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Plant immune responses depend on the ability to couple rapid recognition of the invad-

ing microbe to an efficient response. During evolution, plant pathogens have acquired the

ability to deliver effector molecules inside host cells in order to manipulate cellular and

molecular processes and establish pathogenicity. Following translocation into plant cells,

microbial effectors may be addressed to different subcellular compartments. Intriguingly, a
m significant number of effector proteins from different pathogenic microorganisms, includ-

ing viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host

cells. In agreement with this observation, increasing evidence highlights the crucial role

played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great vari-

ety of analyzed plant–pathogen interactions. Once in the nucleus, effector proteins are

able to manipulate host transcription or directly subvert essential host components to pro-

mote virulence. Along these lines, it has been suggested that some effectors may affect
r

histone packing and, thereby, chromatin configuration. In addition, microbial effectors may

either directly activate transcription or target host transcription factors to alter their regular

molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular

localization of their cognate resistance proteins in a process that is essential for resis-

tance protein-mediated plant immunity. Here, we review recent progress in our field on

the identification of microbial effectors that are targeted to the nucleus of host plant cells.

In addition, we discuss different virulence strategies deployed by microbes, which have

been uncovered through examination of the mechanisms that guide nuclear localization of

effector proteins.

Keywords: microbial effector, NES, NLS, nuclear pore complex, plant immunity, nucleocytoplasmic protein

translocation, resistance protein, transcription factor

INTRODUCTION
As sessile organisms living in a microbe-rich environment, plants

have developed an intricate defense network to fight off invad-

ing pathogens. The first layer of plant defense involves recogni-

tion of pathogen-associated molecular patterns (PAMPs), defined

as invariant epitopes within molecules that are fundamental to

pathogen fitness and widely distributed among different microbes.

Examples of PAMPs are flagellin from bacteria and chitin from

fungi and their recognition, historically known as basal defense,

is now referred to as PAMP-triggered immunity (PTI; Jones and

Dangl, 2006). PTI is associated to the production of reactive

oxygen species and antimicrobial compounds, the induction of

mitogen-activated protein kinase (MAPK) cascades, the modu-

lation of host gene transcription, and the deposition of lignin

and callose at the plant cell wall (Asai et al., 2002; Torres et al.,

2002; Hauck et al., 2003; Tao et al., 2003). Thriving pathogens

evolved to suppress PTI and promote successful infection by

delivering a plethora of small molecules, referred to as effectors,

in the apoplastic space, and inside host cells (Gordeeva et al.,

2003; Alfano and Collmer, 2004; Chisholm et al., 2006). In turn,

plants have evolved to gain the ability to recognize directly or

indirectly effectors through resistance (R) proteins. This recog-

nition response, which leads to resistance of the plant, is associ-

ated with the long-standing gene-for-gene hypothesis and, more

recently, with the guard hypothesis (van der Biezen and Jones,

1998), and is now known as effector-triggered immunity (ETI).

ETI is frequently associated with development of the hypersen-

sitive response (HR), a form of programmed cell death localized

at the infection site, which prevents the spread of the pathogen

inside the plant (Mur et al., 2008). In most cases, the onset of the

HR results in the activation of systemic acquired resistance (SAR),

which provides protection to the plant against a wide range of

pathogens (Durrant and Dong, 2004). The co-evolutionary arms

race between plants and pathogens has resulted in the generation

of highly polymorphic repertoires of R proteins and microbial

effectors.

Plant pathogenic bacteria, viruses, fungi, oomycetes, and nema-

todes engage varied mechanisms to deliver effector proteins inside

host cells. To achieve this goal, bacteria use specialized secretion

systems, such as the type III and type IV secretion systems (Galan

and Wolf-Watz, 2006; