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Abstract

We show that it is possible to devise a large class of skew–product dynamical

systems which have strange nonchaotic attractors (SNAs): the dynamics is

asymptotically on fractal attractors and the largest Lyapunov exponent is

nonpositive. Furthermore, we show that quasiperiodic forcing, which has

been a hallmark of essentially all hitherto known examples of such dynamics

is not necessary for the creation of SNAs.
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I. INTRODUCTION

Since 1984, when Grebogi, Ott, Pelikan, and Yorke [1] described attractors that were

strange but not chaotic, interest in these exotic objects has been increasing [2]. Several

studies, both theoretical [3–9] and experimental [10–15], have, over the years, elucidated the

principal features of such attractors which appear to be generic in quasiperiodically driven

nonlinear dynamical systems. These are geometrically strange sets (fractals) on which all

Lyapunov exponents are either zero or negative. Further, owing to their fractal character,

motion on SNAs is intermittent and aperiodic.

A very important connection between classically driven systems and the Schrödinger

equation for a particle in a quasiperiodic potential [16] makes the correspondence between

nonchaotic attractors and localized states [17–19], and this further underscores the interest

in strange nonchaotic attractors (SNAs). These results show that the transition from an

invariant circle to SNA in the iterative mapping is related to the transition from extended

to localized states in the quantum system.

Although there are many known examples of systems with SNAs, proving the existence

of such attractors is a mathematically nontrivial task. Indeed, rigorous results exist for only

two systems—the original system introduced by Grebogi et al., and the Harper map [17].

Keller [20] and Bezhaeva and Oseledets [21] have shown in the dynamical system [1]

xi+1 = 2α cos 2πφi tanh xi (1)

φi+1 = {ω + φi}, (2)

(we use the notation {y} ≡ y mod 1) that for α sufficiently large and for ω an irrational

number, the attractor is fractal, has a singular–continuous spectrum, and is the support of

an ergodic SRB measure [22]. For the Harper map (E being a parameter)

xi+1 = −[xi − E + 2α cos 2πφi]
−1 (3)

φi+1 = {ω + φi}, (4)
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a persuasive argument [17] suggests that, again for α sufficiently large and ω irrational, the

attractor of the dynamics is fractal, and the dynamics is nonchaotic since the Lyapunov

exponent is nonpositive [18].

Virtually all known examples of systems with SNAs—and the two cases above are

typical—have the skew–product 1 form and have a quasiperiodic driving term. How neces-

sary are these features? This question has considerable practical relevance since there are

known cases of experimental systems [14,15] where the dynamics appears to be on strange

nonchaotic attractors, but where there is no quasiperiodic driving. Furthermore, it is also

known that a judicious choice of forcing term can convert chaotic dynamics to nonchaotic

dynamics [23–26]. Are the resulting attractors SNAs? In particular, can SNAs be formed

via non-periodic (and also not quasiperiodic) driving of a nonlinear system?

In the present paper we address two issues that are of concern in the study of SNAs.

The first deals with the ubiquity of such attractors: what are the necessary conditions for a

dynamical system such that SNAs result? While we do not provide an exhaustive answer,

our study shows that strange nonchaotic dynamics can be realized in a wide variety of

systems, and may in fact be quite common. Our examples all remain, however, within the

skew–product paradigm. The second issue relates, as discussed above, to the necessity of

quasiperiodic forcing and we find that it is possible to construct dynamical systems wherein

there is no explicit quasiperiodic forcing and the dynamics is on SNAs.

These results are described in the following two sections of this paper. In Section 2, we

extend the general arguments which establish the existence of SNAs in Eqs. (1) and Eq. (3)

so as to yield a large variety of dynamical systems wherein the motion will remain on SNAs.

In Section 3, we further generalize the dynamics so that the forcing is no longer quasiperiodic

but the resulting dynamics continues to be on SNAs. This is followed by a brief summary

1In a skew–product system, one of the variables evolves entirely independently of the other(s), as

φ does in these examples.
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and discussion in Section 4.

II. STRANGE NONCHAOTIC DYNAMICS

By now there is a host of examples of strange nonchaotic dynamics [2] in driven systems.

