productivity [5,6]. According to
the Market and Markets report, USD 13.8 billion was dedicated to the global smart farming
market in 2020. Due to farmers’ needs to increase yields, improve livestock production,
and reduce management costs to meet the growing demand for food, smart farming should
experience rapid growth to USD 22 billion by 2025 [7].
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In a smart farming scenario, large amounts of real-time and high-resolution data are
generated from remote and automated sensor systems. The data can represent different
aspects of farming, including but not limited to livestock, crops, soil, and the environ-
ment [8]. The data range from time series to spatial images, human experiences, and
observations collected via mobile smartphone applications [9]. Such data can be analyzed
to filter out invalid or wrong data [2] and to compute personalized recommendations for
a farm to improve productivity [10]. Different modern technologies can be utilized for
data generation and data analysis in digital agriculture. IoT, AI, and cloud computing are
examples of technologies that have recently been widely used in smart farming [11,12].
Although data-driven solutions have provided various benefits in agriculture, data integra-
tion, processing, and usage processes and protocols are still prominent challenges that need
to be addressed [13]. Some of these challenges are limited awareness and knowledge of dig-
italization [14], lack of standardization and suitable management to cope with fragmented
and heterogeneous data [15], lack of high-quality data and proper analysis [16], privacy
and security challenges in an entire smart farming ecosystem [17], and lack of compliance
with uniform regulations and policies [18].

A unified solution that considers the requirements in various stages of the data pro-
cessing lifecycle can address various issues in digital agriculture. Such a solution enhances
awareness regarding the needs and requirements of different data sources, technologies,
processes, and protocols (including policies). This solution assists the actors in smart
farming ecosystems to provide their services and products to other parties in a more usable
format. Moreover, this approach increases food safety, production, and sustainability by
providing transparent and trustable data about every stage of the food chain. In addition,
a unified solution provides an excellent opportunity for building decision frameworks to
aggregate data from diverse sources and to provide high-quality data-driven services. This
approach also facilitates data sharing and multiparty cooperation in farming applications,
and thus, increases productivity and reduces resource waste.

In this paper, we suggest the platform approach as a unified solution that facilitates
cooperation in smart farming applications. Furthermore, this approach enforces relation-
ships between farmers and system providers to track crop cycle information, livestock, and
dairy production in a secure manner for their decisions and data management.

In recent years, several platforms have been proposed for smart farming applications.
SmartFarmNet [2] is an IoT-based platform that has been developed by a multi-disciplinary
Australian team to automate the collection of environmental, irrigation, fertilization, and
soil data. This platform integrates IoT devices, such as sensors, actuators, and cloud servers
for storing and analysis of collected data. The presented results in the paper showed that
SmartFarmNet was capable of providing near real-time query responses. Moreover, the
authors demonstrated that increasing the number of sensors had a negligible impact on the
performance of the system, therefore, the proposed platform was scalable. Mehdi et al. [19]
proposed Smart Farming Oriented BigData Architecture (SFOBA), a platform for big data
processing that provided real-time processing on acquired data from smart farm systems and
devices. In this study, the authors utilized the Star Schema Benchmark dataset [20] to show
how the proposed platform could finish multidimensional queries on 40 million rows of data
in less than one second. Clements et al. [21] developed an interactive digital tool that collected
data from different sources such as the Key Indicators Mapping System (KIMS) and the Key
Indicators Database System (KIDS) both provided by the Food and Agriculture Organization
of the United Nations (FAO). The developed tool provided information regarding livestock
production, disease prediction, as well as provided the rules for risk assessment at the
country level.

Another field in smart farming is smart dairy farming which aims to utilize modern
smart technologies to satisfy the increasing demand for quality dairy products, to reduce
consumed resources, and to decrease the ecological footprint [22]. Taneja et al. [23] proposed
SmartHerd, a platform enabling data-driven dairy farming by analyzing available data and
providing controls for farmers and other stakeholders. This platform has been deployed
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in Waterford, Ireland, and was developed to gather and analyze data regarding dairy
cattle. The presented platform is designed to keep working when the internet connection
is lost. The generated data in this platform are stored locally and are shared on a cloud
infrastructure when the internet connection is available.

Most of the proposed platforms in smart farming have focused on a specific aspect of
smart farming such as crop production recommendations [2], big data technologies [19],
data transformation [19] reliability [24], and business model [6]. With the increasing need to
collect, integrate, analyze, and manage large amounts of data generated at farms, effective
farm data processing continues to be a major hurdle for the adoption and success of
digital agriculture solutions. Despite the need, the existing studies have not provided a
holistically designed approach by considering different requirements for smart farming
applications. To fill this gap, in this paper, we propose a design thinking approach, which
we refer to as the “platform approach”, for smart farming data processing. This approach
encourages consideration of six core requirements when designing, implementing, and
testing smart farming solutions. These requirements are interoperability of data, processes,
and technologies; reliability to ensure that a data source is valid and available; scalability
in terms of the capability of the platform to be extended to larger applications; real-time
data processing to enable timely access to data and services; protection of infrastructure
and smart farming assets (privacy and security); and finally, compliance with policies and
regulation. The proposed approach facilitates cooperation among different parties in smart
farming ecosystems and enables these actors to make the most use of available data sources.

