
Published by the IEEE CS n 1536-1268/09/$25.00 © 2009 IEEE 	 PERVASIVE computing� 49

S m a r t e r P h o n e s

T he widespread availability and
portability of mobile phones has
led them to become the de facto
platform for ubiquitous comput-
ing. As mobile phones’ battery

life and capabilities continue to grow, they’re
supporting increasingly complex applications
that leverage information about a user’s situa-
tion—their location, activity, and so on. Mod-
ern smart phones are especially well-suited to
this task because they’re often integrated with
sensing devices that facilitate obtaining detailed
and meaningful descriptions of a user’s situa-
tion. For example, smart phones can use accel-
erometers and microphones to accurately deter-

mine user activity1 and can
use Global System for Mobile
Communications (GSM),
WiFi, and GPS capabilities to
determine users’ locations and
provide meaningful descrip-
tions of their situations.2

To facilitate the gathering
and processing of sensor data, we’ve devel-
oped BeTelGeuse, an open source platform that
supports collecting data from phone sensors,
Bluetooth-enabled sensors, and Internet data
sources. BeTelGeuse also infers higher-level con-
text from sensor data, for example, by inferring
user activity from accelerometer measurements
using the activity plug-in. Contrary to existing
tools, BeTelGeuse isn’t limited to a specific run-
time environment or to a specific set of sensors.
We designed BeTelGeuse to be extensible, as well

as easy to use and configure. It’s freely available
under the GNU Lesser General Public License
from our Web site (http://betelgeuse.hiit.fi). In
this article, we present BeTelGeuse’s design goals
and architecture and evaluate its performance.

Design Goals
Our design goals for BeTelGeuse are:

Multiplatform support.•	 As we discuss in the
“Related Work” sidebar, existing platforms
are typically limited to a specific runtime
environment. This limits the studies that re-
searchers can carry out because the study’s
participants will depend on the number of
available devices. To enable large-scale stud-
ies, the data collection platform should run on
different devices and runtime environments.
Extensibility. •	 New kinds of sensing devices
and data sources are continuously becoming
available so researchers must be able to easily
extend the platform to support them. More-
over, the platform’s sensor interface shouldn’t
be limited to a specific type of sensor con-
nectivity, such as Bluetooth, 802.11, or inte-
grated sensors.
Data accessibility.•	 A platform that collects
context data can provide applications with
context information so it should be easy to
integrate it with applications and services.
Moreover, if researchers use the platform to
run user studies, they should be able to access
data remotely without requiring access to the
physical device.

Joonas Kukkonen,
Eemil Lagerspetz, Petteri Nurmi,
and Mikael Andersson
Helsinki Institute
for Information Technology HIIT

BeTelGeuse is an extensible data collection platform for mobile devices
that automatically infers higher-level context from sensor data. The
authors introduce the BeTelGeuse architecture and evaluate its impact on
mobile phone performance.

BeTelGeuse:
A Platform for Gathering
and Processing Situational Data

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

50	 PERVASIVE computing� www.computer.org/pervasive

Smarter Phones

High-level context. •	 Existing plat-
forms are limited to gathering raw
sensor measurements rather than

inferring high-level abstractions of
the user’s location. High-level ab-
stractions are often more meaning-

ful and provide better clues about the
user’s actual situation, motivation,
and information needs.

W e categorize existing data collection platforms based on

the nature of data that they collect. Platforms that col-

lect objective data are nonintrusive as they gather sensor data

about users’ actions and situations without user involvement.

The advantages of objective data are that users don’t have to be

interrupted and data collection doesn’t suffer from subjective

interpretations or from recall failures. On the other hand, sensor

data is often noisy and erroneous, and unable to convey mean-

ingful information about the users’ situational, motivational, or

informational needs. To this end, many platforms increasingly

support subjective data collection. The most common way to

collect subjective data is to use experience sampling, that is,

explicitly ask for user feedback at regular intervals or in specific

situations.1 One alternative is to automatically infer meaningful

descriptions from sensor data.

