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Abstract A human’s, or lower insects’, behavior is dom-

inated by its nervous system. Each stable behavior has its

own inner steps and control rules, and is regulated by a

neural circuit. Understanding how the brain influences

perception, thought, and behavior is a central mandate of

neuroscience. The phototactic flight of insects is a widely

observed deterministic behavior. Since its movement is not

stochastic, the behavior should be dominated by a neural

circuit. Based on the basic firing characteristics of bio-

logical neurons and the neural circuit’s constitution, we

designed a plausible neural circuit for this phototactic

behavior from logic perspective. The circuit’s output layer,

which generates a stable spike firing rate to encode flight

commands, controls the insect’s angular velocity when

flying. The firing pattern and connection type of excitatory

and inhibitory neurons are considered in this computational

model. We simulated the circuit’s information processing

using a distributed PC array, and used the real-time average

firing rate of output neuron clusters to drive a flying

behavior simulation. In this paper, we also explored how a

correct neural decision circuit is generated from network

flow view through a bee’s behavior experiment based on

the reward and punishment feedback mechanism. The

significance of this study: firstly, we designed a neural

circuit to achieve the behavioral logic rules by strictly

following the electrophysiological characteristics of bio-

logical neurons and anatomical facts. Secondly, our cir-

cuit’s generality permits the design and implementation of

behavioral logic rules based on the most general informa-

tion processing and activity mode of biological neurons.

Thirdly, through computer simulation, we achieved new

understanding about the cooperative condition upon which

multi-neurons achieve some behavioral control. Fourthly,

this study aims in understanding the information encoding

mechanism and how neural circuits achieve behavior

control. Finally, this study also helps establish a transi-

tional bridge between the microscopic activity of the ner-

vous system and macroscopic animal behavior.
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Introduction

The key point to understand working mechanisms of the

brain is to reveal how knowledge, external stimuli, and

behavioral decisions are encoded and processed. Tradi-

tional research on information processing of the nervous

system began with neural encoding on the neuron-level.

Research shows that the firing pattern of a single neuron

has some relation to external stimulation. Differences in

firing rate or firing time intervals may be directly related to

the different behaviors of animals (Kreiman 2004; Britten

et al. 1992). However, this kind of research ignores the

group behavior of neurons. The ‘‘All/None’’ mode of single

neurons is not sufficient to describe complex animal

behaviors. With the gradual deepening of research, we now

know that a network structure consisting of different types

of neurons is the key to perform the basic function. Such a

structure involves multiple different types of neurons and a

large number of synaptic connections to perform different

functions. This is identical to various gate circuits that are

& Hui Wei

weihui@fudan.edu.cn

1 Laboratory of Cognitive Model and Algorithms, Department

of Computer Science, Shanghai Key Laboratory of Data

Science, Fudan University, Shanghai, China

123

Cogn Neurodyn (2017) 11:259–281

DOI 10.1007/s11571-017-9426-4

http://orcid.org/0000-0003-2696-0707
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-017-9426-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-017-9426-4&amp;domain=pdf


constituted by basic transistor components in an integrated

circuit, where different functional circuits are then formed

based on these gate circuits to achieve complex operations.

In nature, both humans and lower insects can adapt to

their environments and exhibit stable behavior. For

example, insects can use polarized light to navigate (Hor-

váth and Varjú 2013), and bees report the distance and

azimuth to nectar or pollen through dance. As long as these

behaviors are not stochastic, we can assume that there must

be specific neural functional circuits in biological nervous

systems that lead to these behaviors. Stable behaviors are

controlled by stable neural circuits, and action potential

(AP) firing within circuits, as well as collaboration among

these neurons, generates basic animal behavior. Since,

decision logic reflects the most basic requirement that a

behavior can successfully implement, any specific imple-

mentation requires these basic functions. We believe that

the rules through which animals control their behavior can

be described by logic language. For a biological nervous

system to achieve specific implementation, its structure

must be sufficiently complex to achieve basic logic. Fur-

thermore, biological neural systems must cope with a

variety of tasks, and each task has its own internal control

rules. Therefore, there must be many types of neural cir-

cuits to achieve various logical rules in the nervous system.

From the logical perspective, any type of behavioral logic

can be formally described by a propositional logic

expression. With this reliable and complete formal lan-

guage, we can accurately describe the basic logical rules

with which behaviors comply. This set of logical rules has

different implementations in different operating environ-

ments. For example, it is a strictly defined program in a

computer-controlled automatic control system. How can

logical rules be achieved in an organism or, more precisely,

in a biological nervous system? Moreover, with different

firing patterns of neurons and the synergistic connections

between pyramidal neurons and intermediate neurons, can

the nervous system assemble a circuit to achieve a set of

specific logical rules?

Animals, including humans, are not often one-step

making the right decision for some tasks. However, a

learning process involving reward and punishment feed-

back forms a correct decision circuit to complete the task.

The implementation of a neural decision circuit may not be

initially correct, and may require adjustment. We need to

assume what the mechanism is?, which lead that the circuit

can always be correctly formed. Dopaminergic neurons

distributed in the basal ganglia play an important role in

learning (Barron et al. 2010). Research indicates that

neuromodulation reconfigures circuit properties, such as

changing neuronal functions within seconds, minutes, or

even hours (Marder 2012). This conclusion enlightens us to

study cases where the aforementioned neural circuits may

be initially incorrect, and determine whether the circuit can

be corrected based on reward and punishment feedback

mechanisms.

There are two main hypotheses for information encod-

ing in the nervous system. The first is that the average

firing rate (AFR) encoding view, which considers the AFR

of neurons or a neural network as an information supporter

in the brain and AFR encoding, has biological experiment

foundation that has been confirmed in motor neurons (Hebb

2005; Wang 2007; Weliky et al. 2003; Hirata and Aihara

2009). The second hypothesis is the space-time encoding

theory (Malsburg 1995), which proposed the necessity of

neural modulation on a fast time scale (2–5 ms). In recent

years, biologists have become more convinced in the dif-

ficulty to explain mechanisms of complex nervous systems,

and even the basic neural circuits, given only physiological

and anatomical data. Through designing a reasonable

neural circuit and real-time dynamic simulation, we can, as

best as possible, reconstruct the process of information

processing and propagating in biological neural circuits.

Spike firing information from simulated neuron clusters not

only can study firing modes from both the frequency

encoding and space-time encoding views, but also conduct

association analysis of circuit neurons. Designing and

simulating a circuit for a specific behavior helps us

understand its constitution details, information processing,

and the information encoding mechanisms of neural cir-

cuits. In this paper, we persist that if we cannot explain, on

a detailed level of neuronal activity and neural circuit

wiring diagrams, why different behavior can be executed

correctly, then we cannot claim to have grasped the

mechanisms for information processing.

Related works

As pioneers of artificial neural network (ANN) theory,

McCulloch and Pitts (1943) proposed the McCulloch–Pitts

(MP) model. However, the working mechanism in the MP

model is obviously different from the biological neuron.

Firstly, the MP model’s activation mode is two-valued, but

biological neurons actually experience impulse-firing.