These include both flows such as the driven Duffing oscillator [27,28] and iterative maps such

as the driven logistic map [29,30]. Most studies to date have relied on numerical techniques

to establish the presence of SNAs, by explicitly computing the Lyapunov exponents and

by determining the fractal dimension. SNAs are “intermediate” between strange chaotic

attractors and nonchaotic regular dynamics with regard to many dynamical and structural

properties, some of which can be determined through study of power–spectra, correlation

functions, and related measures (see Ref. [2] for a recent review). The most extensively

studied cases all have a skew–product dynamical structure, and thus these are systems in

n+1 dimensions, the latter dimension pertaining to the dynamics of the driving term.

In the present paper, we study the case of driven iterative maps in 1+1 dimension for

convenience. Rigorous mathematical results concerning SNAs are so far available only for

the simplest such examples. However, the arguments presented here largely carry over to the

case of flows as well, and can be extended to higher dimensions, so this is not a restriction.

A. Generalizing the original SNA system

The following heuristic arguments, first put forward by Grebogi et al. [1] for the system

embodied in Eq. (1) suggest that SNAs should occur for appropriate values of α.

The mapping x → 2α tanh x is 1–1 and contracting, taking the real line into the interval

[−2α, 2α]. Because ω is an irrational number, the dynamics in φ [cf. Eq. (2)] is ergodic in the

unit interval. The attractor of the dynamical system Eq. (1) therefore must be contained

in the strip [−2α, 2α] ⊗ [0, 1]. A point xn with the corresponding φn = 1/4 will map to

(xn+1 = 0, φn+1 = ω + 1/4), after which subsequent iterates will all remain on the line

(x = 0, φ), as will points with φn = 3/4. This line therefore forms an invariant subspace,
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but for large enough α, this subspace is transversally unstable. Thus, it follows that the

attractor has a dense set of points on the line x = 0, θ ∈ [0, 1] (since ω is irrational), but the

entire line itself cannot be the attractor for α > 1, since the dynamics is unstable on that

line. There will, therefore at some α, be a “blowout bifurcation” [8,9] transition to strange

nonchaotic dynamics.

Generalizing Eq. (1) (keeping the skew–product structure intact) as

xi+1 = αf(xi)g(φi) (5)

it is clear that the same arguments will carry over so long as the following properties hold:

(i) f(x) is 1-1 and contracting, with f(0) = 0.

(ii) f ′(0) 6= 0, and concurrently,

(iii) g(φ) = 0 for some φ = φ∗.

Then, clearly, all points x, φ∗ will map to 0, {ω+ φ∗}, and the subsequent dynamics will

be dense on the line x = 0, φ. From condition (ii) above, this can be made unstable locally

for sufficiently large α, and from (i), since the map is contracting, the slope |f ′| ≤ 1 almost

everywhere, the Lyapunov exponent can be made negative so as to give a SNA.

B. A piecewise linear SNA

A piecewise linear strange nonchaotic attractor can be simply obtained by taking, in

Eq. (5),

f(x) = αx |x| ≤ 1/α

= sign(x) |x| > 1/α, (6)

g(φ) = φ− 1/2. (7)

It is easy to verify that there is indeed a blowout bifurcation near α ≈ 2.33 (Fig. 1a), above

which the attractor is strange and nonchaotic: see Fig. 1b.
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C. Generalizing the Harper map

In the Harper map, on the other hand, the argument for the existence of strange non-

chaotic dynamics proceeds as follows [17]. In the strong–coupling limit, α → ∞, Eq. (3)

reduces to

xi+1 = −[2α cos 2πφi]
−1. (8)

Clearly, for φi =1/4 or φi =3/4 this gives a singularity in the neighbourhood of which the

mapping locally looks like a hyperbola. Since the φ dynamics Eq. (2) is ergodic in the interval

[0,1], the image of this singularity is dense: on every φ–fiber there will be a singularity, and

thus the dynamics is on a strange set. By continuity, even away from the strong coupling

limit but for α large enough, this argument suggests that the dynamics can be strange. (In

fact, for Eq. (3), there are SNAs even at α = 1.) For a suitable choice of function f(x), the

Lyapunov exponent may turn out to be negative; in such a case, the attractor is strange

and nonchaotic. For the Harper map [18], when E = 0 this is indeed the situation.