Several researchers have developed various platforms that

support objective data collection. Most of these platforms are

limited to a specific runtime environment or to a specific set of

sensors. For example, ContextPhone logs various phone events

(phone and application usage, for example), but can be used

only on Nokia S60 devices.2 Platforms that support multiple

runtime environments are typically limited to a specific set of

sensors or data type. For example, Intel PlaceLab3 is limited to

location data and BeTelGeuse’s earlier version supports only

Bluetooth-enabled sensors.4

Several platforms that support objective and subjective data

collection have been proposed. Most of these platforms only run

on devices from the Microsoft Windows CE operating system

family. The first such tool was the Context-Aware Experience

Sampling tool (CAES), which runs on PDAs using the Microsoft

PocketPC operating system.5 However, the CAES tool is no lon-

ger supported (the project was last updated in 2003). The most

comprehensive platform so far is MyExperience,6 which sup-

ports a wide range of sensors, contains a comprehensive event

mechanism, supports a variety of experience sampling modali-

ties, and has been extensively tested. Unfortunately, MyExperi-

ence is restricted to mobile devices running the Windows Mobile

operating system.

Frameworks that automatically infer higher-level contexts

from sensor data have been proposed. These systems typically

focus on a specific contextual variable, and they don’t have

generic data collection capabilities. Examples include Oppor-

tunity Knocks,7 which focuses on location information, and the

Context Recognition Network, which focuses on activity infor-

mation.8 Because these frameworks focus only on the detec-

tion of activities, they serve the same purpose as the plug-ins in

BeTelGeuse.

BeTelGeuse’s main advantages are its support for multiple plat-

forms and that its sensing capabilities scale according to the cli-

ent device’s capabilities. Thus, researchers can use BeTelGeuse on

most platforms, but the amount and nature of data collections

depends on the target device’s available sensors and capabilities.

Additionally, BeTelGeuse isn’t limited to merely logging data; it

can automatically and nonintrusively infer higher-level context

from sensor data. Although earlier platforms support (subsets of)

these features, BeTelGeuse is the first platform to support all of

them. One of BeTelGeuse’s limitations is that it currently doesn’t

contain built-in experience sampling functionality, but we’re

working on a plug-in for that.

References

	 1.	 S. Consolvo and M. Walker, “Using the Experience Sampling Method
to Evaluate Ubicomp Applications,” IEEE Pervasive Computing, vol. 2,
no. 2, 2003, pp. 24–31.

	 2.	 M. Raento et al., “ContextPhone: A Prototyping Platform for Con-
text-Aware Mobile Applications,” IEEE Pervasive Computing, vol. 4,
no. 2, 2005, pp. 51–59.

	 3.	 T. Sohn et al., “Experiences with Place Lab: An Open Source Toolkit
for Location-Aware Computing,” Proc. 28th Int’l Conf. Software Engi-
neering (ICSE 06), ACM Press, 2006, pp. 462–471.

	 4.	 P. Nurmi et al., “BeTelGeuse—A Tool for Bluetooth Data Gathering,”
Proc. 2nd Int’l Conf. Body Area Networks (BodyNets), ACM Press, 2007;
http://portal.acm.org/citation.cfm?id=1460232.1460253&coll=
GUIDE&dl=GUIDE&CFID=25695462&CFTOKEN=85841578//.

	 5.	 S.S. Intille et al., “A Context-Aware Experience Sampling Tool,” CHI
03 Extended Abstracts on Human Factors in Computing Systems, ACM
Press, 2003, pp. 972–973.

	 6.	 J. Froehlich et al., “MyExperience: A system for in situ Tracing and
Capturing of User Feedback on Mobile Phones,” Proc. 5th Int’l Conf.
Mobile Systems, Applications and Services (MobiSys), ACM Press, 2007,
pp. 57–70.

	 7.	 D.J. Patterson et al., “Opportunity Knocks: A System to Provide Cog-
nitive Assistance with Transportation Services,” Proc. 6th Int’l Conf.
Ubiquitous Computing (UbiComp 04), LNCS, Springer, vol. 3205,
2004, pp. 433–450.

	 8.	 D. Bannach et al., “Distributed Modular Toolbox for Multi-Modal
Context Recognition,” Proc. 19th Int’l Conf. Architecture of Computing
Systems (ARCS 06), vol. 3894, LNCS, Springer, 2006, pp. 99–113.

Related Work in Data Collection Platforms

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

April–June 2009	 PERVASIVE computing� 51

User experience.•	 BeTelGeuse is aimed
at two interconnected user groups:
researchers who run user studies
and extend BeTelGeuse by writing
custom parsers or plug-ins, and us-
ers or study participants who run Be-
TelGeuse on their personal devices as
part of a study or for their personal
use (GPS traces or heart-rate data,
for instance). From a researcher’s
perspective, user experience implies
that BeTelGeuse should be easy to
configure. For study participants,
user experience refers to the plat-
form’s generic usability and that the
tool doesn’t have a noticeable impact
on the client device’s performance.