The rest of this paper is organized as follows: In Section 2, the core components of data
processing in smart farming systems are described; in Section 3, we discuss the challenges
and requirements in smart farming systems; then, in Section 4, we investigate the main
requirements and related solutions in a smart farming platform; finally, in Section 5, we
conclude the paper with a summary of the platform approach and some future insights.

2. The Core Components of Data Processing in Smart Farming Systems

To improve smart farming data processing through the integration of various systems,
in this paper, we propose the concept of the platform approach, which is a design approach
for data processing. The smart farming platform approach allows farmers, researchers,
technology providers, and all other stakeholders to have a standard and reliable solution
to collect and share information, resources, and experiences to improve the productivity
and performance of smart farming solutions. We demonstrate an overview of the main
components of smart farming data processing in Figure 1 in five main layers. This abstract
platform can shed light on the components of the smart farming application platform,
defining the main tasks and core components for data processing in these systems.

According to Figure 1, in the data acquisition stage, data are collected from diverse
sources, such as farmers, sensors, and satellites, as well as external databases such as
weather and climate data. The collected data from these different sources can be in different
formats that are not compatible to be stored in a unique database. In addition, some
collected data may contain incomplete data, missed values, outliers [25], and anomalous
instances [26]. To address these problems, in the data preparation stage, best practices
for data preprocessing can be used to prepare data for further analysis. These practices
include standardizing data to a predefined format, identifying and deleting duplicated
data, handling the gaps in generated data, and validating data sources and contents. Addi-
tionally, the collected data from different sources can be stored in a common infrastructure
and can be integrated with other data sources that are collected from diverse smart farm-
ing systems. These methods assist in ensuring data consistency, completeness [27], and
accuracy [28]. The components in the second and the third layers are highly correlated,
and many of the smart farming data processing functions can be assigned to both layers.
The data processing layer components are the brains of smart farming [29]. Mathematical
modeling, statistical methods, or AI methods are used to analyze and extract knowledge
from farm data. Machine learning (a branch of AI) consists of intelligent techniques to make
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automated decisions with limited human involvement. Machine learning can perform
rapid optimizations, classifications [30], predictions, and recommendations and add value
to the entire system [31]. For instance, SomaDetect Inc. of Fredericton [13], utilizes machine
learning for identifying individual cows. This system also monitors the cows to detect
disease symptoms through data collected from sensors at milking stations on dairy farms.
As another example, AirSurf-Lettuce is an open-source analytic platform that uses machine
learning to categorize iceberg lettuces to improve the actual yield and crop marketability
before harvesting [32]. Model deployment in the context of machine learning refers to
the application of generalizing a model to predict new items in the system. Prediction is
according to estimating the outcomes for unseen data that can help to provide predictions.
For example, the growth prediction in plants helps farmers to decide about harvest time
and plan for the required workforce. Forecasting is a kind of prediction about the future
using time-series data. An example of forecasting in smart farming is weather forecasting
using temporal information to plan for irrigation [33].

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Smart farming components that facilitate integration, processing, and use of farm data. 

According to Figure 1, in the data acquisition stage, data are collected from diverse 

sources, such as farmers, sensors, and satellites, as well as external databases such as 

weather and climate data. The collected data from these different sources can be in differ-

ent formats that are not compatible to be stored in a unique database. In addition, some 

collected data may contain incomplete data, missed values, outliers [25], and anomalous 

instances [26]. To address these problems, in the data preparation stage, best practices for 

data preprocessing can be used to prepare data for further analysis. These practices in-

clude standardizing data to a predefined format, identifying and deleting duplicated data, 

handling the gaps in generated data, and validating data sources and contents. Addition-

ally, the collected data from different sources can be stored in a common infrastructure 

and can be integrated with other data sources that are collected from diverse smart farm-

ing systems. These methods assist in ensuring data consistency, completeness [27], and 

accuracy [28]. The components in the second and the third layers are highly correlated, 

and many of the smart farming data processing functions can be assigned to both layers. 

The data processing layer components are the brains of smart farming [29]. Mathematical 

modeling, statistical methods, or AI methods are used to analyze and extract knowledge 

from farm data. Machine learning (a branch of AI) consists of intelligent techniques to 

make automated decisions with limited human involvement. Machine learning can per-

form rapid optimizations, classifications [30], predictions, and recommendations and add 

value to the entire system [31]. For instance, SomaDetect Inc. of Fredericton [13], utilizes 

machine learning for identifying individual cows. This system also monitors the cows to 

detect disease symptoms through data collected from sensors at milking stations on dairy 

farms. As another example, AirSurf-Lettuce is an open-source analytic platform that uses 

machine learning to categorize iceberg lettuces to improve the actual yield and crop mar-

ketability before harvesting [32]. Model deployment in the context of machine learning 

refers to the application of generalizing a model to predict new items in the system. Pre-

diction is according to estimating the outcomes for unseen data that can help to provide 

predictions. For example, the growth prediction in plants helps farmers to decide about 

harvest time and plan for the required workforce. Forecasting is a kind of prediction about 

the future using time-series data. An example of forecasting in smart farming is weather 

forecasting using temporal information to plan for irrigation [33]. 

Figure 1. Smart farming components that facilitate integration, processing, and use of farm data.