Secondly, only one type of Boolean neuron is needed in a

MP network, while in a real biological neural network,

there are at least two types of vastly different neurons and

the proportion of their numbers matters. Thirdly, in the MP

model, the thoroughly numerical settings of threshold and

connection weights, and being able to adjust them at will,

are too idealistic. Lastly, the perfect synchronization of MP

neurons in the same layer is also unrealistic. Thus, these

differences determine that MP model is unsuitable for

modeling the inner neural mechanisms for animal behavior.

To address these issues, Hodgkin and Huxley (1952)
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proposed the Hodgkin–Huxley model. Not only did the

model parameters have biological significance and scala-

bility (Samura et al. 2015), but the model also provided a

foundation from which to explore synaptic integration and

interactions between ion currents. However, its computa-

tional efficiency was poor, and it could only simulate a few

neurons in real-time (Izhikevich 2003). A variety of

improved models based on the HH model were proposed in

later years, such as the FHN model and the HR model

(FitzHugh 1961; Hindmarsh and Rose 1984). A simple

spiking neuron model that reduced the biophysically

accurate but computationally complex HH model to a two-

dimensional (2-D) system of ordinary differential equations

was also proposed (Izhikevich 2003, 2004), and could

simulate many real firing patterns of biological neurons

(Zhao et al. 2016; Li et al. 2016) and performed with a

high computational efficiency that made real-time simula-

tions of large-scale functional neural networks possible.

Animal behavior arises from the coordinated activity of

many interconnected neurons—‘‘many’’ meaning 302 for

Caenorhabditis elegans, 20,000 for a mollusk, several

hundred thousand for an insect, and billions for humans

(Bargmann and Marder 2013). To date, the anatomical

wiring diagram of only a single animal (C. elegans) ner-

vous system has been obtained. The nematode C. elegans

provides an excellent model for studying chemotaxis

behavior because its 302 neurons are clearly described and

neuronal connections are known (White et al. 1986). Many

studies have focused on the behaviors of C. elegans, parts

of which constructed artificial neural networks to replicate

some of these behaviors (Ferrée and Lockery 1998, 1999;

Karbowski et al. 2008). However, ANN models are just a

kind of abstract level and the approximate numerical cal-

culation method, and cannot describe the true mechanism

of the nervous system. Xu and Deng (2013) constructed

chemotaxis behavioral models biologically extracted from

a neural wire diagram rather than an artificial network. This

raises the question of how we should approach building

behavioral models of large networks without generating

neural models. Recent studies indicate that the brain relies

on a core set of canonical neural computations (Carandini

and Heeger 2012). The nervous system combines and

repeats these computations to apply different functions to

different problems. Such as thresholding,linear filtering,

exponentiation, recurrent amplification, cognitive spatial

maps, gain changes resulting from input history, and cog-

nitive demands. However, computations such as divisive

normalization is less likely to map one-to-one onto a

specific biophysical circuit (Carandini 2012).

To understand neural computations, we must know, in

detail, a specific circuit that achieves a specific neural

computation. Although it is almost impossible to accurately

record spike firing data, information flow direction, logical

relationships, and connection strengths of each neuron in a

specific circuit, it is possible to design a plausible neural

circuit for neural computation. We designed a circuit for

canonical neural computation, and assembled complex

biological neural networks through combining and repeat-

ing these canonical computations for specific behaviors,

which helped us build a ‘‘bridge’’ from circuit to behavior.

Behavior neural circuits design

Phototactic behavior in insects

Nocturnal insects display primarily phototaxis behavior

(Atkins 1980). Studies indicate that this is because they

have the capacity to maintain the Angle (the angle between

its flying direction and light) a fixed value. In Fig. 1a, the

light from the moon belongs to approximately parallel

light. Since insects can control the Angle to keep a certain

angle, they can fly along a straight line, and achieve night

navigation; In Fig. 1b, the light from a nearby source is

emanative. Insects continue to maintain the Angle a fixed

angle, therefore engaging in phototaxis behavior. As a

result, this stable behavior certifies that there exists a neural

decision circuit in the nervous system to keep the Angle a

certain value.

Negative feedback system for phototaxis behavior

Since, phototaxis behavior is stable and repeatable, it is

certainly a control system, and the behavior is modulated

by control rules. From a control theory view, we can

imagine a standard negative feedback control system, as

shown in Fig. 2. Related terms are defined as follows: (1)

The Controller issues a series of movement instructions to

achieve the behavior decision. In this paper, it is a neural

decision circuit, which receives the Angle and compares it

to the fixed angle, and then outputs the command to correct

flight direction. The form of instruction is the AFR of the

neuron cluster, which can be used to encode the angular

speed or line speed; (2) The Actor corresponds to the

insects muscle that controls wing function, and receives

instructions from the Controller to control flying; (3) The

Senor corresponds to the insect perception system, which

can sense the Angle as an input of the negative feedback

system.

The negative feedback system for phototaxis behavior

can be described as follows: first, the Senor senses the

Angle as system input; then, the Controller compares the

input with the fixed skew angle to obtain the relative

deviation (E Angle in Fig. 2) and outputs the correction

instruction (different firing rate spike, Hz Spike) of an

angular or linear velocity, according to the deviation; and
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lastly, the Actor executes the commands to maintain or

change flying direction or speed. This iteration cycle occurs

circularly, enabling phototaxis behavior. Our aim is to

explore a type of neural circuit that achieves the function of

the Controller, and investigate how the circuit implements

control rules. Although we use the example of insect flying

control, this study can be applied to other animal decision-

making behaviors on the basis of the relationship between a

neural circuit and its control rules.

Decision-making circuit design

Neural information coding based on neuron firing rate

The present generally accepted view is that spike sequence

is the basic unit of biological neural information encoding.

In the nervous system, different patterns of spike sequences

encode different information (Wang 2007; Weliky et al.

2003; Hirata and Aihara 2009). The definition of neuronal

firing rate refers to the number of pulses fired within a

certain time window. In most of the neural perceptual

system, pulse firing rate increases nonlinearly with

increasing stimulus intensity (Kandel et al. 2000). Neural

information encoding based on firing rate has been widely

used in different types of perceptual research. The fol-

lowing content is also based on the AFR encoding mode, in

which a population of neurons fires pulse sequences per

second. The definition of firing rate used is as follows.

rate neuiðtÞ ¼
X

t¼t0þT

t¼t0

dðtÞ

AFRðtÞ ¼
1

num

X

i¼num

i¼1

rate neuiðtÞ

deltaðtÞ ¼
0 else

1 if firing a spike atmoment t

�

ð1Þ

T refers to the time window (T = 0.2 s). Calculation step

length is 1 ms. dðtÞ is a pulse response function only if the

moment t that a neuron is activated and fires an action

potential, dðtÞ ¼ 1; rateneui represents the pulse firing rate

of the ith neuron in a population. AFR is based on all

individual neurons in a population within time window T.

How to select time window T? The above neural circuit

and the following chapters repeatedly involve a circuit

model as shown in Fig. 3a. The upstream neurons propa-

gate spike sequence information to the output neurons. We

used different output patterns of the circuit to encode dif-

ferent types of information. Therefore, we expected that the

AFR of output neurons could easily distinguish with dif-

ferent input spike patterns from A. Thus, this model can

serve as an example of how to select a specific T.