We describe BeTelGeuse’s architec-
ture in more detail.

BeTelGeuse Architecture
BeTelGeuse’s high-level system struc-
ture is inspired by the microkernel ar-
chitecture pattern. We have a separate
core that offers the smallest set of func-
tionality needed to run the tool. The
core also defines interfaces for compo-
nents that provide extended function-
ality. This allows a single implemen-
tation of the main functionality and
custom extensions for different run-
time environments. Our design has also
been inspired by other context-aware
frameworks. Similar to widgets in the
Context Toolkit,3 parser components
act as abstractions of sensors, and we
use a blackboard architecture inspired
by the work of Terry Winograd.4 Figure
1 shows BeTelGeuse’s high-level archi-
tecture. The BeTelGeuse core contains
data gathering, Bluetooth discovery,
parser interfaces, the blackboard, and
data transmission classes.

Implementation
To fulfill our goal of multiplatform
support, we implemented BeTelGeuse’s

core using Java Micro Edition. We
only use features that are commonly
available in the Java implementations
of most mobile and desktop devices.
More specifically, BeTelGeuse’s core
is compatible with mobile systems
that conform to the Mobile Informa-
tion Device Profile (MIDP) 2.0 (http://
jcp.org/aboutJava/communityprocess/
final/jsr118) and Connected Limited De-
vice Configuration (CLDC) 1.1 (http://
jcp.org/aboutJava/communityprocess/
final/jsr139) specifications, which are
based on Java 1.3 and make BeTelGeuse
compatible with desktop systems. Ad-
ditionally, BeTelGeuse requires a JSR-
82-compliant (http://jcp.org/aboutJava/
communityprocess/final/jsr082) Java
Bluetooth stack.

These devices satisfy BeTelGeuse’s
platform requirements:

Mobile phones that support Java •	
and Bluetooth, such as second and
third editions of various Nokia S60
devices and Sony Ericsson W800i
devices. (For a list of more than 100
compatible devices, please see http://
developers.sun.com/mobility/device/
pub/device/list.do).

GNU/Linux PCs that run a stan-•	
dard Java installation with the freely
available AvetanaBluetooth Java
Bluetooth stack installed (http://
sourceforge.net/projects/avetanabt).
Windows PCs that run a standard •	
Java installation and the freely avail-
able Bluesock Java Bluetooth stack
(https://bluesock.dev.java.net).
PDAs with Microsoft Windows •	
Mobile running IBM J9 Java Vir-
tual Maching with a commercial
version of AvetanaBluetooth. We’ve
tested BeTelGeuse on a Hewlett
Packard hx4700 PDA running Mi-
crosoft Windows Mobile 2003 2nd
Edition.

On smartphones, MIDP-specific
socket connection classes are plugged
into the core. For GNU/Linux and
Windows, we used Java 1.5 socket
classes. The Bluetooth parsers remain
the same across platforms. We’ve
included platform-specific parsers
depending on the device that Be-
TelGeuse is deployed on—we en-
abled Python S60 extensions, for
example, on Nokia S60 smart-
phones. BeTelGeuse’s extensibil-

Pl
ug

-i
ns

Ex
te

rn
al

 p
ro

gr
am

s

Activity
plug-in

Location
server

Location
plug-in

Be
Te

lG
eu

se

Data transmitter

BeTelGeuse blackboard

BTG
server

External
comsumers

Ex
te

rn
al

 p
ro

gr
am

s

Consumers

Mobile HTTP
server

Bluetooth manager

Bluetooth parsersPython S60 parser

Ph
on

e
re

so
ur

ce
s

Phone information

GSM information

Camera

Integrated sensors

Browser

GPRS/EDGE/WLAN

Bl
ue

to
ot

h
se

ns
or

s

Heart rate

Temperature

Acceleration

GPS

Figure 1. BeTelGeuse’s high-level
architecture. BeTelGeuse follows the
microkernel architecture pattern.

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

52	 PERVASIVE computing� www.computer.org/pervasive

Smarter Phones

ity also makes it possible to inte-
grate platform-specific tools, such as
MyExperience or ContextPhone.