The decision-making stage includes system monitoring, rule management, and model
metadata management to provide the results and recommendations through the deployed
model. Metadata (data about data) is provided to establish a common understanding of
the meaning of data. For example, the available metadata about automatic milking devices
can help farmers to use the proper estimators to predict the milking duration. These data
can help smart farming actors such as farmers and growers during the decision-making
process. Some examples are decisions about disease prediction, pesticide control, and
water management. In the last stage of smart farming applications, end-users, i.e., farmers,
farming service providers, agriculture researchers, and governments access the system
results through services. System monitoring can audit the entire system and provide
feedback to optimize the predictors and to improve decision making. In addition, rule
management can check the compliance of decisions against available rules.

Since trustworthiness is a core requirement to ensure system adoption and use, it is
necessary to consider security and privacy concerns in all communications and end-to-end
in the platform. Moreover, the data workflow should comply with the available policy and
regulations in smart farming. Application programming interfaces (APIs) are common
methods for the integration of different components and resources (e.g., data sources, legal
processes, and policy protocols) in a platform approach.
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3. Challenges and Requirements in Smart Farming

The platform approach suggests designing smart farming services using platform
structures that can be integrated through APIs or other methods to build effective, reliable,
and robust systems. This approach is also aimed at providing a common understanding
and semantics among smart farming actors to collaborate in data-sharing practices and
cooperative service provision. In Section 2, we presented an abstract overview of such a
platform as well as the main components of data processing in smart farming systems. In
this section, we discuss the challenges in smart farming applications and convey the major
requirements that any agricultural platform should have to address these challenges.

In agriculture, data are highly heterogeneous for different reasons such as type, format,
and intent of data, different protocols of devices, and the methods of collecting data. For
example, poultry stakeholders are interested in monitoring the daily behavior of birds, such
as their movement and feeding patterns, to predict the possibility of a disease outbreak
in the early stages. A major challenge in such an application is combining heterogeneous
data collected from different sensors in smart poultry farms. In addition to collecting and
processing data, aggregating diverse data among various farms can improve the prediction
outcome. However, lack of interoperability among data, technologies, and data processes is
a significant barrier to reaching this goal. A similar challenge may arise when farmers aim
to equip their farms with new IoT devices. As devices from different technology providers
do not follow a unique protocol, this limitation restricts farmers from adding new digital
tools and devices to their smart farming network.

In the context of smart farming, interoperability refers to the ability of two or more
different systems, services, and components (i.e., software components and IoT devices) to
be able to work together to exchange information, facilitate processes, integrate technology
solutions, and comply with policies and legal requirements. There are four categories of
interoperability including semantic/data interoperability, technology or system interop-
erability, operational interoperability, and legal interoperability [34]. For data/semantic
interoperability, the entities should mutually agree on the meaning, content, and context
of data exchange and use [35]. Interoperability improves the flexibility of smart farming
networks as well as enables farmers to collaborate through data sharing and enhance
their farm practices. An important aspect of interoperability is standardization. In the
context of data processing, without mechanisms to take data from diverse sources of digital
agriculture solutions, it would be extremely resource based and time-consuming to make
the most use of data. Using processes and best practices that convert data and information
to harmonized formats is critical to enabling data sharing and integration practices and
collaborative decision making.

Alongside interoperability in smart farming devices and systems, controlling data reli-
ability is a major requirement in a smart farm platform. Data reliability, sometimes referred
to as data quality, is defined as the extent to which the data and its source are trustworthy,
unfailing, authentic, genuine, and representative of the problem [36]. Reliability can be
evaluated at different levels, such as on-farm and off-farm levels. From an on-farm point of
view, it is essential to make sure the data generation is valid and stable. A smart device
that is physically damaged, or an issue in network connection might lead to invalid and
unstable data generation. From an off-farm perspective, a smart farming platform should
ensure the farmers that the data and algorithms are valid and trustable. Data quality issues
are also likely to arise in the integration process as the quality of all data sources cannot
be verified [37,38]. Wrong decisions originating from unreliable data in decision-making
processes cost agricultural businesses billions per year [39].

Scalability is another requirement that should be considered while designing a smart
farming platform [40]. Scalability in smart farming refers to the adaptability of a system
to increase the capacity, for example, the number of technology devices such as sensors
and actuators, while enabling timely analysis [41]. Shortcomings of scalability in a smart
farming architecture, in the context of data processing, would lead to weak system perfor-
mance. For instance, integration with other devices and applications may not be possible if
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scalability requirements are not embedded by design. It has been recommended to consider
the possibility of growth in size and diversity of applications of smart farming systems
from the initial stages of system design [42]. As an illustration, consider a large poultry
production that owns farms in different locations. This company needs a platform to build a
scalable business by integrating the supply chain from feed to hatcheries and poultry farms
to distribution [43]. These poultry farms may have different sensors and acquire various
types of technologies to collect data in sizes, formats, content, and complexities [17,44]. The
company should be able to expand data processing, network bandwidth, and other compu-
tation resources to be able to utilize data collected in these farms. If this need for resource
growth is not considered in the design of the system, the company cannot easily expand
their system to process and use other data sources. Platforms for smart farming should
consider scalability as a core requirement to enable growth and future needs for integration.