Proceeding as above, one can generalize the Harper map (with the φ–dynamics un-

changed) as

xi+1 = [f(xi) + 2αg(φi)]
−1 (9)

where f and g are now arbitrary functions, the only additional requirement being that g(φ)

should have a zero in the interval [0,1]. For suitable functions f(x), the Lyapunov exponent

can indeed be made zero or negative, giving therefore, SNAs.

D. SNAs of the Fibonacci chain

The Harper map [17] derives from the Harper equation [31] which is the discrete

Schrödinger equation for a particle in a quasiperiodic potential,

ψn+1 + ψn−1 + V (n)ψn = Eψn, (10)
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ψn denoting the wave-function at lattice site n, the potential being V (n) = 2α cos 2π(nω +

φ0). The identification ψn−1/ψn ≡ xn, connects Eq. (10) and Eq. (3). This system is known

to have critical (or power–law localized) states for α = 1, when the classical system has

critical SNAs [19]. It is also known that other forms of the potential V (n) support critically

localized states [32–35], one example being the Fibonacci chain with

V (n) = α 0 ≤ {nω} ≤ ω (11)

= −α ω < {nω} ≤ 1, (12)

when all states are critical for any α.

The classical map corresponding to this potential is

xi+1 = −[xi − E + V (i)]−1 (13)

φi+1 = {ω + φi}, (14)

where V (i) is given by Eq. (11), and there is an additional overall phase φ0. It is a simple

task to compute the Lyapunov exponent for this mapping (Fig. 2a); if E is an eigenvalue,

then the Lyapunov exponent is zero. Comparing Eq. (9) with Eq. (13), the conditions on

the functions f and g are met, and therefore, the attractors of the above system are SNAs;

see Fig. 2b for an example.

III. SNAS WITHOUT QUASIPERIODIC DRIVING

It is clear from the above constructions, that there are two main ingredients in achieving

SNAs in dynamical systems such as Eq. (5) or Eq. (9). Firstly, one needs some mechanism

for local instability while maintaining global stability. The main purpose of the quasiperiodic

driving, namely the φ dynamics which is governed by Eq. (2), is to make the instabilities

dense in φ.

This suggests that a generalization of Eq. (5) to

xi+1 = αf(xi)g(φi) (15)

φi+1 = h(φi), (16)
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or of Eq. (9) to

xi+1 = −[f(xi) + αg(φi)]
−1 (17)

φi+1 = h(φi), (18)

where the function h is not necessarily the rigid rotation, but is otherwise such that the

orbit hn(φ∗) is dense will still yield SNAs for sufficiently large α.

To be mathematically more precise [36], we need that h be a homeomorphism with an

invariant ergodic probability measure of full support, and that the h−1 orbit of φ∗ be dense,

in which circumstances, the resulting attractor can be shown to be a SNA, following the

basic proof given by Keller [20] for the case f ≡ tanh, g ≡ cos and h the irrational rigid

rotation. The basic property that is required is that the mapping h(φ) take the interval

[0, 2π] into some continuous subinterval (at least), and that the orbit of a typical point

should be dense in this subinterval.

It should be added that the function h should have only nonpositive Lyapunov exponents

since the skew–product form for the dynamical system is being retained. There are a number

of possible choices for h which are distinct from the quasiperiodic rotation, but which use

related maps to generate ergodic flows. This follows from the Weyl theorem [37] which states

that if H is a polynomial function of degree r ≥ 1 with real coefficients a0, . . . , ar, at least

one of which is an irrational number, then the map

φn = {H(n)} ≡ {a0 + a1n + . . .+ arn
r} (19)

is ergodic, and the sequence {φn} is uniformly distributed in the interval [0,1]. If H is

nonlinear, then it can be easily verified that the sequence {φn} is not quasiperiodic, but the

Lyapunov exponent is zero since the map preserves distance.