Configuration
BeTelGeuse loads parameter values
from a configuration file on startup.
The configuration specifies Bluetooth
mappings, frequency of data polling on
each sensor, and whether to send data
to a server or save it on the device. Users
can modify the configuration through
a MIDlet user interface. Alternatively,
researchers or the study participants
can specify a custom configuration file.
We’re currently implementing support
for modifying the configuration re-
motely via command messages to the
BeTelGeuse blackboard.

Blackboard
The BeTelGeuse blackboard acts as a
hub for communications between dif-
ferent components and lets external
components access the blackboard, such
as when providing or receiving context
data. BeTelGeuse Java plug-ins connect
to the blackboard using direct method
calls, whereas external components and
plug-ins must use a local socket.

The blackboard uses a Simple Sen-
sor Interface-like protocol (SSI; www.
ssi-protocol.net). The messages begin
with a command code, and most have
component-type, user-id, and component-id fol-
lowing the code. The blackboard con-
firms command messages, but not data
packets. The command code identifies
the message. For example, “c” identi-
fies a create message, which results
in the blackboard creating a receiver
and data container for the caller. The
component-type, component-id, and user-id spec-
ify the message’s target components (a
subset or all of the components). This is
useful in scenarios in which a number
of components want to establish a dia-
logue. The current protocol version lets
external components create, delete, and
list components and components’ own-
ers, and download or upload data.

Data on the blackboard resides in
memory. The blackboard is data-type
agnostic and views the data as an
opaque string of bytes. Components
reading the data are responsible for
interpreting it. By default, blackboard
components interact in a publish–sub-
scribe communication pattern. When a
component receives new data, it notifies

the blackboard, which, in turn, notifies
consumers, that is, other components
that have subscribed to the data. Each
new data packet overwrites previous
field values of the same component (GPS
coordinates override old ones, but a
longitude value only overwrites the old
longitude value). Components might
subscribe to receive data whenever a
specific event occurs. For example, the
GPS can be read at regular intervals or
whenever the GSM cell changes. If a
component subscribes to data changes,
it’s only notified when the data changes
in the specified magnitude. Table 1 lists
other supported event types. Compo-
nents aren’t required to subscribe to
events; for example, parsers produce
data but don’t consume data produced
by other blackboard components.

Data Transmitter
Although programs on the client de-
vice can access context data via the
blackboard, remote researchers or ex-
ternal applications can’t access data
this way. To achieve data accessibility,
BeTelGeuse contains a data transmit-
ter, which synchronizes data with re-
mote or local persistent storage and

TABLE 1
Sensors currently supported by BeTelGeuse.

Sensor Examples of measured data Examples of events

Bluetooth GPS
(NMEA 0183) sensors

latitude, longitude, altitude, time, number of satellites LatitudeChange, LongitudeChange, timestamp,
value equal/greater/smaller than a
specified threshold

Alivetec Heart Monitor
(www.alivetec.com)

ECG, 3-axis acceleration ecgChange, accelerationChange, value equal/
greater/smaller than a specified threshold

I-CubeX
(http://infusionsystems.com)

distance (ultrasound), 3-axis acceleration,
temperature, humidity, orientation, background light

value change events, value equal/
greater/smaller than a specified threshold

Python S60 Parser (Nokia S60
3rd edition phones, requires
signed Python)

GSM cell information: identifier, area, network and
country codes, network name, signal strength. Call
and SMS data: outbound and inbound calls and SMS,
SMS access times. Phone status information: battery
level, phone profile

value change events, value equal/
greater/smaller than a specified
threshold, callStart, callEnd, callAnswer,
msReceive, smsOpen, smsSend, profileChanged,
batteryLow

Local device Bluetooth proximity information (In periodic
scanning mode)

deviceAddressPresent, deviceNamePresent,
deviceLost

Core BeTelGeuse internal events source parserCreated, parserDisconnected, parserDeviceLost,
parserModeStreaming, parserModeRequest

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

April–June 2009	 PERVASIVE computing� 53

makes it available to external com-
ponents. Web applications can access
data using the mobile HTTP server.

We implemented remote storage
using a server-side component that
stores the context data into a MySQL
database. The data transmitter sends
data using any Internet connectivity
method that the client device sup-
ports—3G, GPRS, or wireless LAN,
for example. The communications use
a lightweight protocol, implemented
on top of TCP. The protocol borrows
ideas from existing sensor protocols,
especially the SSI protocol, which is
well-suited for communications be-
tween sensors and a controlling de-
vice. However, the SSI protocol is in-
sufficient for our purposes because it
doesn’t contain messages for sending
sensor names and identifiers, sending
incremental sensor information, es-
tablishing a persistent session, or re-
connecting to an existing session.