Here, we set T as 50, 100, 200, 500, and 1 s. From

Fig. 3b, c, we can see that firing rate fluctuates more with a

small time window, and firing rate is relatively stable with

a larger time window. From Fig. 3d, we can see that with a

smaller T, output neuron AFRs following different input

patterns are more difficult to distinguish. Conversely, with

a larger T, output neurons’ AFR are easy to distinguish.

However, a larger time window means that the calculations

of AFR update more slowly in the computing process,

which makes it difficult to control the flying state in real-

time. A smaller time window means that firing rate updates

quickly in the computing process, but the calculations of

firing rate show more fluctuations, which could make the

flight process unstable. Compromising between real-time

(a) (b)

Fig. 1 Flying pattern with

different light sources

Fig. 2 Negative feedback control system for phototaxis behavior
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and volatility, this paper selected T ¼ 200 ms to calculate

AFRs of neurons.

Expressions for behavioral decision logic

Before presenting our proposed neural circuit structure, we

must discuss the decision logic of phototaxis behavior,

wherein logic language is used to describe basic control

rules. Logic language can describe basic control rules

behind various behaviors, because the logic reflects the

most basic requirement for a behavior to be successfully

implemented. Since the biological nervous system is a

product of evolution, its structure must be sufficiently

complex to achieve basic logic. As shown in Fig. 4a, b,

when the Angle is greater than a fixed angle, the insect

adjusts its direction clockwise. Furthermore, the angular

velocity increases as the Angle increases. On the other

hand, Fig. 4c, d shows that when the Angle is less than a

fixed angle, the insect adjusts its direction counterclock-

wise, and the angular velocity decreases as the Angle

increases.

Here, we describe phototaxis behavior decision logic

through predicate logic, as follows: Symbol m represents

an insect; Dir Diff ðm;Fixed AngleÞ is a function to obtain

the deviation value (E Angle) of the Angle and the fixed

skew angle (Fig. 4a, c), and we assume that E Angle is

divided into 4 gears, from small to large: DP1 (less than

5�), DP2 (from 5� to 10�), DP3 (from 10� to 20�), and DP4

(greater than 20�). If the insect perceives an Angle greater

than a fixed value, the value of the predicate Over LeftðmÞ

is TRUE; otherwise, it is FALSE. Conversely, if the insect

perceives an Angle less than a fixed value, the value of the

predicate Over RightðmÞ is TRUE; otherwise, it is FALSE.

add VLðmÞ, and sub VLðmÞ indicate increasing and

decreasing clockwise angular velocity, respectively.

add VRðmÞ and sub VRðmÞ indicate increasing and

(a) (b) (c)

(d)

Fig. 3 Different values of time

window T affect the

calculations of AFR. a A neural

circuit that shows the effect of

different time windows on the

AFR of neurons. b The upper

panel shows the spike sequence

of a single neuron. The lower

panel shows pulse firing rate

calculations of the spike

sequences with different time

windows. c AFRs of neurons

with different time windows.

d Different values of T in

information encoding
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decreasing counterclockwise angular velocity, respectively.

Based on logic and the simple form of symbols, phototaxis

decision logic is described in Table 1.

When Over LeftðmÞ ¼ TURE (Items 1, 2, 3, and 4 in

Table 1), and when E Angle is in the magnitude of DP1 and

DP2 (Items 1, and 2), the insect’s clockwise angular velocity

decreases; and when E Angle is in the magnitude of DP3

and DP4 (Items 3, and 4), the insect’s clockwise angular

velocity increases. Conversely, when Over RightðmÞ ¼
TURE (Items 5, 6, 7, and 8 in Table 1), and when E Angle

is in the magnitude of DP1 and DP2 (Items 5, and 6), the

insect’s counterclockwise angular velocity decreases; and

when E Angle is in the magnitude of DP3 and DP4 (Items

7, and 8), the insect’s counterclockwise angular velocity

increases. Such a set of predicate logic expressions simplify

and clearly depict the control rules behind insect phototaxis

behavior. Moreover, the predicate or function for this group

of control rules is almost in its simplest; if the formal

semantics were further simplified, normal functionality

would not be possible. Therefore, we have sufficient reason

to believe that the neural control system of insects is, at

least, equivalent to this group of expressions.

Decision-making circuit

Any neural circuit that can achieve decision functions are

composed of biological neurons, and therefore the struc-

ture unit and connection type should abide by neural

biology and electrophysiological findings. This is the

essential difference from ANN models. Studies have

indicated that the central complex of insects may handle a

great deal of sensory information (Pfeiffer et al. 2005;

Ritzmann et al. 2008; Ridgel et al. 2007), and that this

central complex is connected to thoracic motor neurons.

Furthermore, the central complex participates in some

advanced function, such as motion control, and polarized

light navigation (Horváth and Varjú 2013; Heinze and

Homberg 2007).

(a)

(b) (d)

(c)

Fig. 4 Schematic diagram of

flight decision

Table 1 Formal description for insect flight control logic

Type Range Corresponding logic expression for decision-making

Larger than fixed angle DP1 Over LeftðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP1Þ ! subVLðmÞ (1)

DP2 Over LeftðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP2Þ ! subVLðmÞ (2)

DP3 Over LeftðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP3Þ ! addVLðmÞ (3)

DP4 Over LeftðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP4Þ ! addVLðmÞ (4)

Less than fixed angle DP1 Over RightðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP1Þ ! subVRðmÞ (5)

DP2 Over RightðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP2Þ ! subVRðmÞ (6)

DP3 Over RightðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP3Þ ! addVRðmÞ (7)

DP4 Over RightðmÞ ^ ðDir Diff ðm;Fixed AngleÞ ¼ DP4Þ ! addVRðmÞ (8)
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We designed a biological neural circuit composed of

both excitatory and inhibitory neurons to achieve the

aforementioned decision control rules. This is a plausible

structure based on neuromechanism. As shown in Fig. 5,

the circuit is divided into two areas (I, and II), in which the

area I network is responsible for correcting clockwise

angular velocity, while the area II network is responsible

for correcting counterclockwise angular velocity. Both

areas receive E Angle information, we assume that when

E Angle[ 0, information was projected to area I; other-

wise, information was projected to area II. Output neuron

clusters (Pyramidal neurons) OutVA1 and OutVA2 encode

the clockwise and counterclockwise turning angular

velocity instructions, respectively, through changes in

Spike firing rate. In area I for example, when the Angle is

larger than the fixed skew angle (E Angle[ 0, Fig. 4a),

the AFR of OutVA1 encodes the clockwise flight angular

velocity (Fig. 4c). Similarly, in area II, when the Angle is

less than the fixed skew angle (E Angle\0, Fig. 4b), the

AFR of OutVA2 encodes the counterclockwise flight

angular velocity (Fig. 4d).

To avoid misfiring, we designed a set of inhibitory

neurons between neuron clusters OutVA1 and OutVA2, so

that the two clusters could inhibit each other. When insects

must fly counterclockwise, the neurons that issued the

clockwise flight command should be inhibited, and vice

versa. Conclusively, the two groups of output neuron

clusters, OutVA1 and OutVA2, act as the Controller

(Fig. 2), of the output of which acts on the Actor, resulting

in phototaxis behavior.

