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The complexity of today’s embedded electronic systems as well as their demanding performance and reliability requirements are
such that their design can no longer be tackled with ad hoc techniques while still meeting tight time to-market constraints. In this
paper, we present a system level design approach for electronic circuits, utilizing the platform-based design (PBD) paradigm as the
natural framework for mixed-domain design formalization. In PBD, a meet-in-the-middle approach allows systematic exploration
of the design space through a series of top-down mapping of system constraints onto component feasibility models in a platform
library, which is based on bottom-up characterizations. In this framework, new designs can be assembled from the precharacterized
library components, giving the highest priority to design reuse, correct assembly, and efficient design flow from specifications to
implementation. We apply concepts from design centering to enforce robustness to modeling errors as well as process, voltage, and
temperature variations, which are currently plaguing embedded system design in deep-submicron technologies. The effectiveness
of our methodology is finally shown on the design of a pipeline A/D converter and two receiver front-ends for UMTS and UWB
communications.

1. Introduction

Modern electronic systems are becoming increasingly com-
plex and heterogeneous. Telecommunication and multime-
dia applications require highly integrated, high-performance
systems, where analog, RF, and digital components must be
efficiently packaged into a single chip. Emerging sensor and
actuator swarm applications, as well, demand customized
mixed-domain systems to be embedded into a myriad
of extreme physical environments to provide a variety of
personal or broad-use services. On the other side, manufac-
turing technology is evolving deeper into the nanometer era,
where leakage power, increasing process variations, reducing
supply voltage, and worsening signal integrity conditions
make it daunting even to assess the required performance
specifications. To build future integrated systems, designers
need to face several challenges, at all levels of abstraction,
from system conception to physical implementation. Design

complexity is indeed rising while, at the same time, time-
to-market constraints are becoming tighter, and dependable
systems need to be built out of increasingly unreliable
components. Addressing the above challenges requires inno-
vative solutions not only in manufacturing technologies and
circuit architectures, but also in design methodologies and
tools.

A disciplined design style that reduces iterations in the
flow should be based on a rigorous formalism leveraging
accurate and robust performance modeling techniques to
guarantee that performance variables of each component are
correctly propagated across the design hierarchy. Moreover,
fast, global optimization techniques need to be deployed to
provide the best design options, for a given application,
within a well-constrained and characterized search space.
Finally, a practical framework should promote design reuse,
and the separation of design concerns to reduce system com-
plexity and boost designers’ productivity.
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In this paper, we present a system-level design method-
ology for mixed-signal electronic circuits, which is inspired
by the above principles, and leverages the platform-based
design paradigm (PBD) [1, 2] as the natural formalization
framework. In PBD, a platform is expressed as a collec-
tion of components and composition rules. A design is
obtained by composing components of the platform in
a platform instance. The refinement process consists of
mapping a functional description into a set of interconnected
components. The design space is systematically explored
through a meet-in-the-middle approach in which top-down
design constraints of the system are mapped onto bottom-
up performance characterizations of the components in
the platform library. Based on this paradigm, we provide
a unified framework to assist designers at all levels of
abstractions. At the system level, a global optimization
technique provides the best design options by leveraging
tradeoffs among all components, rather than composing
systems using locally optimized components. At the com-
ponent level, designs in different domains (e.g., RF, analog,
or digital) can be concurrently characterized to provide
an interface that offers smooth system integration while,
at the same time, hiding implementation details. This
orthogonalization of concerns allows making design decisions
at the system level, where system tradeoffs can be evaluated
across all RF, analog, and digital components. Moreover,
the design process can be significantly shortened, because
of the hierarchical approach enabled by our methodology,
which progressively reduces the number of design variables.
To ensure that reliable systems are produced, accurate
and robust circuit performance models are crucial in our
methodology, since high-level models should directly corre-
spond to feasible physical implementations. Designs should
therefore be robust to both modeling errors and process,
voltage, and temperature variations (PVT), increasingly
important as process parameters (minimum channel length,
device threshold, supply voltage, etc.) decrease. As presented
in [3], we include into our formulation techniques from
design centering, traditionally adopted for digital design.
With respect to [3], we add details on our performance
models, in comparison with other modeling approaches, as
well as on the mathematical derivation of the performance
margin evaluation algorithm used in our robust optimiza-
tion. Moreover, we apply our methodology to an additional
example.

This paper is organized as follows. Section 2 gives an
overview of the PBD methodology applied to the analog
and mixed-signal domains. In Sections 3 and 4, we discuss
the robust system-level design problem and provide its
mathematical formulation within the PBD paradigm. In
Section 5, we illustrate our methodology using three case
studies, namely, a pipeline A/D converter and two RF front-
ends, for UMTS and UWB receivers. Finally, we draw some
conclusions in Section 6.

2. Analog Platform-Based Design

Performing system-level design space exploration and opti-
mization in a systematic way can have a great impact on

system performance and cost. In a wireless receiver, for
example, it allows distributing design requirements (e.g.,
gain, NF, linearity) among the chain building blocks, and
early evaluation of several tradeoffs, such as preselect filter
selectivity and power consumption versus front-end linear-
ity, or base-band filter selectivity versus ADC resolution.

In traditional analog and mixed-signal design flows,
experienced architects conduct system-level design, and
system specifications are empirically partitioned among the
various functional blocks that circuit designers have to
implement. In fact, since an effective system-level optimiza-
tion is not achievable without accurate knowledge of the
achievable performance of the several building blocks, final
system performance may largely deviate from the expected
one, which can result in silicon respins. To simultaneously
achieve high-quality system integration starting from accu-
rate circuit characterizations, analog-PBD (APBD) has been
proposed and formulated in [4–7] as a meet-in-the-middle
recursive process consisting in top-down optimization (plat-
form mapping) and bottom-up characterizations, exporting
the feasible design spaces of platform components to higher
levels of abstraction.