Moreover, in smart farming systems, we need fast and accurate decisions and actions.
Thus, we need platforms that enable farmers to deliver proper actions at the right time.
Real-time data analytics is defined as the ability to analyze large volumes of streaming data
when they are created or stored [45]. For instance, in the case that a farmer decides to sell
their products or buy supplies, a long waiting time for getting access to data and making
decisions might lead to losing a bargain, or incorrectly offering an estimation originated
from outdated data. Real-time processing is an approach to capture, process, and export
data promptly [46,47]. Furthermore, real-time data processing enables smart farming actors
to take proper decisions at the right time which leads to minimizing risks and undesirable
consequences [48]. A smart farming platform can also facilitate real-time processing as a
requirement for reinforcing farming practices and preparing farmers against unexpected
circumstances [45]. To achieve real-time data processing, it is also necessary to collect the
data in real time. The results acquired based on analyzing old data can cause inaccurate
decisions, while real-time data facilitates real-time decisions and actions [46].

Similar to any other smart platform, a smart farming platform should bring security
and privacy to the core of attention and provide sufficient protection mechanisms. Mod-
ern technologies form an ecosystem in which connected devices are accessible remotely,
allowing adversaries to plan cyberattacks. The attackers might aim to steal information or
carry out disruptive actions on the smart farming systems [49]. For example, Yang et al.
illustrated how adversaries used IoT devices in IT infrastructure to compromise security [4].
As an illustration, a malicious actor can get access to a farm’s data using an unsecured
smart device and steal information about the products, financial decisions, and future plans.
The intruder can also damage the products and equipment. Because of the availability
of diverse data sources in smart farming systems, including personal and business data,
privacy is another paramount concern. Smart farming systems should provide mechanisms
to ensure security requirements and data protection. These practices must protect data
end-to-end and in different data processing stages, from data collection to data-driven
service provision.

Regulations for agricultural practices affect the design and development of smart
farming technologies. For instance, farmers’ concerns about data sharing and privacy
have been discussed in recent studies [50,51]. Farmers are not convinced that the available
policies to protect their intellectual property, business profit share, and privacy are sufficient.
There are also concerns about the lack of compliance with privacy best practices and farm
data agreements by the technology providers [52]. To address these concerns and build
trust, there is a need to establish standards and best practices that mandate the rights and
responsibilities of different actors in smart farming systems. There is also the need to set
standards for data-sharing practices and to apply policies to determine accountability and
penalties in the case of possible disputes. Other regulations related to food safety, supply
chain management, disease monitoring, and other applications can also impact agriculture
data management and processing. These policies can be renewed to be applicable to new
and emerging agri-food needs and technologies. Policy requirements can be embedded
into technologies for monitoring, compliance, and sustainability purposes.
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In summary, as is demonstrated in Figure 2, we recommend consideration of a plat-
form approach that facilitates six requirements for smart farming data processing. These
requirements enable seamless integration of data, system, and processes with the end-user
in mind. They include interoperability to provide compatibility among different compo-
nents of the platform; real-time processing to generate fast and accurate information for
decision making; scalability that enables the platform to extend the entities and resources;
reliability to assure accessing valid and up-to-date data; ensuring security and privacy to
preserve the system safety and confidentiality; and, finally compliance with the related
policies and regulations in smart farming. A platform that satisfies all these requirements
can enhance farming practices, and therefore, can increase productivity, profitability, and
performance while decreasing resource waste.
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4. Requirements, Discussion and Solutions

In Section 3, we recommended six major requirements to be considered in the design
of smart farming platforms. We suggest that these requirements are necessary for any
platform that aims to provide fast and robust services in a smart farming ecosystem. In
the following, we investigate these requirements and the solutions to address them in the
platform approach.

4.1. Interoperability

Currently, there is an extensive number of digital solutions including software tools
and services that are used in smart farming. This growing trend has resulted in the
generation of heterogeneous data from multiple protocols and communication technologies
with different formats and semantics. However, data generated by precision farming tools
are not portable and cannot be integrated among smart farming systems. Interoperability
among technical software tools, hardware, or processes/protocols is relatively limited
often because of the lack of established standards [53]. Interoperability requirements cut
across various components of smart farming technologies (Figure 1) from collecting data
with varying accessibility rules, data integration across multiple sectors/devices, and data
processing and protection regulation for data governance and data access.

Interoperability can be viewed from legal, organizational or operational, semantic,
and technical dimensions [34]. Legal interoperability involves ensuring the integration of
smart farming platforms under various legal frameworks including food policies, privacy
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policies and procedures, and data agreements, to enable data exchange. In a smart farming
system, data could be combined from various sources, resulting in integrated datasets. This
integration should be performed in accordance with the farm data agreements. To address
legal interoperability requirements in smart farming, the RDA-CODATA principles can
be used [34]. These principles are: facilitating the authorized access to and re-use of data,
deciding who has access to and is responsible for the data, managing the legal interests,
explaining the rights clearly, and promoting harmonization of rights in the data. These
principles can be embedded into the farm data processing platform and integration can be
enabled through application programming interfaces (APIs).