When local storage is used, data is
stored on the device in a sequential
file. The file resembles a data trans-
mission log and the data transmit-
ter can upload it to the BeTelGeuse
server when Internet connectivity is
available. Currently we don’t support
automatic replay of the transmission
log, but the file can be uploaded man-
ually. Internet connectivity rapidly
drains the client device’s battery life,
but modern mobile devices support
memory cards with a capacity of sev-
eral gigabytes, so we can store several
months of data locally.

Bluetooth Manager
The Bluetooth manager scans for
Bluetooth devices and manages con-
nections to Bluetooth sensors. The
scanning can be performed periodi-
cally or initiated manually. Users can
configure the scan interval using the
MIDlet user interface or through re-
mote access. Scanning in periodic
mode is advantageous because it en-
ables collecting (Bluetooth) proximity
data, such as for social network analy-
sis.5 The periodic mode facilitates sen-

sor management with stationary sen-
sors scattered around the environment.
In manual mode, Bluetooth scanning is
performed at startup, after which us-
ers must manually trigger the scans us-
ing the MIDlet interface. This mode is
useful when the sensor configuration
doesn’t change and proximity data isn’t
needed. Manual mode also helps avoid
Bluetooth usage conflicts between
scans and sensor data transmissions.
On certain devices, such as older Nokia
S60 second edition smartphones, Blu-
etooth scans require exclusive access to
the Bluetooth stack, which can cause
the receiving Bluetooth buffer to over-
flow with sensor data. Manual mode
also slightly improves battery life.

The Bluetooth manager automati-
cally connects to devices that users
specify in the configuration and in-
stantiates appropriate parsers. A de-
vice is specified by its (partial) friendly
name (contains “GPS,” for example)
or Bluetooth address. Users can add
new devices using the MIDlet inter-
face or by editing the configuration
file. When a Bluetooth scan finishes,
the Bluetooth manager connects any
matching discovered devices and cre-
ates appropriate parsers.

Connections to sensor devices might
be lost for various reasons: wireless
communication might be blocked,
nearby devices can cause interference,

sensor batteries might fail, or the sen-
sors might become unreachable as us-
ers move. When a sensor connection is
lost, the Bluetooth manager tries to re-
store the connection. The reconnection
mechanism is based on an exponential
back-off scheme. After a user-configu-
rable maximum timeout is reached, the
Bluetooth manager drops the sensor or
continues the reconnection attempts

with the maximum timeout, depend-
ing on the configuration.

Mobile HTTP Server
Because Web applications are in-
creasingly based on locally executed
JavaScript, we can easily enable Web
applications to access context data.
Our solution integrates a lightweight
component, which reads HTTP re-
quests and returns context data, into
the BeTelGeuse core. Web applications
that run on the device’s browser can
access context data using Ajax. We
support HEAD, GET, and POST requests that
follow the HTTP 1.0 specification. To
minimize overhead and delays, the
server simply reads the URL and query
string from the HTTP request (/index.
html?param=value) and returns sen-
sor data. By default, the mobile HTTP
server returns the context information
in JavaScript Object Notation (JSON),
which makes the information directly
accessible as native objects and data
structures for JavaScript code run-
ning on the device’s Web browser. The
mobile HTTP server also supports
HTML and text formats. By default,
all context data is returned, but the
server can also be queried for a spe-
cific sensor’s data. We use a query
mechanism based on a Unix-style
directory format. The URL, http://
localhost/gps/latitude, for example,

returns only GPS latitudes. Web ap-
plications can specify the data for-
mat separately as a query param-
eter: the call http://localhost/gps/
latitude?format=html returns the lati-
tude in HTML. Similar to the data
transmitter and the BeTelGeuse server,
the mobile HTTP server facilitates
data access and contributes to our data
accessibility goal.

Because Web applications are increasingly based

on locally executed JavaScript, we can easily

enable Web applications to access context data.

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

54	 PERVASIVE computing� www.computer.org/pervasive

Smarter Phones

Context Parsers
Context parsers are abstractions of sen-
sors that read and parse data, and write
it to the blackboard. The parsers can
operate in streaming or request mode.
In streaming mode, data is continu-
ously read from the sensor, whereas,
in request mode, the sensor is polled
for data when a certain event occurs
or at user-configurable intervals. The
request mode is useful for long-term
data collection.

BeTelGeuse-compatible sensor types
that can be used include external Blue-
tooth sensors, integrated phone sensors,
software sensors, and Internet sensors.
An Internet sensor could read Google
Calendar entries, for example, and push
the data to the blackboard. Developers
can limit sensors to a specific platform.
We use a platform-specific parser on
Nokia S60 devices, for instance. De-
velopers can also integrate BeTelGeuse
with sensors using another communica-
tion technology. Table 1 lists the sensors
BeTelGeuse currently supports.

To add support for new sensor types,
developers must implement a new con-
text parser or extend an existing one.
Developers might also implement con-
text parsers, written primarily in Java,
as external plug-ins that push their
data to the blackboard. When writing
a parser for a new Bluetooth sensor,
developers must assign the parser with

an identifier and register it with the
Bluetooth manager to ensure that the
Bluetooth manager can automatically
instantiate the parser. The BeTelGeuse
Web site has details about implement-
ing a parser and registering it with the
Bluetooth manager.

Plug-ins and Extensions
Researchers can extend BeTelGeuse in
various ways. They can develop new
parsers or plug-ins. Additionally, they

can develop Web-based extensions on
top of the data transmitter.

Python S60 Parser
The Python S60 Parser provides in-
formation about phone status and
usage on Nokia S60 devices and ac-
cess to internal phone sensors. Cur-
rently, BeTelGeuse supports GSM
information, call and SMS logging,
and phone status information. The
Python S60 Parser works similarly as
other parsers. Thus, it registers to the
blackboard, and other components
can subscribe to data or events from
the parser. In addition, it’s possible to
access phone calendar information or
internal sensors, such as the micro-
phone, camera, or integrated GPS.

Location Plug-in
The location plug-in consists of a server
module and two client-side modules: a
GSM positioning module and SerPens.6
The GSM positioning module uses
GSM fingerprinting to estimate the us-
ers’ location whenever GPS is unavail-
able. SerPens is a collaborative tagging
tool that lets users assign public and pri-
vate labels to their locations. The labels
are tied to a taxonomy that supports
different granularities, such as coun-
try, region, and street. Users use private
tags to indicate personally meaningful
locations whereas public tags can be

used to label landmarks. SerPens pro-
vides more meaningful data than mere
coordinates, and can give clues about
the context of the user. The location
plug-in helps to achieve our high-level
context information goal.

Activity Plug-in
Whereas location typically provides
clues about users’ generic situation
(home, work, school, and so on), ac-
tivity information can provide clues

about the environmental constraints
that influence users’ interaction. For
example, while users are walking, they
must pay attention to the environment,
which often results in abrupt bursts and
short-lived interaction patterns. Thus,
mobile user studies could significantly
benefit from detailed activity informa-
tion. BeTelGeuse contains an activity
plug-in that detects basic activities
from accelerometer data. Our current
implementation supports the Alivetec
Heart Monitor (see Table 1) and de-
tects the following activities: resting,
walking, brisk walking, jogging, run-
ning, and commuting. We’re currently
modifying our plug-in to support the
built-in accelerometers of recent Nokia
smart phones and extending the num-
ber of identified activities.

BeTelGeuse Server
External applications or remote re-
searchers running a multiperson study
often need easy access to data from
several devices. To facilitate data ac-
cess, we’ve implemented a server com-
ponent that maintains sessions with
connected BeTelGeuse instances. It
receives data sent by each instance
and stores it in a MySQL database.
The BeTelGeuse server uses a series
of data filters for distributing data to
external programs on reception. For
example, the location server uses the
BeTelGeuse server to obtain relevant
location data (GSM + GPS).

Performance Evaluation
In analyzing BeTelGeuse’s impact
on client devices, we consider two
aspects of performance: the memory
requirements and the impact on bat-
tery life.

BeTelGeuse’s memory footprint
is between 5.6 and 7.3 Mbytes, de-
pending on the configuration and
the amount of sensors that are con-
nected. The local version requires
somewhat less memory than the on-
line version. These figures include
the memory required to run the Java
virtual machine. In terms of instal-

Researchers can develop new parsers, plug-ins,

or Web-based extensions for BeTelGeuse.

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

April–June 2009	 PERVASIVE computing� 55

lation size, BeTelGeuse requires only
179 Kbytes.