Optimization is performed on behavioral models, that
is, mathematical representations of electronic circuits, cap-
turing their functionality as a function of a set of input,
output, and configuration parameters. To allow information
hiding and intellectual property (IP) protection, a feasible
performance model is also provided for each circuit block,
which exports the performance achievable by any available
implementation of the block (in the platform library),
without propagating implementation details. Performance
models are built in a characterization process, as described
in Section 2.1. Both models are accompanied by validity
laws, that is, a set of constraints and inequalities delineating
the validity regions of all component models and their
compositions. An Analog Platform (AP) is therefore a library
of components, each one decorated by the above set of
models and laws. A design is a platform instance, that is, a
correct composition of elements, implementing the desired
function and, at the same time, optimizing a set of quality
metrics.

2.1. Analog Performance Models. Performance models play
a critical role in analog system-level design and particularly
in platform-based design. Performance models are used to
constrain the optimization process to achievable perfor-
mances within the considered architecture space. Therefore,
system-level design approaches have to consider the nature of
performance models explicitly during system optimizations.

In the recent few years, a number of papers have appeared
on the generation of performance models [8, 9] and even
direct modeling of the feasibility region [10, 11]. The latter
set of works aims at providing a classifier that separates
feasible n-tuples of performances from unfeasible ones,
without recurring to a regression-based approach. From
the system-level perspective, feasibility models allow casting
exploration problems in a more intuitive performance space
rather than mapping down to implementation parameters.
The number of variables in the optimization problems is
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Figure 1: Equation-based and simulation-based approaches for
generating performance models compared with multiple metrics.
The 0–10 axes encode the difficulty of each figure of merit.

consequently reduced (at least in nondegenerate cases) and
architecture selection becomes readily available as different
implementation topologies may share common performance
spaces.

There are two basic model generation schemes, equation
based and simulation based (Figure 1). The first approach
requires deriving analytical expressions to estimate perfor-
mance from configuration (regression case) or to model
the performance space (classification case). The second
approach is based on statistical approximation techniques,
where a set of performance samples is evaluated and
exploited to build a performance model approximation.
In order to compare the different schemes, it is useful to
introduce some figures of merit for performance models. The
cost of generating a performance model can be decomposed
into different contributions: model setup, model generation,
and model retargeting. In particular, the first two contribu-
tions are usually at odds and need to be traded off in real
models. Another fundamental figure of merit is accuracy.
Accuracy is usually assessed through some function (e.g.,
average or maximum) of the estimation error. We can further
distinguish between two different kinds of error, the error
on the training data and the generalization error. The last
figure of merit we consider is generality of the approach,
both in terms of classes of circuits and of the performance
figures that can be captured. Analytical- and simulation-
based models are at opposite ends of the spectrum of
performance model schemes.

Analog platform performance models rely on Support
Vector Machines (SVMs) as a way of approximating the
classifier P discriminating the feasible performance space.
Given a set {xn} of simulated performance vectors (as
detailed in [10]), SVM training selects a subset of vectors xi
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Figure 2: Schematic view of the performance model generation for
a simple differential amplifier.

(support vectors) and corresponding weight coefficients α so
that the classifier function is obtained as

f (x) = sgn

⎛
⎝∑

i

αie
−γ‖x−xi‖

2

− ρ

⎞
⎠, (1)

where ρ is a biasing term (also determined during training)
and γ is an SVM parameter. As schematically shown in
Figure 2, a set of design configurations (e.g., transistor
size for the input differential pair and its bias current) is
generated as points in the configuration parameter domain
K . Electrical simulation maps these points into vectors in
the performance space Y. SVMs are then used to classify the
simulated points and generate a feasible performance model.
Performance vectors x are obtained through simulation, so
that maximum generality is available in terms of allowable
circuits and performance figures. Moreover, SVMs can be
generated so as to minimize the impact of false positives,
that is, unfeasible performances classified as feasible. In
fact, several case studies have shown that the approximation
around support vectors is usually restricted in small regions,
so that optimal predicted performances are very close to
some actually simulated performance vectors. This is an
amenable feature to enable effective hierarchical design with
minimum risk of incurring in iterations and redesign.

3. Robust System-Level Design

Robust design and optimization have traditionally been
closely related subjects. In fact, it is almost impossible to con-
sider an aggressive optimization scheme without considering
the robustness of the achieved solutions. System-level design
should embrace robust approaches for two separate reasons.
From the system level, mixed-signal design has to cope
with model inaccuracies that are intrinsic to the behavioral
models exploited in design explorations. The more complex
the system, the larger the hierarchical structure of the design
and the higher the risk when performing nominal design
optimizations. In fact, composition of high-level models may
provide results whose accuracy is not easily bounded, so
either a costly iterative scheme between top-down system-
level design and bottom-up verification or relaxed (robust)
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Figure 3: Main approaches to robust system-level analog and
mixed-signal design in the last few years.

constraint propagation is adopted. From the implementation
level, any performance model is subject to two kinds of inac-
curacies: intrinsic modeling errors and process variability.
While some control is available on the former source (even
if potentially very expensive or restrictive), the latter cannot
be solved with deterministic approaches.

Early approaches to computer-aided design centering
in an analog context date back to the early 80s [12–14].
All the approaches have a common dependency on the
model used to estimate performance degradation on design
parameters and, if yield is actually considered, on joint
probability functions used to compute yield expectations.
However, robust optimization for analog design has not been
developed at the same level as nominal optimization. The
largest obstacle on the way is represented by the complexity
of the resulting optimization problem, which is usually
captured as a semiinfinite programming problem. In [15],
a circuit optimizer based on simulation is enriched with
robust design features, showing significant improvements
albeit constrained with scaling issues for complex circuits.
The lesson learned from early attempts of including process
variations and mismatch in automated circuit design is the
tremendous complexity of the resulting problem.