Organizational interoperability is concerned with agricultural actors’ capacity to
accept and utilize services from other organizations to collaborate effectively [54]. This
is dependent on the degree to which farms’ processes, responsibilities, and roles are
harmonized toward shared objectives and strategies in the agricultural systems to make
services more accessible, easily identifiable, and user focused. To address the organizational
interoperability requirements, farm business processes and exchanged data need to be
integrated, aligned, and documented using a commonly agreed modeling method [55].

Semantic interoperability ensures that the precise meaning and format of the shared
data are understood and preserved. In existing smart farming ecosystems, data are col-
lected from fragmented systems in varying formats and meanings. To tackle the lack of
semantic interoperability in data processing, it is necessary to describe all data elements by
developing vocabularies and schema to ensure that all communicating agricultural parties
understand the data in the same way. The solutions for improving semantic interoperability
in smart farming are standardization, metadata, and connecting each data variable to a
common language, in the form of taxonomies and ontologies [56]. Semantic interoperability
issues in smart farming data processes can be solved by using standardized languages
such as agroXML [57] which is an XML dialect for describing farm production processes
as well as the real-world objects required in conducting these processes. For semantic
interoperability enhancement, a smart farming application can leverage metadata that
describes original data, allowing the user to make the best decision possible about how to
use it. Metadata is generated to add meaning and context to data values and to establish a
common understanding of the meaning and semantics of the data. Metadata enables correct
and proper use and interpretation of the data by the owners and users [58]. Furthermore, it
also enables farm machines to comprehend data by offering models and eliminating ambi-
guity [58]. For example, in the modeling and simulation of a decision support platform in
smart farming, there is a need for a method to detect conflict between system components
and concepts of the model. Metadata is used to address the interoperability of such systems
by capturing information about model concepts which allows software agents to reason in
an unambiguous and machine-readable form [59].

Data interoperability is considerably resolved in smart farming when metadata is
standardized, and common language definitions are used. Such standards are defined
and promoted by standard agencies such as the International Standards Organisation
(ISO) [60]. The Agricultural Information Management Standards (AIMS) [61], the Agricul-
tural Metadata Element Set (AgMES) [62], and Agrovoc [63] are three notable metadata
initiatives in the agriculture area [53]. Moreover, ontologies and taxonomies can enable
better interoperability by allowing data to be linked at the semantic level. Taxonomy
aids in the interpretation of relationships between data entities and the categorization of
data [64]. Ontology explains the structural complexities of databases as well as the semantic
relationships among data variables collected in databases [10]. Several ontologies such as
FoodWiki, Agrovoc, and FoodOn have been proposed to extract the semantics of food and
agricultural data to share and reuse agriculture knowledge. In addition, sensor ontologies
such as sensor node ontology [65], and sensor-data ontology [66] are used for semantic
interoperability of data collected from IoT devices. The goal of these ontologies is to identify
essential elements of sensor data and to model resources, services, and geographical data
to ease data access for users.
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Another aspect of interoperability is technical interoperability, which refers to the
capacity of two or more technical agricultural platforms, infrastructures, services, or proto-
cols to easily integrate and enable process and data flow [54]. This concept is fundamental
to software and hardware compatibility. For example, interoperability is required among
farm machines, software, IoT devices, and sensors. If the data processing modules do not
recognize the data format collected by the combined harvester, the IoT will be of little
use in terms of assisting decision making. Technical interoperability often can be satisfied
by selecting and implementing the proper software and/or internet interface (API) and
protocols, as well as standardized content encodings for transmission [67]. Technical inter-
operability could be satisfied by creating a decentralized network of existing systems to
enable the exchange of data in smart farming processes. Each system could be independent
and built upon its own technical infrastructure. The ATLAS initiative is one of the projects
that developed such an open technical interoperable network involving stakeholders from
diverse agricultural domains by using open technical specification. This project aims to
provide a distributed service-oriented platform that enables some tasks such as watering
management, soil management, and behavioral analysis of livestock. This framework
involves all actors in the food chain, enhancing the process from farm to fork.

Interoperability is made possible by data standards that allow the sharing and ex-
change of data. In the absence of standardization of data, processing data from heteroge-
neous and incompatible sources is challenging and often inefficient. Data standardization is
a key step toward data interoperability to promote data quality, data sharing, data reusabil-
ity, and to optimize data usage. The standardization process of data, processes, policies,
and concepts is critical in ensuring all types of interoperability. This goal may be realized by
well-defined and well-established protocols and regulations that facilitate the integration
of multiple data sources and external knowledge-based services given by stakeholders and
partners. Due to the complexity of data standardization, data harmonization [68] can be
used as an alternative solution. Data harmonization is the process of merging different data
sources into an unambiguous, integrated entity record to be used in the system and to feed
the processes of a system [69]. The main difference between data standardization and data
harmonization comes from the level of strictness in standards. On the one hand, the aim of
data standardization is to make the data clear and consistent. It should be “clear” to ensure
that data can be easily understood by individuals who are not involved in data processing,
and consistent to ensure that relevant data can be recognized using common terms and
formats. Data harmonization, on the other hand, is the process of merging different data
sources into an unambiguous, integrated entity fromat to be used in the system and to feed
the processes of a system [69].