To further illustrate our proposed structure, area I, for

example, is responsible for dealing with the situation in

Fig. 3a. We assume that the E Angle is divided into 4

adjustable gears (DP1, DP2, DP3, and DP4). Area I

Fig. 5 A possible neural circuit

for flight decision-making
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contains four longitudinal submodules (1, 2, 3, and 4),

which respectively corresponds to the treatment of four

different levels (DP4, DP3, DP2, DP1) of input. Each

longitudinal submodule consists of 3 layers of neurons to

transfer the signal from input to output, and whether

through relay channels or a signal significance discriminant

channel, passes through the same number of neurons and

achieve synchronous output. The second layer of neurons

contains a number of inhibitory neurons, which are

designed to inhibit other submodules. Taking the activity of

neural circuits in area I as an example, the details of the

signal propagating processes with different input magni-

tudes are described in Table 2.

Table 2 shows that when signal strength is in the DP1

magnitude, it activates only E41 and its downstream neu-

ron cluster. Conversely, when signal strength is large

enough, such as a DP4 magnitude, it activates the E11,

E21, E31, E41 and their downstream neuron clusters. This

means that if the case cannot be constrained, except for

from E43, another three synchronous commands are issued,

which are not expected. However, this reasoning is incor-

rect. Instructions activated by different magnitude input

should be exclusive. That is, one type of magnitude input

should activate only one type of instruction, and therefore

avoid motor neuron disorder resulting from conflicting

instructions common in high-level decision-making.

Therefore, we introduce a lateral inhibitory mechanism to

the network structure.

For experimentation, we designed the parameters of

neuron models for different submodules (E11, E21, E31,

and E41) such that they were activated upon different

magnitude inputs. The AFR of submodules E11, E21, E31,

and E41 were about 20, 17, 12, and 10 Hz, respectively.

When input signal strength was in the DP4 magnitude,

E11, E21, E31, and E41 were all activated. Conversely,

neurons E23, E33, and E43 were not activated due to

inhibition from inhibitory neurons I1, I2, and I3. Therefore,

only E11 propagated information to OutVA1, and thus, the

AFR of OutVA1 was about 20 Hz. To illustrate another

example, when input signal strength was in the DP3

magnitude, neurons cluster E21, E31, and E41 were all

activated. Due to inhibition from inhibitory neurons I2 and

I3, only E21 propagated information to OutVA1, and

therefore, the AFR of OutVA1 was about 17 Hz. Similarly,

when the input signal was in the DP2 magnitude, the AFR

of OutVA1 was about 12 Hz, and when the input signal

was in the DP1 magnitude, the AFR of OutVA1 was about

10 Hz.

Neural circuit redundancy

In Fig. 5, all cells represent a population of neurons. This

design has a certain redundancy for the following two

reasons: Firstly, neurons can fire either an excitatory

postsynaptic potential (EPSP) or an inhibitory postsy-

naptic potential (IPSP). As the postsynaptic potential

produced by a single presynaptic neuron is very small and

insufficient for reaching the threshold potential of the

postsynaptic neuron, but the accumulation of EPSP can

achieve threshold and activate the postsynaptic neuron.

For example, if an AP generated an EPSP with amplitude

of 0.2 mV, then at least 50 synchronous APs can produce

more than 10 mV and reach threshold. Secondly, gener-

ally, neurons in a human brain over 26 years old begin to

gradually decrease in number. To maintain normal

working of neural circuits, redundant neurons are required

to perform mutual backup.

The above neural circuit and the following chap-

ters repeatedly involve a model as shown in Fig. 6a, in

which the upstream neurons propagate spike frequency

information to the downstream neurons. A and B are

shown as populations of neurons rather than two indi-

vidual neurons because the circuit is designed to take into

account a functional requirement and redundancy. For the

functional requirement, the upstream neurons activate the

downstream neurons. For redundancy, if some upstream

neurons (A) cannot work properly, the circuit can still

work well and the spike sequence shows little change.

Therefore, neuron number plays an important role in a

circuit, we must consider the effect of number of upstream

neurons on the firing rate of downstream neurons. The

AFR of A was 20–25 Hz, and the AFR of B varied with

different number neurons in A as shown in Fig. 6b. In

Fig. 6c, d, the AFR of A neurons was 15–20 and

10–15 Hz, respectively. Overall, when the number of

neurons in A was 60–120, the AFR of B was close to that

of A and relatively stable. Therefore, unless stated

otherwise, a population contains 80 neurons. For example,

in Fig. 5, all pyramidal cells represent a population of 80

excitatory neurons. With this setting, the downstream

neurons, B, generate stable output. In addition, although

some neurons (fewer than 1/4) in the circuit do not work,

the B group can still function properly. Thus, the circuit

has a certain level of redundancy.

Computational simulation on the neuron level

Neuron computational model

Izhikevich proposed a simple spike model that reduced the

HH model to a 2-dimensional differential system (Izhike-

vich 2003). This model not only has the biological sig-

nificance of the HH model, but also has high computational

efficiency and easy mathematical analysis. This model is

used in this paper and its equation is shown below:
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v0 ¼ 0:04v2 þ 5vþ 140� uþ I

u0 ¼ aðbv� uÞ

if v� 30 mV; then
v c

u uþ d

(

ð2Þ

Here, v and u are dimensionless variables, and a, b, c,

and d are dimensionless parameters. The variable v rep-

resents the membrane potential of the neuron, and u rep-

resents a membrane recovery variable. Synaptic currents or

injected DC currents are delivered via variable I. With

Table 2 Neural activities in area I with different input

Input Description

The sensor system senses the deviation value (E Angle), and through a number of pyramidal neurons, the different AFR

spikes that encode the E Angle information are projected to input layers. When the signal strength is in the DP1

magnitude, neuron cluster AFR is lowest, and activate only E41. E41 propagates the excitatory signal to E42, which

propagates the signal to E43, which activates output neuron cluster OutVA1. Finally, OutVA1 generates an angular

velocity adjustment instruction corresponding to the DP1 input

When signal intensity is in the DP2 magnitude, E31 and E41 are both activated. When E31 is activated, it propagates the

excitatory signal to the downstream neuron cluster E32 and inhibitory neuron cluster I3. Then, E32 activates E33, which

activates output neuron cluster OutVA1. Meanwhile, when inhibitory I3 is activated by E31, it propagates the inhibitory

signal to E43, inhibiting its activation. As a result, although E41 propagates excitatory signals to E42, E43 does not

activate. Inhibition from I3 to E43 ensures that OutVA1 only receives information from E33. Finally, OutVA1

generates an angular velocity command corresponding to the DP2 input

In the case of a DP3 magnitude signal, E21, E31, and E41 are simultaneously activated. E21 propagates the excitatory

signal to the downstream E22 and inhibitory neuron cluster I2; then, E22 activates E23, which activates output neuron

cluster OutVA1. Meanwhile, inhibitory neuron cluster I2 propagates the inhibitory signal to E33, inhibiting its

activation. As a result, although E31 propagates excitatory signals to E32, E33 does not activate. Similarly, E43 also

does not activate. Inhibition from I3 and I2 ensures that E33 and E43 do not interfere with OutVA1

When the DP3 magnitude signal coming, E11, E21, E31 and E41 are simultaneously activated. E11 propagate the

excitatory signal to the downstream neurons E12 and inhibitory neurons I1; then, neuron cluster E12 activates E13,

which activates the output neuron cluster OutVA1. Meanwhile, inhibitory neuron cluster I1 propagated the inhibitory

signal to E23, inhibiting its activation. Similarly, I2 and I3 inhibit E33 and E43, which achieve exclusive competitive

output
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excitatory neurons, typical parameter values were: a =

0.02, b = 0.25, c = �65 and d = 8. The firing rate of

pyramidal neuron AP was between 0 and 21 Hz. With

inhibitory neurons, typical parameter values were: a = 0.1,

b = 0.2, c = �47 to �50 and d = 2. The firing rate of

intermediate neuron AP was between 0 and 200 Hz. Two

typical firing modes (Li et al. 2016) are shown in Figs. 7

and 8. From Figs. 9a, c, 9b, d, we can see that neuronal

membrane potential increases steadily with continuous

stimulation, and membrane potential gradually returns to

resting potential with no stimulation.

Time delays in AP transmission

Due to synapse distribution along axons, or different

positions of dendrites receiving APs, different delays

occur when an AP propagates from presynaptic to post-

synaptic neurons (Tolnai et al. 2009). Haberly (1985)

found that a wide range of time delays (up to 20 ms) could

occur (Fig. 10). Since most previous studies did not relate

to specific behavioral control logic or decision logic, this

fact was easy to ignore. Thus, previous studies did not

reflect real information processing and transfer in the

nervous system. We must not ignore AP transmission has

timing influence on behavioral control. Compounding on

this, the AP’s arrival at the postsynaptic neuron may be

time-critical or time-sensitive, which should also not be

ignored. In this paper, delays in AP transmission may be

similar to ‘‘time multiplexing’’ in signal processing, and

plays an important role in behavioral decision logic. In

our study, we used different queue lengths to simulate

different delays.

(a) (b)

(d)(c)

Fig. 6 The effect of the number of neurons in A on the AFR of B. a A

neural circuit that shows the influence of number of upstream neurons

on the AFR of downstream neurons. A is the upstream neuron cluster

and B is the downstream neuron cluster, and the neurons in A are

fully connected to the neurons in B. b–d AFR of B varies with the

number of neurons in A
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Although the firing rate of excitatory neurons was lower,

random firing suggests that there may always be a certain

number of excitatory neurons in a cluster firing at a given

moment. To inhibit excitatory neurons and avoid misfiring,

inhibitory neuron clusters must generate a certain degree of

inhibitory signals. The different propagating time delays

during AP propagation (see the following sections) may

play an important role in asynchronous firing of neuron

clusters.

Adjustable firing rate of pyramidal neurons

Complex information processing involves cooperative

activities that are performed under different oscillation

rates for different behavior states. Researches indicate

that intermediate neurons take part in regulating the firing

rate of a neural network (Pi et al. 2013). Intermediate

neurons either affect firing rate of pyramidal neurons

directly (as show in Fig. 11a) or indirectly by inhibiting

other intermediate neurons (as show in Fig. 11b). Perhaps

other neural networks can also achieve this firing rate

Fig. 7 Firing pattern of excitatory neurons

Fig. 8 Firing pattern of inhibitory neurons

Fig. 9 Membrane potential

gradually returns to resting

potential with no stimulation.

a Membrane potential changes

with the input pattern shown in

c. b Membrane potential

changes with the input pattern

shown in d

(a)

(b)

Fig. 10 Delays in presynaptic and postsynaptic neurons. Delays in

presynaptic neurons are shown by points 3 and 4 in a. Milliseconds of

difference occur when the neu1 AP propagated from the cell body to

positions 3 and 4. Delays in postsynaptic neurons are shown by points

1 and 2 in b. Postsynaptic APs from position 1 propagating to the

neu2 cell body require more time than those from position 2
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regulation. This cooperation between excitatory and

inhibitory neurons regulating the firing rate of down-

stream neurons allows the nervous system to perform its

most basic functions.

In Fig. 11a, if neuron cluster A projected APs with a

stable firing rate to pyramidal neuron E, cluster B joining

the network can regulate E’s firing rate directly. As

shown in Fig. 12, the firing rate of E varies corre-

sponding to the firing rate of B. In Fig. 11b, cluster C

modulates B’s firing rate. Changing C’s firing rate sub-

sequently affected B’s firing rate, which regulates the

firing rate of E indirectly, as shown in Fig. 13. This basic

law reveals that nervous systems achieve output demand

through the precise configuration of types of neurons and

connections, and the overall firing pattern of the neural

network.

Distributed simulation

Hardware platform

A local area network of 25 PCs with COREi5 processors

and Windows 7 operating system was constructed using a

fast Ethernet switch (Fig. 14). This network was used for

real-time simulation of information processing in biologi-

cal neural circuits. We used Visual Studio 2010 as the IDE

and C# as the programming language. Each PC simulated 1

neuron cluster; each pyramidal neuron cluster had 80

excitatory neurons, while each interneuron cluster con-

tained 160 inhibitory neurons. The PC (neuron cluster)

communicates (propagating AP) with each other through

UDP protocol. Our platform performs real-time

(a) (b)

Fig. 11 Intermediate neurons regulating the firing rate of pyramidal

neurons. In a, neuron cluster A propagated different frequency spike

train to pyramidal neuron E, which was directly regulated by

inhibitory neuron cluster B; In b, neuron cluster C, made up of

inhibitory neurons, indirectly regulated the firing rate of E by

inhibiting neuron cluster B

(a) (b)

Fig. 12 Intermediate neurons of cluster B regulating the firing rate of

pyramidal neuron E. a Firing rate of neuron E increases as firing rate

of B decreases; b Firing rate of neuron E decreases as firing rate of B

increases

(a1) (b1)

(b2)(a2)

(a3) (b3)

Fig. 13 Neuron cluster C indirectly regulating E’s firing rate by

inhibiting B. As C’s firing rate increases (in a1), the intensity of

inhibition to B increases, leading to a decrease in B’s firing rate (in

a2) and therefore decreasing inhibition to E decreasing. Finally, this

results in an increase in E’s firing rate (in a3). Conversely, when C’s

firing rate is decreases, inhibition to B also decreases, leading to

increased inhibition of E, and therefore a decrease in E’s firing rate

(b1–b3, respectively)
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simulations of both AP integration and propagation in a

neural decision-making circuit. However, to make the

simulation as identical as possible to the real biological

neural network, we must solve the following problems.

Why do we use a distributed PC array?

Although there are some excellent neural network simu-

lation platforms, such as NEURON, GENESIS, and Brain,

they are not without their limitations. Firstly, simulation

results of these softwares are primarily graphically dis-

played, which is not conducive to data mining and

numerical analysis for large-scale networks. Secondly, they

do not support distributed parallel simulation. Therefore,

when the number of neurons is large, it is inevitable that

each CPU nucleus simulates the operation of a large

number of neurons, which makes ensuring neuron inde-

pendence difficult. Thus, it is necessary to design a dis-

tributed parallel simulation platform for the large-scale

neural network. Such a distributed parallel simulation

platform is also a cheap and efficient simulation platform

compared to a high performance computer.

The simulated neural circuit contains over 4000 physi-

cally independent neurons, and the circuit contains

approximately 320 thousand synaptic connections. Taking

excitatory neurons with a low firing rate (such as 10 Hz) as

an example, the computer must access all synapses 3

million 200 thousand times per second. If the network scale

expands, its computational complexity exponentially

increases and it is unable to perform real-time simulations

so fine-grained parallel computing by little number of CPU.