To measure the impact on the cli-
ent device’s battery life, we con-
ducted a set of experiments in which
we used BeTelGeuse under different
configurations and measured the
time it took to drain the battery of
five fully-charged, brand-new Nokia
E61i devices (with standard BP-4L
1500 mAh batteries). We considered
nine different configurations and av-
eraged the results over the devices.
As we considered new devices, our
results should be interpreted as up-
per bounds for performance. How-
ever, the homogeneity of the devices
lets us draw better conclusions about
the performance differences.

Table 2 shows our results. As our
baseline, we used a version in which
only the Python S60 parser collects
data. This version lasted between 35
and 36 hours. Adding a GPS device that
was read once per minute decreased the
battery lifetime to 34 hours. Running
Bluetooth scans on top of this had only
a minor impact. These values span well
over a day, which makes these setups
well suited for long-term data collec-
tion. Changing the GPS from periodic
reading mode to continuous stream-
ing had a more significant effect on the
battery lifetime, with the mean lifetime
decreasing to 25.7 hours. Again, the

Bluetooth scanning had only a minor
impact on the performance (mean 25
hours). Thus, BeTelGeuse’s battery us-
age is well-optimized with respect to
Bluetooth.

The final experiments measured
the effect of Internet connectivity on
battery usage. In these experiments,
we configured the transmitter to send
data once every minute. As Table 2 in-
dicates, the mean lifetime is roughly
5 to 6 hours, with the variation being
caused by the amount of Bluetooth
connectivity. For long-term data col-
lection, the transmission rate should
be decreased.

Case Studies
We used BeTelGeuse to collect large
amounts of context data, and inte-
grated it as a context source into a
mobile application.

Gathering and Analyzing	
Location Data
We’ve used BeTelGeuse to collect GSM
and GPS data from seven users for more
than one month. The participants used
a Nokia E61i mobile phone and an ex-
ternal Bluetooth GPS receiver. The
GPS was polled every 60 seconds. We
also scanned for nearby Bluetooth de-
vices and gathered internal phone in-
formation with the Python S60 parser.
An informal user study indicated that

BeTelGeuse was easy to use, but par-
ticipants considered the GPS receiver’s
short battery lifetime inconvenient.
We’ve also used BeTelGeuse to collect
GPS traces with different spatial and
temporal characteristics from 10 to 15
different countries.2

Context-Adaptive Widgets
Capricorn is an adaptive, Web-based
widget engine for mobile devices,7
which uses BeTelGeuse as a context
source and enables widgets to adapt
their information based on the user
context. For example, a context-aware
travel planner can automatically fill in
the origin of travel using location in-
formation provided by SerPens, and a
news or weather service can provide
localized information using location
information provided by BeTelGeuse.
As Capricorn is a Web application, it
accesses context information through
the BeTelGeuse mobile HTTP server
on the device.

W e’re currently improv-
ing the data transmit-
ter by adding support
for data encryption

and event-based connectivity. We’re
also extending BeTelGeuse to use
new context sensors and continu-
ing to develop additional plug-ins.

TABLE 2
Battery lifetime in hours under different configurations.

Experiment setup Mean Standard deviation

1 Python 35.6 0.34

2 Python, Periodic GPS 34.1 0.44

3 Python, GPS Streaming 31.5 0.48

4 Python, GPS Streaming, BT Scan 25.0 0.24

5 Python, Server 6.0 0.15

6 Python, Server, Periodic GPS 5.8 0.28

7 Python, Server, BT Scan 6.2 0.05

8 Python, Server, Periodic GPS, BT Scan 5.8 0.54

9 Python, Server, GPS Streaming, BT Scan 5.0 1.04

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

56	 PERVASIVE computing� www.computer.org/pervasive

Smarter Phones

Specifically, we’re extending the ac-
tivity recognition plug-in and devel-
oping an experience sampling plug-
in that supports context-triggered

questionnaires. Furthermore, we’re
planning to use BeTelGeuse in vari-
ous context-aware applications as a
context source.

References
	 1.	 J. Lester, T. Choudhury, and G. Borriello,

“A Practical Approach to Recognizing
Physical Activities,” Proc. 4th Int’l Conf.
Pervasive Computing (Pervasive 06), vol.
3968, LNCS, Springer, 2006, pp. 1–16.