Models generated with classic approaches based on
Response Surface Methodology (RSM) [16] can become
too expensive to build because of the number of primal
parameters and the complexity of the necessary simulations.
Instead, we propose an alternative approach, based on
approximate models to be developed at the system level.

3.1. Previous Approaches. Several robust approaches to ana-
log design have been proposed during the past few years.
Far from being exhaustive, we review those ones that we
consider more relevant to the approach presented in this
paper (Figure 3). Initially, relaxation of system constraints
during top-down optimizations was exploited as an attempt
to overcome poor architecture models. We can date back
the first rigorous attempt in this direction with the top-
down constraint-driven methodology presented in [17]
and demonstrated in [18, 19]. Since in pure top-down
approaches no detailed information is available on imple-
mentation as architectures have not been selected in the first
design steps, the methodology formulates the optimization

problem (constraint propagation problem) as the maximiza-
tion of a set of flexibility functions. Flexibility functions are
introduced to capture the complexity of implementing a spe-
cific set of performances. Therefore, in place of optimizing
for power or area, the optimization problems maximize the
“flexibility” of achieving the optimum set of performances
(i.e., minimize the “effort” of implementation). Albeit
rigorously formulated, the methodology was rather limited
in performing aggressive optimizations because of the halo
inherently inserted by the heuristic flexibility functions.

More recently AMGIE [20] proposed to carry out
hierarchical design via a set of optimization problems
where, at each abstraction level, component performances
are bounded to predefined ranges. A robust approach is
achieved inserting margins ∆P on all performances, so as
to compensate for modeling inaccuracies. However, ∆P has
to be determined a priori so that its final value is not the
result of an optimization problem. In particular, the cost
of meeting the margin on performances is not traded off

with the potential improvements in system performances,
that is, the sensitivity of the goal function on ∆P is not
evaluated at all, leaving a wide discretionality in determining
performance margins.

Recent advances in convex optimization [21] have revi-
talized analytical approaches to analog design and, conse-
quently, robust design. ROAD [22] introduces a robust opti-
mization approach based on posynomial performance mod-
els. To improve accuracy, a simulator-in-the-loop approach is
selected and local posynomial models are generated around
design points. It is then possible to deal with nonconvex
design spaces exploiting the possibility of exactly solving
large-scale convex programs. OPERA [23] introduces a
robust geometric optimization problem to maximize yield
over statistical variations. Design process variations are cap-
tured with confidence ellipsoids and approximated to yield
a convex problem. The robust design formulation computes
optimal design parameters to meet a predetermined yield
target. Convex optimization approaches, however, tend to
limit designers in selecting cost function and formulating
their problems. The efficiency achieved in actually solving
the problem may be then counterbalanced by the effort
required to model the system and validate the analytical
expressions used to set the problem. Moreover, classic
approaches to system design with convex optimization are
based on generating a flat optimization problem, where
all circuit topologies have been selected, thus setting a
challenging problem as system complexity grows and mixed-
signal designs are approached.

Recently, a hierarchical approach to robust system-
level analog design has been presented [24]. Performance
centering is sought through concurrent maximization of
system-level flexibility based on behavioral models and
implementation-level performance margins based on per-
formance models. A possible limitation of the approach
is the requirement of posynomial models to capture both
system-level and implementation-level constraints. While
this assumption is certainly acceptable for some classes of
analog systems, it may be in practice a hard one to satisfy as
it becomes increasingly difficult to guarantee (or even assess)
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model convexity as design hierarchy becomes deeper and
high-level behavioral models are exploited in mixed-signal
design space explorations.

In our framework, we extend the hierarchical approach
by removing the posynomial constraints on design for-
mulation. As in [23, 24], robustness is achieved through
maximization of margins with respect to system specifi-
cations. Extending the approach to analog platforms, we
obtain a two-fold advantage. First, very accurate perfor-
mance models (not constrained to be convex, posynomial,
or even in explicit form) can be exploited to estimate
implementation margins. It is then possible to accurately
weigh implementation margins since model inaccuracies are
kept to minimum levels. Second, arbitrary system behavioral
models and constraints can be used to formulate the
optimization problem since analog platform-based design
relies on global stochastic optimization approaches to find
optimal implementations. Designers can then specify their
systems without recurring to posynomial approximations
and capturing arbitrary nonconvex constraints.

4. Mathematical Formulation

The essence of APBD in its general formulation is picto-
rially represented in Figure 4 and consists of a bottom-up
platform generation phase, where architectural constraints

are characterized and exported to higher levels, and a top-
down optimization phase, where system constraints are
intersected with architectural constraints and the system
cost is minimized. At the end of the optimization, system
specifications are mapped on the available platform library
and the process is repeated.

4.1. Nominal Optimization. In a nominal formulation, the
optimization process mapping platform l+ 1 onto platform l
is mathematically captured as

min
κ

cost(ζ)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ = F (κ),

S(ζ) ≤ 0,

P (κ) ≤ 0,

(2)

where ζ is a set of system performance indices, κ is a set
of platform configuration parameters, F is the behavioral
model used to map κ into ζ , S(ζ) represents the set of
constraints imposed on ζ by system specifications, and
P (κ) captures the set of constraints on the configuration
parameters κ imposed by the architecture space. The set
of constraints in (2) can be visualized defining two sets
in the optimization space. The system constraints S(ζ) ≤
0 define the set YS of feasible performances from the
system perspective. The architectural constraints P (κ) ≤

0 define, through the behavioral model F , the set YA

of achievable performances with the current architecture
(platform). Figure 5 shows a pictorial representation of the
two sets and how mapping is the minimization of the
cost function on YS ∩ YA. Nominal design optimization
computes the vector κ that produces the minimum cost
in (2). At optimum, the Karush-Kuhn-Tucker conditions
require for active constraints that S(ζ) = 0 and P (κ) = 0,
which means that the optimized system is, in general, at
the “edge” of implementability on several constraints from
both a system and an architecture perspective. However, any
modeling error in F may translate in actual performances
ζact (computed with accurate models) to violate S. Similarly,
any modeling error in P may translate in platform l
performances being unfeasible. When similar events occur,
system design needs either to be iterated or degraded
performances have to be accepted. Degradation may be
rather severe and force costly redesigns when aggressive
specifications are addressed. Even accurate models may fail
if performance degradation is due to process parameter
dispersion or temperature variation. In general, it is deemed
unfeasible to export this information with performance
models as for each circuit configuration κ a function has to
be provided φ(ζ ; κ) which computes the probability density
function of performance ζ given the circuit sizing κ. As the
approximation of φ usually relies on expensive Monte Carlo
simulations around κ, the generation of φ(ζ , κ) over the
entire configuration space K is hardly doable.

4.2. Robust Optimization. To address this problem, an alter-
nate formulation of the optimization problem is required.



6 EURASIP Journal on Embedded Systems

The sets of constraints S and P have to be satisfied with some
margin so as to compensate for modeling inaccuracies. We
can write the new set of constraints as S(ζ) ≤ ǫ and P (ζ) ≤
δ. Margins have an intuitive interpretation, defining a sphere
(as defined by the norm adopted) Sζ(ζ∗, ǫ) for system con-
straints and Sκ(κ∗, δ) for performance constraints around
the optimal pair {ζ∗, κ∗}. The objective of the optimization
problem is then changed so as to maximize margins δ and ǫ,
which corresponds to the maximization of the volumes of the
spheres around the optimum configuration and performance
points. The original cost function is inserted as an added
constraint with a dedicated ǫc. Given a minimum cost target
c̃, at optimum ǫc is maximized constrained on the other
margin variables, so that a tradeoff is evaluated between cost
value and robustness during the optimization. Therefore,
problem (2) becomes

min
κ

(∏
i
δi

)−1(∏
j
ǫ j

)−1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ = F (κ),

cost(ζ) ≤ c̃ + ǫc,

S(ζ) ≤ ǫ,

P (κ) ≤ δ.

(3)

System-level constraints are usually available in explicit form;
therefore S(ζ) ≤ ǫ can be immediately written as

s1(ζ)− ǫ1 ≤ 0, . . . , sp(ζ)− ǫp ≤ 0, ǫ1 > 0, . . . , ǫp > 0
(4)

and included in the optimization problem. Additional
constraints may be inserted to set specific relations on ǫ,
for example, ǫ1 = 2ǫ2. The problem is more involved
with performance models, as analog platforms provide P in
implicit form with a nonlinear function f (κ) → {−1, 1}.
In this case, we interpret the margin δ in the following way.
For a performance model P , its frontier ∂P defines the
boundary of the feasible region. Given a configuration point
κ satisfying performance constraints P (κ) = 1, its margin
δ can be obtained finding the closest configuration κ̂ ∈ ∂P
to κ and computing the norm of κ̂ − κ. If all components
κi of κ have the same weight, then δ = ‖κ̂ − κ‖ · 1 (the
performance constraint P (κ) = 1 is consistent with the
formulation in (2) as it is equivalent to the argument of sgn
in (1) being≤ 0 after a sign change). In this case, minimizing

(
∏

iδi)
−1 is equivalent to maximizing the volume of the

sphere around κ that is enclosed in the feasible space (within
its boundary ∂P ). The general case of different weights
on different performance components can be immediately
obtained adopting a different norm when computing ‖κ̂−κ‖.
Since the different performances in the performance vectors
used to generate P can differ in orders of magnitude, they are
all preconditioned to be normalized in the interval [−1, 1]. In
the following paragraph, we show how to compute δ based
on the SVM representation of P .

4.3. Performance Margin Evaluation. The problem of finding
κ̂ given κ and P is analogous to the problem of finding

the largest hyperellipsoid enclosed by ∂P . Initially we start
solving the case of hypersphere enclosure, extending to the
general case at the end of this paragraph. By definition, κ̂
is the point on the boundary ∂P which shows minimum
distance from κ. To simplify notation, we set x = κ̂ and
a = κ. Therefore, we can obtain κ̂ solving the following
optimization problem:

min
x

‖x− a‖,

s.t. x ∈ ∂P ,
(5)

where ∂P is implicitly defined from (1) as

∑

i

αie
−γ‖x−xi‖

2

− ρ = 0. (6)

The optimization problem obtained substituting (6) into
(5) is evidently nonlinear and can be interpreted as vector
projection onto a nonconvex set. In fact, while the cost
function in (5) is strictly convex, the equality constraint in
(6) is nonlinear (and nonconvex). At optimum, the Karush-
Kuhn-Tucker conditions require that

m∑

i=1

αie
−γ‖x−xi‖

2

− ρ = 0,

x1 − a1 = λ · γ ·

⎛
⎝

m∑

i=1

αie
−γ‖x−xi‖

2

xi,1 − ρx1

⎞
⎠,

x2 − a2 = λ · γ ·

⎛
⎝

m∑

i=1

αie
−γ‖x−xi‖

2

xi,2 − ρx2

⎞
⎠,

...

...

xn − an = λ · γ ·

⎛
⎝

m∑

i=1

αie
−γ‖x−xi‖

2

xi,n − ρxn

⎞
⎠,

(7)

where λ is the Lagrange multiplier, the first equation states
the feasibility condition for x, and the other equations
enforce that the gradient of the Lagrangian function L
vanishes at any optimal point. System (7) originates from
the equivalent problem obtained by (5) after squaring the
cost function. For each j ∈ {1, . . . ,n}, the jth component
of∇L(x, λ) can therefore be computed as follows:

(∇xL) j = 2
(
x j − a j

)
− 2γλ

⎛
⎝

m∑

i=1

αie
−γ‖x−xi‖

2
(
xi, j − x j

)⎞⎠.

(8)

By substituting (6) into (8), for each j, we finally obtain the
equations in (7).

The nonlinear system (7) can be solved with Newton-
Raphson (NR) providing quadratic convergence if x0 is
“close” to x̂. ‖x̂ − x‖ is therefore the radius of the largest
hypersphere enclosed in ∂P . However, the nonlinear nature
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of (7) generates two problems. First, a multitude of solutions
may exist, so we could achieve convergence on a point on ∂P
which is not the closest to x; second, NR may not converge
at all if a sufficiently good initial guess is not provided. To
cope with the above problems we first adapt to our problem
a more sophisticated implementation of the NR method,
similar to the damped Newton’s method [21], which tries to
improve on basic NR poor global convergence. Then we add
some ad hoc heuristics to generate a good initial guess.

Solving for λ one of the equations in (7) and substituting
the result into the other equations, we obtain an n-
dimensional system in the unknown vector x, which can
be denoted as F(x) = 0. We then combine NR method
with the minimization of the function f = (1/2)‖F‖2, in
the sense that we accept the solution provided by each NR
step only if the step considerably reduces f . If this does
not happen, we backtrack along the NR direction d starting
from the old point xold until we have an acceptable new
point xnew = xold + νd (0 < ν ≤ 1). Since the NR step
is a descent direction for f , we are guaranteed to find an
acceptable point by backtracking. The backtracking routine
is based on the line minimization rule [25, 26] and consists
in defining g(ν) ≡ f (xold + νd), as the restriction of f
along d, and finding ν so as to minimize g. To save on the
number of function evaluations, a cubic approximation of
g is actually computed based on available information on g
and its derivative. Since the improved NR method can still
occasionally fail converging on a local minimum of f , we can
try a new starting point according to the following heuristics:

(i) we compute the distance along reference axes in Rn

using bisection-based monodimensional methods.
It is then possible to bound the distance of x̂.
We observed that in practical cases whenever this
bound is smaller than some δmax (whose actual value
depends on normalization of x) convergence is always
achieved and the correct x̂ is returned by Newton-
Raphson,

(ii) we set x0 = a to start iterations as we expect P

to define a relatively “thin” feasible space. Whenever
the previous heuristics is not satisfied, we run N
NR iterations perturbing the initial point x0 in the
direction of the axis where the minimum distance
has been found in the previous point (iterations are
aborted after a predetermined number) until the
minimum distance solution is reached. We observed
that N = 5 is generally sufficient to achieve
convergence,

(iii) in case of nonconvergence, we return the bound
computed in the first point. In practice, there is no
consequence in doing this because it always happened
for points deep in ∂P in our tests.

The above procedure can be extended to hyperellipsoids
enclosure by scaling x with a unitary matrix E to obtain
x′ = Ex and extending the previous approach on x′. Margins
found in this way need to be scaled back to the initial
space through E−1. This allows selecting different margins on
different performances.
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Figure 6: Pipelined converter simplified block diagram—feasible
performance models have been generated for the blocks in green:
the SHA and the gain error digital calibration block (GDEC).
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The overall algorithm complexity has been computed to
be O(n2m + nmcexp) where n is the number of performance
figures in P , m is the number of performance vectors, and
cexp is the cost for evaluating the exponential function as
in (1).

5. Examples

In this section we apply the previous results to the case
studies reported in [4, 27, 28]. The original designs are
reformulated according to (3). The selection of good cost
functions is a crucial issue in system-level optimization,
with implications that may become subtle when maximizing
robustness. In our experiments, we used the following cost
prototype:

1
(∏k

i=1

(
αi + tanh

(
βiδi

))µi)1/k
·

(∑r
j=1 ǫ

θ j
j

)1/r . (9)

A few considerations may help explain the form of (9). First,
the volumes of the δ ellipsoid and the ǫ hypercube increase
with number of dimensions for constant margin; therefore
an overall normalization is achieved with the powers 1/k
and 1/r of σ and ǫ products. As far as architecture margins
are concerned, we can partition δ = {δ1δ2 . . .}, where δi
refers to the single platform component. Elements δi, j of
δi are strongly related describing an ellipsoid embedded
in Pi. Therefore a single element is sufficient to describe
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Table 1: Performance of optimal ADC, OTA, and GDEC circuit for 3 different cost functions. M denotes the system and architecture
margins.

Performance (1) M1 (2) M2 (3) M3

DNL (LSB) 0.07 0.73 0.04 0.76 0.07 0.73

INL (LSB) 0.43 0.57 0.04 0.96 0.45 0.55

SNR (dB) 85.1 9.1 85.1 9.1 82.6 6.6

PADC (mW) 57.1 42.9 59.6 40.4 42.6 57.4

POTA (mW) 52.8 — 55.3 — 37.8 —

Av 194 134 267 88.7 228 2.72

BW (KHz) 4269 1119 3768 739 2755 22.7

G 7.46 — 7.65 — 7.24 —

PGDEC (mW) 4.2 — 4.2 — 4.8 —

Out− Out+

RFin−RFin+

Vbias Vbias

C1C1 L1L1

L2L2

L3L3

L4 C2

M1 M2

M3 M4

Figure 8: Schematic for the n-type input stage LNA used in the
UMTS receiver front-end.

the margin of the ith component. If we consider that the
composition of blocks is as robust as the weakest block, we
can obtain a different cost function considering mini(αi +
tanh(βiδi,1)). The tanh function is used to saturate the
sensitivity on δ as margins too wide may cause degenerate
robustness/performance tradeoffs. Finally, if we analyze the
Pareto optimal curves as a function of ǫ and δ, we can easily
obtain that the relative importance of two ǫ parameters is
controlled by

θa
∆ǫa

ǫa
+ θb

∆ǫb

ǫb
= 0 (10)

so that θa/θb sets the relative impact of variations of ǫa and
ǫb. When δ and ǫ are considered, we obtain (for small βδ)

θa
r

∆ǫa

ǫa
+
µb
k

βbδb
αb + βbδb

∆δb
δb

= 0, (11)

which makes it clear how the parameter α can be used to
control sensitivity on δ without recurring to exponent ranges
that may generate numerical issues during optimization.

Equations (10) and (11) can be used as guidelines to set
parameters in (9), as exemplified in the following case
studies.

As a final remark, we notice that architecture perfor-
mance margins are taken on lower-dimensional models than
the corresponding platform ones. In fact, some parameters
are simply “ancillary” parameters required for correct com-
position of platform models, and as such not related with the
robustness of the solution. One other parameter, which we
did not include when computing margins at the component
(architectural) level, is power. Power may be considered
as an annotation on circuit performances. In fact, in our
case studies, if a given circuit exhibits a larger (or smaller)
power consumption with respect to the estimated one, it
does not affect circuit performances (which is obviously
not true if gain is not met, for example). We remark that
this is an arbitrary design choice and is not related to the
presented methodology. On the other hand, in our examples
we introduce margins on power at the system-level to trade
the global power consumption with the robustness of the
solution. Also, area has not been exploited as a robustness
criterion, but this can be seamlessly introduced in the robust
optimization scheme to export at the system level area
penalties involved in topology selection.

5.1. Pipeline ADC. In [4] we performed design space
exploration of a 14-bit, 80 MS/s pipeline analog-to-digital
converter (ADC) in 0.13 µm, 2.5 V analog supply CMOS
technology. The simplified block diagram of the system
is represented in Figure 6. The ADC is made up of 4
multibit stages and includes digital calibration circuits to
enhance performance. In particular, the digital-to-analog
subconverter (DAC) errors are canceled with the DAC
Noise Cancelation (DNC) technique [29] and the first-
stage Sample-and-Hold Amplifier (SHA) errors are cor-
rected through a Gain and Distortion Error Correction
(GDEC) algorithm as in [30]. The SHA gain and third-
order distortion coefficients, a1 and a3, are first estimated
from the digital back-end by a PolyEstim circuit. At the
same time the distorted SHA characteristic is effectively
inverted (rectified) by the PolyInv circuit. As shown in
Figure 7, the interstage residue amplifiers are fully differential
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switched capacitor systems (FB C in Figure 6) implemented
with a telescopic Operational Transconductance Amplifier
(OTA). Loading effects and switches nonidealities are also

included in the model. The OTA optimization needs to
be performed under the hypothesis of operation of digital
calibration circuits, as detailed in [5]. In order to perform
efficient high-level exploration across the analog/digital
boundary while reducing the complexity of the problem
we provided characterizations and feasible performance
models for the main blocks, that is, the digital calibration
logic and the first-stage residue amplifier. The remaining
part of the converter was considered ideal. Indeed, the
first stage in a multibit pipeline ADC is the most critical
block since the accuracy required in terms of gain and
linearity is maximum; the remaining stages have been
lumped into one block in our macromodel. Since the first
stage provides the first 4 bits, a nominal gain G of 8 is
required to the SHA. However, the presence of the digital
correction circuit relaxes this constraint enabling power
savings. In the nominal optimization, the cost function
aims at minimizing power consumption PADC of the over-
all ADC subject to performance models and minimum
system requirements on DNL, INL, and the signal-to-
noise ratio (SNR) due to thermal noise. The architectural
space includes four correction algorithms to invert the
polynomial nonlinearity corresponding to different accuracy
and power consumption levels, based on [5]. Performances
are evaluated through the behavioral model F of the
mixed-signal platform library, in which each component is
embedded.
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The extension to the robust approach of the optimization
problem has been achieved through the following formula-
tion, based on the cost template in (9):

min
κ

⎛
⎝

4∏

j=1

ǫ
θ j
j

⎞
⎠
−1/4

(α + δ)−µ,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ = F (κ),

PADC ≤ 100 · (1 + ǫ1)−1 mW,

DNL ≤ 0.8 · (1 + ǫ2)−1 LSB,

INL ≤ 1 · (1 + ǫ3)−1 LSB,

SNR ≥ 76 · (1 + ǫ4) dB,

PSHA(κSHA) = 1, δ = margin(PSHA, κSHA),

PGDEC(κGDEC) = 1,

(12)

where ǫ1, ǫ2, ǫ3, and ǫ4 are system margins on power,
DNL, INL, and SNR, respectively. δ, the architecture margin,
is normalized in [0, 1] and is computed by exploiting an
ellipsoid in which weight for the OTA bandwidth (BW) and
open-loop gain (Av) is 2 times the other performance indices.
The parameter α controls cost function sensitivity on δ,
hence the architecture margin on the optimum.