4.2. Reliability

Reliability is a crucial foundation for designing data-driven services across smart
farming ecosystems. The reliability of data-driven systems depends on effective processes,
data, and technologies [70]. As a major requirement, reliability should be considered in
all stages of smart farming, from data acquisition to data preparation and model building.
Reliability can be considered from different aspects such as data reliability and technology
reliability. The main components of data reliability are data consistency, data complete-
ness [27,71,72], and data accuracy [28]. Consistency as the main component of reliability [2]
refers to keeping data concepts, value domains, and formats unchanged. Changes to farm
data might take place while processing, moving through networks, or sharing between
applications [28,72]. Data completeness is about the availability of all necessary data for
decision making [72]. In other words, the deficiency of a component should not impact the
accuracy and integrity of data [28]. Data completeness in smart farming does not mean that
all data attributes must be present; rather, important data attributes and optional ones need
to be decided for selection. Accuracy refers to the extent to which recorded data reflect the
true state of source information [28,73]. The values stored by a precision agriculture system
may be inaccurate or wrong. This issue can be due to unreliable or broken sensors, lost
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information, and failed transmissions [74]. The inaccurate data can lead to a risk of missing
events and hard interpretations [74].

In addition to data reliability, smart farming platforms require robust and reliable
technologies such as high speed and reliable internet connection [75]. The physical safety
of IoT devices for precision agriculture systems should be ensured in different environ-
mental conditions to avoid communication failures. IoT data analytics should process data
accurately and reliably to enable decision-makers to react quickly to emerging issues and
changing conditions [76].

Because agricultural data cover a wide range of heterogeneous and unstructured
sources, simple ratios can be used to measure the percentage of data elements that meets
specific rules [77]. To manage information structure in a database, Blake et al. [78] suggested
using parsing techniques. Using this method, the quality of sensor data, as an example,
was calculated by comparing it with data coming from multiple reference sensors, existing
historical data, or an alternate data source. There are, however, several challenges to using
this approach. For example, the quality of the reference sensors is not always guaranteed,
historical data might not be available, and there might be additional costs using alternate
data sources. Performing some tests and preprocessing on the aggregated data from sensors
and other sources is recommended to raise data reliability in smart farms. For example,
outlier detection can help to detect faulty devices or discern the unreliable data exchanged
with other farms.

4.3. Scalability

Scalability is another requirement that should be considered in a smart farming plat-
form. Scalability refers to the ability to increase available resources and system capability
without the need to go through a major system redesign or implementation. As an illustra-
tion, in Figure 1, we can increase the capacity for data processing by increasing the cloud
resources in the second layer and computation resources in the third layer.

The challenges related to scalability in smart farming fall into two categories: capacity
and performance [79]. Scaling capacity refers to the ability to add new nodes or resources
to the system [41]. Scaling performance is the ability to improve performance or to keep
the performance identical while expanding capacity. The fundamental bottleneck that
may affect system performance may be caused by different deployment configurations
of various components [80]. Other challenges of scalability are identity management
and access control, security [81], privacy [44], governance, and fault tolerance [81]. Since
farming data generation is rapidly increasing every day, such data are too large to be stored
on a single node. A fundamental solution to address this need is distributing data collection
mechanisms across multiple nodes. For instance, Zhou et al. [82] employed Hadoop to
process and store 1.44 million data records for daily temperature monitoring. Since most
smart farming data are small files that lead to many small files, Hadoop cannot be effective
without a distributed system equipped with a high-performance computing system. To
address this problem, the Hadoop Distributed File System (HDFS) has been designed to
process large (and small size) datasets.

Using cloud computing technology in a smart farming platform is another solution
that can address scalability challenges related to capacity due to flexible and robust data
collection, management, and processing capabilities [83]. Cloud computing provides a
high level of flexibility by providing remote services for monitoring and managing farm
data. Moreover, these services can provide on-demand storage and computation resources
with no need for on-farm hardware installation [84]. The data stored in the cloud systems
are usually distributed in the data storage platforms supported by backup mechanisms.
The data-driven services are finally offered by web services accessible through diverse
tools, including laptops, tablets, and smartphones in the last stage of smart farming tasks,
as shown in Figure 1. SmartFarmNet [2] is an example of a scalable platform that utilizes
cloud computing technology to provide a scalable solution for smart farming.
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Despite several benefits of employing cloud technology in smart farming systems, the
challenges such as latency, security, and privacy issues in transferring a large amount of
data to the cloud are still persistent. To address these issues, the use of edge computing
at the network’s edge has been recommended [78,85]. Edge computing is a technology
that aims to process data at the edge of the network, near the source of the data in order
to reduce the transmitted data to the cloud servers, as well as to decrease the workload
on the centralized cloud computing servers. In addition, edge computing can leverage
the scalability of cloud computing resources by taking advantage of both cloud and edge
computing and decreasing the volume of data transfer. Having an edge-based ecosystem
with the right APIs and tools to integrate various data sources can ensure the availability
and real-time processing for users. An example of using edge computing in agriculture
is the platform Zamora-Izquierdo et al. [24] who proposed another real-world platform
that utilized edge technology to handle the issues in hydroponics farming. This platform
was implemented in Spain to evaluate the water consumption and procedures related to
tomato cultivation. Digital tools also have been used in livestock production and health
management. Although edge computing increases scalability in a system, it increases
concerns regarding the heterogeneity of the utilized devices in a network. Because this
technology utilizes diverse software and hardware products in different layers of the
network, the performance of the system is highly correlated with the compatibility of the
used components. Ning et al. [86] discussed the heterogeneity issues in edge computing
and the solutions to address this problem.