	 2.	 P. Nurmi and S. Bhattacharya, “Identify-
ing Meaningful Places: The Nonparamet-
ric Way,” Proc. 6th Int’l Conf. Pervasive
Computing (Pervasive 08), vol. 5013,
LNCS, Springer, 2008, pp. 111–127.

	 3.	 A.K. Dey, G.D. Abowd, and D. Salber,
“A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of
Context-Aware Applications,” Human-
Computer Interaction, vol. 16, nos. 2–4,
2001, pp. 97–166.

	 4.	 T. Winograd, “Architectures for Con-
text,” Human–Computer Interaction,
vol. 16, no. 2, 2001, pp. 401–419.

	 5.	 N. Eagle and A.S. Pentland, “Reality Min-
ing: Sensing Complex Social Systems,”
Personal and Ubiquitous Computing, vol.
10, no. 4, 2006, pp. 255–268.

	 6.	 S. Bhattacharya et al., “SerPens—A Tool
for Semantically Enriched Location Infor-
mation on Personal Devices,” Proc. 3rd
Int’l Conf. Body Area Networks, ICST,
2008; http://portal.acm.org/citation.
c f m?id=1460257.1460297&col l=
GUIDE&dl=GUIDE&CFID=25695462
&CFTOKEN=85841578//.

	 7.	 F. Boström et al., “Capricorn—An Intel-
ligent User Interface for Mobile Widgets,”
Proc. 10th Int’l Conf. Human-Computer
Interaction (MobileHCI 08), ACM Press,
2008, pp. 328–330.

the Authors
Joonas Kukkonen is a research assistant at the Helsinki Institute for Informa-
tion Technology HIIT. His research interests include recommender systems and
personalization of mobile applications. He is an MSc student in the Depart-
ment of Computer Science at the University of Helsinki. Contact him at joonas.
kukkonen@cs.helsinki.fi.

Eemil Lagerspetz is a research assistant at the Helsinki Institute for Informa-
tion Technology HIIT and an MSc student at the University of Helsinki. His re-
search interests include mobile data management and data communications.
He has a BSc in computer science from the University of Helsinki. Contact him
at eemil.lagerspetz@cs.helsinki.fi.

Petteri Nurmi is a researcher at the Helsinki Institute for Information Technol-
ogy HIIT. His research interests include personalization of mobile applications
and services, and mobile human computer interaction. He has an MSc in com-
puter science from the University of Helsinki. Contact him at petteri.nurmi@
cs.helsinki.fi.

Mikael Andersson is a research assistant at the Helsinki Institute for Informa-
tion Technology HIIT and an MSc student in communications engineering at
the Helsinki University of Technology. His research interests include computer
networking with a focus on application layer services, and locationing and
data-gathering on mobile devices. Contact him at mikael.andersson@tkk.fi.

Advertising Sales
Representatives

Recruitment:
Mid Atlantic
Lisa Rinaldo
P: +1 732 772 0160
F: +1 732 772 0164
E: lr.ieeemedia@ieee.org

New England
John Restchack
P: +1 212 419 7578
F: +1 212 419 7589
E: j.restchack@ieee.org

Southeast
Thomas M. Flynn
P: +1 770 645 2944
F: +1 770 993 4423
E: flynntom@mindspring.
com

Midwest/Southwest
Darcy Giovingo
P: +1 847 498 4520
F: +1 847 498 5911
E: dg.ieeemedia@ieee.org

Northwest/Southern CA
Tim Matteson
P: +1 310 836 4064
F: +1 310 836 4067
E: tm.ieeemedia@ieee.org

Japan
Tim Matteson
P: +1 310 836 4064
F: +1 310 836 4067
E: tm.ieeemedia@ieee.org

Europe
Hilary Turnbull
P: +44 1875 825700
F: +44 1875 825701
E: impress@impressmedia.
com

Product:
US East
Joseph M. Donnelly
P: +1 732 526 7119
E: jmd.ieeemedia@ieee.org

US Central
Darcy Giovingo
P: +1 847 498 4520
F: +1 847 498 5911
E: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
P: +1 415 931 9782
F: +1 415 931 9782
E: ls.ieeemedia@ieee.org

Europe
Sven Anacker
P: +49 202 27169 11
F: +49 202 27169 20
E: sanacker@
intermediapartners.de

Advertising Personnel

Marion Delaney,
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

AdvertiSER Information April–June • IEEE pervasive Computing

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on August 31, 2009 at 01:36 from IEEE Xplore. Restrictions apply.