Several optimizations with different cost parameter val-
ues were efficiently performed through simulated annealing,
with an average time of 13 hours per run. Three meaningful
results are reported in Table 1 to demonstrate how the
tradeoffs between system margins (especially ǫ1 on power)
and architecture margins (especially on gain and bandwidth)
can be thoroughly explored within our methodology. In (1)
more emphasis has been given to the architectural constraint
margins, setting θ1 = 4, θ2 = θ3 = θ4 = 4/3, α = 0,
and µ = 2 thus obtaining higher δ values (e.g., up to 27%
on bandwidth). On the other hand, in (2) and (3) focus is
more on system margin maximization. For example, in (2)
by setting θ1 = 20, θ2 = θ3 = θ4 = 4, µ = 1, and α = 0 we
got a 17% margin on bandwidth. This lowers down to 0.8%
in (3) where we set θ1 = 8, θ2 = θ3 = θ4 = 2/3, µ = 1/6, and
α = 0.8 thus obtaining the overall minimum power solution.

We notice how in lower-power designs the system-
level margin on SNR tends to decrease as well. Moreover,
the unity gain frequency (and the bandwidth), which is
the key parameter influencing the settling behavior of the
SHA, tends to decrease thus impacting the accuracy of
the system (i.e., INL, DNL, and G) and mandating more
accurate and power expensive calibration circuits. We finally
compare results in Table 1 with the optimal design reported
in [4]. Using a nominal optimization technique, we obtained
52.5 mW ADC power consumption with approximately 9%
margins. This implies that, in the nominal formulation,
it was still possible to obtain reasonable architectural and
system margins by acting both on optimization constraints
and feasible performance model generation constraints as
viable safety margin knobs. However, we had not chances
to quantitatively explore and efficiently control the involved
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performance/margin tradeoffs as we have demonstrated here
in the robust formulation.

5.2. UMTS Front-End. In this and the following subsections,
we demonstrate our methodology on RF systems. We start
with robust optimization of the UMTS receiver front-end
presented in [27]. The receiver consists of a Low-Noise
Amplifier (LNA) and a mixer for a direct conversion UMTS
receiver. All components were characterized and embedded
in a platform library. In the nominal optimization, the cost
function aims at minimizing power consumption of the
overall receiver subject to compliance of standard UMTS
tests and performance models. The architecture space is
formed by two LNA topologies and one direct-conversion
mixer, as reported in Figures 8, 9, and 10. The system-level
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Table 2: UMTS receiver robust optimization results as a function of α. Larger values of α decrease the sensitivity on δ in (9). Note that the
LNA topology is also affected by robust optimizations.

α nom. 0 0.1 0.3

Gain (dB) 30.8 29.9 31.2 27.7

Power (mW) 10.9 14.4 12.9 11.7

D2 (dBm) −99.1 −99.7 −100.2 −99.5

D3 (dBm) −98.7 −99.5 −100.3 −99.7

ǫ2/ǫ3 (dB) − 0.7/3.5 1.2/4.3 0.5/3.7

NF (dB) 6.8 6.9 6.4 6.9

GainLNA (dB) 18.2 15.4 17.3 15.7

NFLNA (dB) 3.5 3.8 4.5 5.8

PowerLNA (mW) 5.7 7.3 6.1 4.2

Topology n n n np

Margin 1.3% 12.5% 6.9% 3.6%

CG (dB) 12.6 14.5 13.9 10

PowerMIX (mW) 5.1 7.1 6.8 5.9

Margin 0.9 % 15.8% 6.1% 4.8%
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Figure 13: Schematic of the passive mixer and buffer used in the
UWB receiver.

constraints (directly derived from UMTS specifications) are
compactly formulated with

D2 �
1

G2
R

(P2 + N + Prm) ≤ −99 dBm,

D3 �
1

G2
R

(P3 + N + Prm) ≤ −96 dBm,

(13)

where P2 and P3 are the output-referred second- and
third-order distortion powers, respectively, N the output-
referred noise power, Prm the output-referred power due to
reciprocal mixing, and GR the front-end gain. The standard
specifies the conditions in which system performance has
to be assessed. All quantities are evaluated through the
receiver behavioral model F , described in [27]. Exploiting
the robust formulation (3) and the cost function template
(9), the following robust optimization problem has been
obtained:

min
κ

(
(α + tanh(40 ·min(δL, δM)))

·
(
ǫ
θ
1 · ǫ

2
2 · ǫ3 · ǫ

−2
4

)1/4
)−1

,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ = F (κ),

P ≤ 25 mW · (1 + ǫ1)−1,

D2 ≤ −99− ǫ2 dBm,

D3 ≤ −96− ǫ3 dBm,

CL

CM
= 1 + ǫ4,

PL(κL) ≥ 1, δL = margin(PL, κL),

PM(κM) ≥ 1, δM = margin(PM, κM),

ǫi > 0.

(14)

The parameter α has been used to control the amount of
margin on δ and thus the architecture margin at optimum.
The tanh term has been set as to saturate at margins
larger than 15% (δ is normalized in [0, 1]). ǫ1 determines
power consumption margin and its weight is controlled by
the parameter θ. ǫ2 and ǫ3 set the margin on minimum
interference requirements. Since in a direct conversion
receiver second-order terms are crucial, we increased its
weight squaring ǫ2. Finally, ǫ4 measures the mismatch on the
interface capacitance between LNA and mixer, and has to be
minimized, as detailed in [27] in order to guarantee correct
platform composition.

An optimization trace projected onto the Power-NF
plane for the LNA is reported in Figure 11. The robust
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Table 3: UWB RF front-end receiver robust optimization results as a function of α. Larger values of α decrease the sensitivity on δ in (15).