4.4. Near Real-Time Data Processing and Decision Making

Similar to many other emerging real-world applications, smart farming applications
need real-time processing of streaming big data [87,88]. Real-time data lead to real-time
decisions and actions [48]. In a smart farming system, making fast and accurate decisions
is a major goal. To achieve this goal, we need mechanisms to collect and process the
diverse available data sources in real time. These data are generated by different technolo-
gies including but not limited to IoT, robotics, drones, climate forecasting services, and
smartphones. SFOBA [19] is a platform for big data processing which provides real-time
processing in many domains of agriculture. This platform integrates different data sources,
data modeling, and software products to provide real-time data analysis in farming ap-
plications. Al-Thani et al. [89] investigated the set-up process for the use of a drone in
monitoring sheep livestock. They also used image processing and ML models in a real field
application. With the massive number of pictures from drones and new computer vision
and deep learning models, it is possible to predict diseases and pests through greenhouses
and farms. These technologies also can be used to estimate plant traits in real time [90]. For
example, in the autonomous greenhouse, it is possible to develop a model to estimate the
leaf area, dry weight, and fresh weight of the lettuce [91]. Real-time data lead to real-time
decisions and actions [48]. For example, agile actions can be carried out in sudden changes
in operational conditions or other circumstances such as weather changes and disease
prediction alerts.

In addition, the use of IoT, cloud computing, remote sensing, biotechnology, and
robotics is increasing in smart farming [48], transforming traditional into smart farming.
These technologies can establish the networking of machines and control farm activities
automatically and in real time [92]. As discussed, storing data at intermediate points at the
“edge” of the network rather than always at the central server or data center leads to faster
data processing and a shorter response time critical for real-time processing [93].

To analyze the large agriculture data collected from fields and reveal hidden patterns of
interest from them, there is a need to develop forecasting models such as disease, pests, and
yield prediction models. Machine learning models that were mostly used in the prediction
include artificial neural network, support vector machine, and logistic regression [76].
These algorithms can be integrated with data analytics tools such as Map-Reduce and
Spark for real-time analysis and better performance [19,76].
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Utilizing edge computing provides another opportunity for data processing which is
federated learning that can address a major concern in data processing for smart farming,
which is data sharing. Many farmers prefer to keep their data private, decreasing their mo-
tivation to participate in collaborative learning activities. Alternatively, utilizing federated
learning, the learning model is distributed to the edge nodes without sharing the farms’
data with a central unit in the system. This approach reduces data privacy concerns and
encourages farmers to participate in cooperative learning processes.

4.5. Security and Privacy

Security and privacy mechanisms are important requirements that should be consid-
ered throughout a smart farming platform [4]. There are several solutions to secure a smart
farming platform against adversaries. Trust management is one of the mechanisms that
can enhance the security and privacy of data in a smart farming platform. It enables a
service provider to evaluate the trustworthiness of the actors in the system and to set some
restrictions on the activities of low-trustable parties. AgriTrust [94] is a trust management
approach designed for smart farming applications. This framework monitors the interac-
tions in the system and updates trust metrics such as credibility, robustness, and reliability
through time. Using this approach, smart farming devices broadcast their feedback on each
transaction to the network, therefore, this feedback can be utilized by the trust management
framework for trustworthiness evaluation.

Another mechanism for security enhancement in smart farming is access control
which is a mechanism to consider the policies and agreements to handle requests and
access permissions. These permissions can be granted based on the roles and attributes
or agreements. For example, Chukkapalli et al. [95] proposed an Attribute-Based Access
Control (ABAC) in Smart Farming. ABAC utilizes policies that combine different attributes
from different sources, including user, data, device, and environment, and provides fine-
grained, flexible access management. In this study, the authors modeled a smart farming
ecosystem with different agriculture sensors for temperature and soil monitoring, tractor
and truck movement controls, as well as labor management, and presented a mechanism
to handle access requests to data and devices.

In smart farming scenarios, data are collected in the field and usually transferred to
on-premise or cloud storage servers [96]. Different technologies are used for data transfer
in agriculture, including Wi-Fi and cellular networks. To protect data from adversaries
in the transfer stage, encryption is a common technique. For this purpose, the data are
encrypted before transmission and then decoded at the destination. Wen Xue et al. [97]
presented an encryption method for agricultural information systems. This method builds
secure communication among users, farmers, and cloud servers. The statistical results in
the paper showed that the presented method reduced the needed time for encryption as
compared with other available methods. Another encryption method for smart farming
applications was introduced by Ametepe et al. [98]. This study proposed a hybrid method
combining two different cryptographic approaches, and then tested the presented method
on a crop monitoring system.