It is difficult for an ordinary PC machine to simulate

information integration and propagation processes at the

millisecond level, which is composed of more than 100

neurons. Here, we used a distributed PC array to construct

a LAN simulation platform, which not only ensures inde-

pendence between neurons, but also satisfies the real-time

requirement through multi-PCs bearing the large-scale

network computation. This simulation platform is conve-

nient for expanding to simulate larger neural network cir-

cuits. For example, when the scale of a neural network

increases, simply adding PC nodes to the PC array meets

that scales demand, and the requirements of single node PC

performance is not high.

Computational synchronization in PC array

In this paper, the computer simulates the calculation that

neurons complete can be described as: When the cell

bodies or dendrites receive an AP from upstream neurons,

the membrane potential raises. When the membrane

potential of this neuron reaches a certain threshold, a new

AP is generated and rapid propagates through the axon and

synapse to downstream neurons. If neurons do not receive

any AP, the membrane potential gradually returns to rest-

ing potential. We assume that the neural circuit contains a

total of n independent neurons; the process of one calcu-

lation of m neurons in one PC is described in Table 3.

In the practice, due to differences in computers hard-

ware configuration, software systems, and operational

environments, the same simulation in different PCs require

a different amount of time. The maximum time differences

(in Millisecond-level) may vary a hundred times. This

difference greatly impacts computing the AFR of neuron

clusters in different PCs. For example, two neuron clusters

with a large number of synaptic connections are simulated

in two PCs. PC1 runs computations 1000 times within one

second, but PC2 runs computations only 500 times. The

neuron cluster simulated in PC2 receives APs from the

neuron cluster simulated in PC1, but because PC2 runs

faster than PC1, input of neurons in PC2 may be incorrectly

expanded.

To solve this problem, we implement a control thread

to send the computational command to the PCs simulat-

ing a neuron cluster at a random time interval. Each

neuron cluster has a computation command queue; when

the command queue is not empty, the neuron cluster

begins calculations. Each command can be used only one

time. If the queue is empty, then the neuron cluster waits

for the computational command. This ensures that the

simulation calculation interval is roughly equal across all

PCs.

Simulating AP transmission delays

In this paper, we simulated AP propagation delays using

different queue lengths. For example, four different queue

lengths, as shown in Fig. 15b, Queue 1 4, simulated the

different delays of an AP propagating from the cell body to

positions 1 4 in Fig. 15a. If the length of a queue is k, then

the AP is delayed k ms. Four queues with sequentialFig. 14 Distributed simulation hardware platform
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increases in length indicated that as synapse location

moved away from the cell body, delays increased. If an AP

was generated in the presynaptic neuron, we added 1 to the

head of the queue; otherwise, we added 0. When the end of

a queue element was 1, it indicated that the postsynaptic

neuron received an AP. Since, delays of each neuron were

limited; Fig. 15c presents a possible means of dealing with

greater delay requirements.

Taking the inhibitory neuron cluster I1 of area I as an

example, assume that there are n different delays from E11 to

I1, and we use n different queue lengths to simulate these

delays. Each delay from E11 to I1 involves roughly same

number of neurons. Figure 16 shows that the value of n

affects the asynchronism of I1’s activity and greatly influ-

ences the stability of the output neuron cluster’s AFR

(Fig. 17). The firing moment of neuron cluster I1 when the

input of the first layer neuron cluster was in the DP1 magni-

tude is shown in Fig. 16a, b. With only four different delays

(2, 4, 6, and 8ms) fromE11 to I1, the firingmoment of I1 has a

certain synchronization and the number of firing neurons is

small and even no at some moment (Fig. 16a). As a result, I1

fails to inhibit downstream neurons at some moment. With 8

different delays (2, 4, 6, 8, 10, 12, 14, and 16ms) from E11 to

I1, I1 firing was distributed in most computing moment.

Therefore, I1 completely inhibits downstream neurons.

As n increased, the firing moment of inhibitory neuron

cluster I1 became gradually distributed across each com-

puting moment (i.e., asynchronous, as shown in Fig. 16b). As

shown in Fig. 17a–d, the inhibitory effect of I1 on pyramidal

neurons gradually strengthened, resulting in a stable AFR of

OutVA1. For example, when the input to the first layer

neuron cluster was in the DP4 magnitude, inhibitory neuron

clusters I1, I2, and I3 inhibited neuron clusters E23, E33, and

E43 so that only the AP from neuron cluster E13 was

propagated to neuron cluster OutVA1. When n was small, it

is possible that, at some moment, the number of firing inhi-

bitory neurons was too small to completely inhibit the

activities of E23, E33, or E43, and therefore, neuron cluster

OutVA1 received APs from multiple neuron clusters. This

resulted in an unstable AFR, which resulted in sudden vari-

ations in angular velocity during flying. Consequently, flight

was also unstable.

Table 3 One calculation process of m neurons in one PC

Define:

1. N-dimensional matrix Adjacency is the adjacency matrix of neurons. If Adja-
cency[i, j] == 1, a synaptic connection exists between neuron i and neuron j; otherwise,
there is no connection.

2. Neuron[i] represents the ith neuron, Membrane v[i] represents the current mem-
brane potential of the ith neuron, and Iap[i]represents the total number of APs that
Neuron[i] receives from upstream neurons at this particular moment.

Begin:

Parallel For i = 1,2,...,m // Each PC uses multiple threads to simulate m neurons.
Update(Iap[i]); // Receiving the AP propagating to the Neuron[i]
//Computing the current membrane potential using the computational model
Membrane v[i] = NeuModel(Iap[i]);
If Membrane v[i] ≥ 30, Then // Neuron[i] generates AP
// If a connection exists between Neuron[i] and Neuron[j], then send the AP to

the PC, i.e., where Neuron[j] was.
For j = 1,2,3,...,n

If Adjacency[i, j] == 1, Then: Udpsend(j);
End for

End if
End Parallel for

(a)

(b)

(c)

Fig. 15 Simulating delays in AP transmission along an axon using

queues
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The lager the value of n, the more dispersed the synapses

on the dendrite. In this way, the moment in which inhibitory

neurons received the AP was more decentralized, and the

activities of inhibitory neurons were more asynchronous.

This improved inhibitory effects, and thus resulted in a more

stable AFR of the output neuron cluster. Conversely, the

smaller the value of n, the more concentrated the synapses

on the dendrite, and the more synchronous neuron cluster

activities. This reduced inhibitory effects, and thus resulted

in a less stable AFR of the output cluster. In this paper, set

the n range from 8 to 12 for inhibitory neurons and range

from 1 to 2 for excitatory neurons. One typical setting for

queue length was 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,...,

in pyramidal neuron cluster for downstream inhibitory

neurons and 2, 3 for downstream excitatory neurons.

Real-time simulation and analysis

Environment simulation

As shown in Fig. 18, the red point represents a light source.

The Senor, as the insect’s perception system, senses the

(a) (b)

Fig. 16 Firing moment distribution of I1. a n ¼ 4; b n ¼ 8. In the a,

b up-subgraphs, the longitudinal coordinate is the neuron index,

which represents the firing neuron index at each computing moment;

In a, b down subgraphs, the longitudinal coordinate indicates the

number of firing neurons at each computing moment

(a) (b)

(d)(c)

Fig. 17 AFRs of output neuron

cluster OutVA1. The blue curve

represents the AFR when the

input of the first layer neuron

clusters in area I was in the DP4

magnitude. Red and black

curves represent the AFRs

resulting from DP3 and DP2

magnitude inputs, respectively.

The x-axis represents the

moment of calculation, while

the y-axis represents the AFR.

The AFRs when n ¼ 2, 4, 6, and

8, are shown in a–d,

respectively. (Color

figure online)
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E Angle. Here, the simulation calculation was used to

replace the Senor to get E Angle. To keep the Angle at a

certain value (50�) and modulate flying direction, the deci-

sion-making circuit output the different AFRs encoding

different E Angle. In this way, we simulated flying under

both near and far light sources conditions. During experi-

mentation, we added random noise to the perception pro-

cess, and set error decision probability between 0.1 and 0.3.

Simulation in near light source and far light source

environments

Four flight paths with 4 groups of different initial position and

direction were simulated under a near light source environ-

ment. As shown in Fig. 19a, each group also contained an

additional experiment including gauss noise interfere. Simu-

lation showed that insects can still perform a spiral progressive

to light under noise interference. On the other hand, Fig. 19b

shows flight paths simulated under a far light source. In this

case, the insect should fly in a straight line. We assumed the

angle between the parallel light and the horizontal was 60�,

and the insect’s neural circuit maintained the Angle at about

50�. The AFR and instantaneous firing rate (IFR) of OutVA1

and OutVA2 in the decision-making circuit, clockwise and

counterclockwise angular velocity, and the Angle of test1 and

test4 in Fig. 19a are shown in Figs. 20 and 21 respectively, that

of test1 in Fig. 19b were shown in Fig. 22.

These simulation experiments illustrate that output

neuron clusters OutVA1 and OutVA2 in the decision-

making circuit use the AFR to encode different angular

velocities. When the Angle was greater than 50�, OutVA1

was activated; and the larger the Angle, the larger the AFR

is, and the greater the clockwise angular velocity. On the

contrary, the closer the Angle is to 50�, the smaller the

AFR is. When the Angle was less than 50�, OutVA2 was

activated and OutVA1 was inhibited. The smaller the

Angle, the larger the OutVA2’s AFR, and the larger the

counterclockwise angular velocity. In our simulations,

although we added interfere in each link of the negative

feedback control system, the circuit still made correct

decisions in most moments, and exhibited stable behavior.

Why can the brain always learn a proper circuit

for a decision-making task?

Humans and other animals can perform stable behaviors

through learning or training. The behavior arises from the

coordinated activities of interconnected neurons in the

Fig. 18 Simulation environment

(a) (b)

Fig. 19 Flight trajectories under near light source and far light source

environments. a 4 groups of flight paths with different initial positions

and direction under a near light source. Red lines indicate results

under ideal conditions; colored thick lines indicate results under noise

interference. b 2 groups of flight paths with different initial positions

and direction under a parallel light environment (far light source).

(Color figure online)
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nervous system, and determining the connectivity of these

neurons has always been a part of neuroscience (Bargmann

and Marder 2013). To describe the circuit clearly, the

network flow model (Ford and Fulkerson 1956) is used

here. We take neuron cluster as nodes and take the con-

nections between the nodes as directional pathway. Then,

the neural circuit can be analogy of a directed graph, where

spikes propagation in the graph was seen as the network

Fig. 20 Test1’s result in Fig 19a
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flow model. To form the decision circuit, we must find the

correct path from the input node to the expected output

node in a directed graph. Assuming that signal flow starts

from multiple points, connections of a circuit is mostly

incorrect at the beginning, which results in signal flow

sometimes arriving at the wrong end. What is the learning

mechanism drives the nervous system to form a neural

circuit containing the correct control rules? Research

indicates that neuromodulation reconfigures circuit prop-

erties, and change neuronal functions over seconds, min-

utes, or even hours (Marder 2012). Under some modulatory

conditions, synaptic connections may be functionally

silent, only to be strengthened under other modulatory

conditions (Marder 2012). The neuromodulation released

by dopaminergic neurons in the basal ganglia, which rep-

resents the reward or punishment signal, could be respon-

sible for correcting this signal flow path.

To address this question, we apply the reinforcement

learning mechanism of Skinner’s theory of operant

conditioning to interpret this learning mechanism. Initially,

as the circuit is running, doing well will yield reward, while

doing otherwise results in punishment. Feedback signal

from the reward circuit results in two conflicting adjust-

ment trends. First, due to the different receptors and

internal responses of the target cell, the arrival of dopamine

produces an excitatory effect on some cells, but inhibitory

effects on others (Neve 2009; Horvitz 2002). This

strengthens the correct firing pattern and suppresses the

wrong pattern. Second, ‘‘reinforce’’ can be interpreted as

‘‘the prior firing circuit should be enhanced’’, and ‘‘inhi-

bition’’ can be interpreted as ‘‘the prior firing circuit should

be weakened’’, which, together, can be translated into a

variety of specific synaptic connections and pulse firing

levels. These conflicts present the question of which

specific signal transmission paths should be strengthened or

weakened.

The basic idea of path modification based on the reward

mechanism is as follows. A punishment signal indicates

Fig. 21 Test 4’s result in Fig 19a
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arrival at an incorrect end, which increases the threshold or

weaken the synaptic connection so that the node can just

barely be activated. Meanwhile, this blocking effect is

propagated back along the signal path in accordance with

Hebb’s rule. Conversely, a reward signal indicates arrival at

the expected output, which decreases the threshold or

strengthen the synaptic connection so that the node more

easily activated. Similarly, this effect is propagated back

along the signal path in accordance with Hebb’s rule. Fur-

thermore, hyperpolarizing neurons (increasing the threshold)

and depolarizing neurons (decreasing the threshold) are

opposite processes that can be easily achieved. For example,

neurotransmitter release near the synapse can make postsy-

naptic neurons either hyperpolarized or depolarized. This

can be the result of dopaminergic neuron activity. Circuit

regulation by reinforcement learning is achieved at the level

of neural activity. To model this, we changed the down-

stream signal processing path by activating or inhibiting

circuit nodes.

Demonstrating feasibility of the above circuit

modification process using a bee behavioral

experiment

Description of one of the honey bee decision-making

behavioral experiments (as shown in Fig. 23): In a long

tunnel, bees encounter visual pattern A at position E1.

Fig. 22 Results of Test1 from Fig. 19b

Fig. 23 Environmental bee experiment [corresponding to Zhang

et al. (2005)]
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Then, after a slightly longer distance, bees reach position

E2, which is at the fork of this Y-shaped tunnel. Visual

patterns A and B are placed at the two entrances. Only if

bees choose the left entrance (i.e., bees choose pattern A

that was seen before), do they get a sugar reward. After

multiple training sessions, bees stably choose the left

entrance at position E2. However, without the reward

training, bees randomly choose left and right entrances

(Zhang et al. 2005).