α nom. 0 0.1 0.3

Gain (dB) 18.32 19.84 17.72 19.64

Power (mW) 7.95 8.59 8.33 10.28

NF (dB) 4.16 4.16 3.99 3.75

IIP3 (dBm) −24.07 −24.68 −21.00 −18.65

ǫ1 0.75 0.80 0.46

ǫ2 0.84 1.01 1.25

ǫ3 5.32 9.00 11.35

GainLNA (dB) 19.42 21.57 20.30 21.56

NFLNA (dB) 3.81 4.00 3.72 3.56

IIP3LNA (dBm) −9.32 −11.13 −10.46 −11.49

PowerLNA (mW) 5.8 6.38 6.39 8.44

Margin 0.22% 32.0% 24.6% 14.2%

CG (dB) −1.11 −1.73 −2.59 −1.9

NFMIX (dB) 12.79 11.81 12.32 12.07

IIP3MIX (dBm) −4.47 −2.81 −0.29 3.83

PowerMIX (mW) 2.15 2.21 1.93 1.84

Margin 0.04 % 17.13% 0.1% 0.1%

approach is able to perform architecture selection between
the LNA topologies, as shown in Table 2. Larger values for the
α parameter allow more aggressive optimizations, as shown
by lower-power consumption levels. Moreover, it is evident
that the optimal point does not lie on the Pareto optimal
curve of the LNA performances, as was the case in the
nominal design in [27]. In this example, area occupation is
not directly traded with system robustness against variations.
Table 2 shows the performances at optimum together with
the main performance indices and corresponding margins.
In this case, since direct conversion architectures are
extremely sensitive to second-order distortion, we exploited
an ellipsoid to compute δM so that the second-order
distortion coefficient weight is 3 times the other performance
indices. Overall, compared to the optimal nominal design,
a significant increase in power is observed (+32% for
the case α = 0), but the final system allows for wide
margins to compensate modeling inaccuracies and layout
effects.

5.3. UWB Front-End. In this subsection, we proceed with
optimization, under robustness constraints, of a UWB
receiver based on the architecture in [28]. The RF front-
end includes two main building blocks, which were both
characterized and embedded into a platform library. The
first block, shown in Figure 12, consists of the Tx/Rx switch
(M1 and M2), the wideband (3.1–4.8 GHz) input matching
network (L1, L2, LS, and CS), and the LNA, which features
a stagger tuning technique to achieve gain flatness over
the wideband of interest. The second block, represented
in Figure 13, includes a passive mixer (M1 and M2) and
a low-noise buffer amplifier (M3–M8) to boost the mixer
gain.

In the nominal optimization, we aimed at minimizing
power consumption (P) of the RF front-end while meeting

system constraints on IIP3, total gain G, and noise figure
(NF). Similar to (14), the robust optimization problem is
formulated as follows:

min
κ

((α + tanh(40 ·min(δL, δM))) · (ǫ1 · ǫ2 · ǫ3))−1,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ = F (κ),

P ≤ 15 · (1 + ǫ1)−1 mW,

NF ≤ 5− ǫ2 dB,

IIP3 ≥ −30 + ǫ3 dBm,

G ≥ 15 dB,

PL(κLNA) ≥ 1, δL = margin(PL, κL),

PM(κM) ≥ 1, δM = margin(PM, κM),

ǫi > 0,

(15)

where the system performance figures (power, NF, gain, and
IIP3) are calculated from the κL and κM using RF cascade
equations, as follows:

P = PL + PM ,

NF = 10 log
(

10NFL/10 + 10(NFL−GL)/10
)

,

IIP3 = −10 log
(

10−IIP3L/10 + 10(GL−IIP3M)/10
)
.

(16)

The behavioral model F is then built out of (16), with some
additional validity laws enforcing correct block composition.
As in the UMTS optimization problem, α has been used to
control the amount of margin on δ, hence the architecture
margin at optimum. For this particular application, power,
NF, and IIP3, the most critical performance parameters, have
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been given the same relative weight. ǫ1 dictates the power
consumption margin, while robustness with respect to gain
and second-order distortion variations is less of a concern for
our UWB communication system. ǫ2 and ǫ3 set the system-
level margins on noise figure and IIP3 of the optimum
system design. As in (14), the tanh function saturates when
margins become too large (>15%).

In Table 3, we report the optimal performance as a
function of α, together with the main performance figures
and their margins. As in the UMTS case, larger values of
α imply more aggressive optimizations, better performance,
and lower margins. However, this does not necessary trans-
late into lower-power consumption, in this case, since the
system-level margin with respect to power has the same
weight as the other margins. Since the system performance
is more sensitive to NFL and IIP3M , the ellipsoids used to
compute δL and δM were selected so that the LNA noise figure
and the mixer IIP3 have a weight which is twice the one
of the other performance indices. Overall, the final system
allows for much wider margins with respect to the nominal
solution, albeit at the cost of increased power consumption
(+30% for the case α = 0.3).

As a final comment on the results, we could not perform
a Monte Carlo analysis on the actual circuits for any design
since the complexity of our systems rules out the possibility
of performing any reasonable number of simulations to get
meaningful results. In fact, this was an important motivation
to introduce robustness early in the design cycle starting from
the system level.

6. Conclusions

Platform-Based Design (PBD) is a promising methodology
for embedded system design, aiming to improve design
productivity by encouraging design reuse, orthogonalization
of concerns, and system-level optimization. In this paper,
we have illustrated the extension of PBD to mixed-signal
systems. Furthermore, to ensure robustness with respect to
both model and design uncertainties, we have proposed
the application, within the PBD framework, of design-
centering techniques. The proposed approach allows robust
hierarchical design without any assumption on the mathe-
matical properties of the system models, leading to a general
formulation that can be used for robust automatic design-
space exploration.

To demonstrate the effectiveness of the proposed design
methods in different domains, we presented three case
studies: a mixed-signal pipeline ADC and two RF front-
ends, respectively, for UMTS and UWB receivers. In all cases,
designs were efficiently composed from precharacterized
components, as well as optimized at the system level,
demonstrating the flexibility of the approach and significant
improvements in terms of robustness.
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