An example of such a system is easy to devise. A simple choice is to take H(n) = ωn2, ω

irrational, which gives

xi+1 = αf(xi)g(φi) (20)

φi+1 = {φi + (2i+ 1)ω}. (21)
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The SNA which obtains for f and g given by Eqs. (6) and (7), for a suitably large value of

α is shown in Fig. 3a.

Of course, it is also possible to use other mappings which generate quasiperiodic motion

to determine the φ dynamics. Many examples of such maps are known, as for instance the

diffeomorphisms

φ → {φ+ Ω+ ǫa(φ)} (22)

for Ω a constant, ǫ sufficiently small and a an arbitrary analytic function. The orbits are

everywhere dense on the interval and typically have irrational rotation number; indeed, by

Denjoy’s theorem, any orientation preserving C2 diffeomorphism of the circle is topologically

equivalent to a rigid rotation [38]. In the specific case of the circle map with a(φ) ≡

sin 2πφ the parameter ranges wherein the map has irrational winding number have been

comprehensively described.

Other possibilities for h exist: there are examples of integrable geodesic flows on compact

manifolds which have positive topological entropy but have no positive Lyapunov exponents

[36], or one can even take h to be a SNA map such as Eq. (1) itself, since that is known to

provide an ergodic flow [20]. This yields, for instance, the system

xi+1 = 2αφi tanh xi (23)

φi+1 = 2β cos 2πθi tanhφi (24)

θi+1 = {ω + θi}, (25)

which has strange nonchaotic attractors for suitable values of α and β, see Fig. 3b.

IV. DISCUSSION AND SUMMARY

Although so far all known examples of systems with strange nonchaotic dynamics have

appeared to require quasiperiodic forcing, the present work shows that this is, in fact, not

necessary. By suitably generalizing systems wherein SNAs are known to exist [17,18,20,21],
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we have constructed dynamical systems where the motion is on strange nonchaotic attrac-

tors and there is no quasiperiodic driving. This has particular relevance to experimental

observations of apparently nonchaotic attractors where the dynamics does not have explicit

quasiperiodic forcing. One specific example is of a gas discharge plasma where the light flux

as a function of time (with current as the driving parameter) appears to lie on a SNA. This

has been deduced by attractor reconstruction and extraction of fractal dimension and Lya-

punov exponents [14]. The other example [15] pertains to the effect of noise which allegedly

reproduces the effect of many–frequency quasiperiodic driving.

In addition, we have also shown that strange nonchaotic dynamics can be quite common.

Our approach has been heuristic: the same deconstruction also provides a prescription

for obtaining a large variety of dynamical systems wherein SNAs must occur. We have

shown examples of two specific systems wherein the attractors are piecewise–linear fractals.

Detailed analyses of such examples may prove to be simpler than the cases studied so far.

This procedure for creating SNAs is clearly not exhaustive and there may be different

generalizations that will also yield strange nonchaotic dynamics. In particular, we have cho-

sen to stay within the “skew–product” class of mappings, although other possibilities [39]

may be compatible with such dynamics as well.
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FIG. 1. The piecewise linear system with ω = (
√
5− 1)/2. Plot of (a) the Lyapunov exponent

as a function of the parameter α, showing the blowout bifurcation at α ≈ 2.33, above which the

Lyapunov exponent → −∞, and (b) the strange non chaotic attractor for α=2.5
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FIG. 2. The Fibonacci chain, where ω = (
√
5− 1)/2. (a) Variation of the Lyapunov exponent

with forcing parameter α. Each zero of the Lyapunov exponent corresponds to an eigenstate in

the quantum system, and a critical SNA in the classical system. (b) A typical SNA in this system,

for E = 0, α = 0.8326745. Note that the variable plotted on the ordinate is tanhx rather than x;

this is merely for convenience.
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FIG. 3. (a) SNA in the system Eq. (20) where the driving is no longer quasiperiodic. The

parameters are α = 2.5, ω is the golden mean ratio. (b) SNA in the system given by Eqs. (23–25),

where the map governing the φ dynamics itself has SNA dynamics. The parameters α and β are

both 2.5.(this figure submitted in gif format)
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