To study the bee decision-making circuit that is

involved in executing this behavior, we designed the

connection structure among pyramidal neurons and

interneurons as shown in Fig. 24. The initial connections

were random. In this experiment, a neuronal AFR greater

than 10 Hz was defined as high frequency, and an AFR

less than 5 Hz was defined as low frequency. We use

neuron group represent information. Here, the neuron

group Neus1 was activated and fired with high frequency

(a) (b)

(d)(c)

Fig. 24 Reward training and formation of the correct circuit. In

Experiment-1, a when bees were making decisions, neuron groups

Neus1, Neus4, and Neus5 were activated and fired with high

frequency. During this stage, connections in the circuit were still

set randomly. b Connections in the circuit after 300 epochs of reward

training. Only a few strengthened connections were retained. These

connections formed the correct decision-making path. In Experiment-

2, c when bees were making decisions, neuron groups Neus1, Neus2,

and Neus3 were activated and fired with high frequency. During this

stage, connections in the circuit were the same as the Experiment-1.

d Connections in the circuit after 300 epochs of reward training. Only

connections that correctly reflected the causal association were

retained

278 Cogn Neurodyn (2017) 11:259–281

123



only if bees encountered pattern A at position E1. Neuron

group Neus2 was activated and fired with high frequency

only if bees saw pattern A on the left at position E2.

Neuron group Neus3 was activated and fired with high

frequency only if bees saw pattern B on the right at

position E2. Neuron group Neus4 was activated and fired

with high frequency only if bees saw pattern B on the left

at position E2. Neuron group Neus5 was activated and

fired with high frequency only if bees saw pattern A on

the right at position E2. Neuron group Neus6 was acti-

vated and fired with high frequency only if bees received

a sugar reward. When bees receive a sugar reward, amines

are produced and can affect connections between neurons

in the circuit by remote projection. When neuron group

Neus_TL’s firing frequency was greater than Neus_TR’s

firing frequency, bees chose to turn left. Otherwise, bees

chose to turn right. Table 4 describes the settings in two

decision-making experiments, Experiment-1 and Experi-

ment-2.

Development of the above decision-making circuit in

Experiment-1: The initial decision-making circuit is shown

in Fig. 24a (other connection settings also can be set in the

initial circuit). During the early stage of training (the first

50 training epochs in Fig. 26a), the information cannot

correctly flow from neuron groups Neus1, Neus4, and

Neus5 to Neus_TR. With random background noise, the

intensity of neuron group Neus_TR’s AFR and Neus_TL’s

AFR was in an alternating mode. In this stage, bees did not

choose to turn right every time at position E2; they ran-

domly turned left or right. When Neus_TR’s AFR was

higher than Neus_TL’s AFR (i.e., bees chose to turn right),

bees received a sugar reward. Then, Neus6 from the reward

circuit was activated and fired with high frequency, and

amines released to this area by remote projection

strengthened the connections in the path from input neuron

groups Neus1, Neus4, and Neus5 to Neus_TR. When

Neus_TL’s AFR was higher than Neus_TR’s AFR, bees

chose to turn left. Then, bees did not receive a sugar

reward, and firing of Neus6 was weak. Furthermore, the

strength of connections in the path from input neurons to

Neus_TL was weakened. With training, the path from

neuron groups Neus1, Neus4, and Neus5 to Neus_TR was

strengthened gradually, and the path from neuron groups

Neus1, Neus4, and Neus5 to Neus_TL was weakened

gradually (Connections strength W in the training process

were shown in Fig. 25a). Then, random background noise

input was no longer the main factor. The AFR of Neus_TR

increased, and the probability of choosing to turn right at

position E2 gradually increased as well. After 300 epochs

of computer simulation training, the circuit in Fig. 24b was

developed (weak connections were ignored). During this

time, bees consistently chose to turn right (as the last 100

training epochs in Fig. 26a. The forming process of the

decision-making circuit in Experiment-2 was shown in

Figs. 24c, d, 25b, and 26b.

At the circuit level, the training process of bees is

reflected in development of the correct path from input

neuron groups to output neuron groups. For example, the

objective of training in Experiment-1 is to form a path from

Neus1, Neus4, and Neus5 to Neus_TR. In Experiment-2, the

objective of training is to form a path from Neus1, Neus2,

and Neus3 to Neus_TL. The dynamic changes of output

neurons in these 2 experiments are shown in Fig. 25a, b.

During the early stage of training, the intensity of neuron

group Neus_TR’s AFR and Neus_TL’s AFR was in an

alternating mode in which bees randomly chose to turn left

or right. When bees chose the correct direction and received

a sugar reward, the path from the input neuron to the correct

output neuron was strengthened. Conversely, the path from

the input neuron to the undesired output neuron was weak-

ened. After repeated training, the probability of a bee

making the desired decision increased, and the AFR of

neurons for the correct decision was persistently and stably

higher than the AFR of neurons for the incorrect decision

Table 4 Description of Experiment-1 and Experiment-2

Experiment-1 Experiment-2 Description

Conditions When a bee makes a correct decision, then it receives a

sugar reward. With training, a bee can form a decision

circuit that can make the correct decision in most cases
Visual mode A presented at E1 4 4

Visual mode A presented to the left of E2 4

Visual mode B presented to the right of E2 4

Visual mode A presented to the right of E2 4

Visual mode B presented to the left of E2 4

Expected decision

Turn right 4

Trun left 4
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Conclusions

Under the premise of obeying the physiological charac-

teristics of biological neurons, we describe the control rules

for phototactic behavior from the logic view, and designed

a neural circuit to achieve these control rules. The AFR of

the output neuron cluster was used to encode flying angular

velocity. Between the input and the output layers, a series

of excitatory and inhibitory neurons were used to modulate

AFR of output neuron cluster according to different input.

Then, we simulated AP firing and propagation of each

neuron in the circuit using a distributed PC array. To verify

the circuit’s feasibility, we also conducted a real-time

simulation of insect flight.We also explored how a correct

neural decision circuit is generated through a bee’s

behavior experiment based on the reward and punishment

feedback mechanism. By simulating and simultaneously

recording circuit firing activities, we obtained a large

degree of AP firing data that approximation to the data

from multi-electrode array output. It also is convenient to

test the validity of data mining methods in analyzing the

correlation between neurons. It is helpful for us to better

understand cooperative conditions that achieve some con-

trol rules. It is valuable to understand the information

processing mechanism of the nervous system.

Fig. 26 a AFR of two neuron clusters in 300 decision-making trials in Experiment-1. b AFR of 2 neuron clusters in 300 decision-making trials in

Experiment-2

Fig. 25 a The learning process of connections strength W in Experiment-1 of Fig. 24; b the learning process of connections strength W in

Experiment-2

280 Cogn Neurodyn (2017) 11:259–281

123



Carandini (2012) considered that we lack a bridge the-

ory from microscopic neural activity to macroscopic

behavior. Moreover, this theory must explain how the

structure of the nervous system adjusts its function. For

example, how do microscopic activities of neurons and

logical relationships in circuits support cognitive ability?

The aim of this study was to construct a biological neural

network for behavioral control rules and, at the same time,

treat neurons and principles of circuit design from logic

perspective that strictly followed electrophysiological

characteristics and anatomy of biological neurons. Con-

clusively, our findings and detailed circuit presentation

may be useful for this gradual transition from microscopic

neural activity to macroscopic behavioral control.
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