A platform for smart farming can leverage the mentioned solutions, including trust
management, access control, and encrypted data transmission to ensure that security and
privacy during all stages of smart farming procedures, as shown in Figure 2. Another
state-of-the-art technology that can be used for enhancing security and privacy in smart
farming is the blockchain. This technology has been used in some agriculture applications
and could reshape smart farming ecosystems in the future. Blockchain technology is a
distributed ledger that keeps the records of all previous transactions in a system [99]. In
addition, this technology enables automatic procedure execution using smart contracts.
A smart contract is a computer program that can be deployed on a blockchain platform
to run some procedures automatically without human intervention [29]. In recent years,
blockchain technology and smart contracts have been widely used in different smart
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farming applications, including trust management [100,101], water management [102,103],
food traceability [104], and supply chain [105,106].

4.6. Regulation and Policies

Considering the available regulations and practices in agriculture, a mechanism for
compliance with these rules is beneficial in a smart farming platform. The regulations
related to smart farming cover different aspects of agriculture, including but not limited to,
food security, biosecurity, climate change, and data governance. In the following, some of
these regulations in different jurisdictions are briefly reviewed.

The European Union’s Common Agricultural Policy (CAP) [107] is a unified policy
across Europe to support farmers and to improve agricultural productivity. This policy
aims to improve the farming economy, address concerns regarding climate changes, and
manage natural resource consumption. In smart farming applications, the policy supports
technical progress to enhance agriculture productivity as well as reduce ecological foot-
prints. Another objective for the CAP is to control the availability of supplies and to ensure
that the prices of products are reasonable for both producers and customers. Another
widely used regulation under the European Union’s jurisdiction is the European Union
(EU) Code of Conduct on Agricultural Data Sharing by Contractual Agreement [108]. The
Committee of Professional Agricultural Organizations (COPA) and the General Confed-
eration of Agricultural Cooperatives (COGECA) published this code of conduct in 2020.
This code mainly focuses on non-personal data collected on farms and leaves the personal
data to be treated under other regulations. The code indicates that due to the nature of
collected data in agriculture, it is impossible to define data ownership in the same way as
physical objects and it suggests using different levels of rights. Therefore, the key step from
this code’s point of view is a contract that determines the rights of all parties to protect
their sensitive information, while all permissions related to data collection, access, and
utilization are needed to be approved by the data originator. To evaluate the compliance
of a product or service with this code, a checklist consisting of fifteen questions has been
provided by the publishers. These questions specify the collected data and the rights to
share, access, and use these data.

In addition, several regulations related to smart farming are used in the U.S. juris-
diction. An example is the U.S. agricultural policy [109] which covers different aspects
of agriculture such as trade, insurance, rural economic growth, bioenergy, and organic
farming. This policy aims to support U.S. farmers, to enhance the productivity of the farm-
ing process, and to reduce negative environmental impact. Generally, in a five-year cycle,
the farm acts are updated to govern agriculture, food, and rural development programs.
In the context of smart farming, this policy considers different technologies such as GPS,
computer mapping, guidance systems, and variable-rate technology [110]. The Food Safety
Modernization Act (FSMA) [111] is another law related to smart farming in the USA. This
act aims to enhance food safety and to prevent foodborne illness and has seven major rules
ensuring responsibility and accountability of different parties that work in the agricultural
sections. Different tools have been provided by the U.S. government to facilitate product
tracing, build food defense plans, and create food safety plans. Another regulation related
to smart farming in the U.S. jurisdiction is the Privacy and Security Principles for Farm
Data (PSPFD) [112]. It was established by the American Farm Bureau Federation (AFBF) in
2014. The principles under this regulation are mostly around data ownership, consent, and
disclosure. To ensure compliance with PSPFD, the AFBF has developed the Ag Data Trans-
parency Evaluator. This tool assesses contracts among agriculture stakeholders against the
principles provided in the PSPFD, and if the procedure is successful, the contract gets an
Ag Data Transparency seal that informs the parties that it has been approved.

Despite the efforts on regulations related to big data in smart farming, there are
still some gaps in this field. One of the issues is the lack of comprehensive and unified
regulations for agriculture data, while the available practices and a code of conduct are
not compulsory. To make the most use of sources in digital agriculture, a smart farming
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platform needs to provide mechanisms ensuring compliance with available policies in
smart farming. A smart farming platform should encourage the parties to trust the services
provided and participate in collaborative practices that enhance the performance of data
processing systems in agriculture applications.

5. Conclusions

Smart farming provides the agricultural industry with diverse data-driven services
which improve different applications from farm to fork. These services benefit from a large
amount of available data in smart farming ecosystems. However, a major challenge in
smart farming information processing is consistency and compatibility among the utilized
technologies, procedures, and protocols. To address this issue, in this paper, we suggest the
platform approach which is a design thinking approach that encourages different actors in
a smart farming ecosystem to facilitate collaboration among different services by following
some requirements. Moreover, we suggest six requirements for a smart farming platform,
including interoperability, real-time data processing, scalability, reliability, security, and
compliance with farming regulations. Such a platform can enhance the available services
in the agriculture industry by enabling collaboration among different service providers.
Furthermore, such a platform facilitates data-sharing practices by reducing security and
privacy concerns and providing a trustable environment for agriculture data holders.
Currently, a major limitation to developing such a framework is the lack of unified protocols
and standards, and more effort from technology providers and policymakers is needed
to address this issue. In future work, we aim to develop and implement a sample of the
proposed framework. To this end, we plan to utilize the available software and hardware
products that follow similar protocols, and therefore, are compatible.
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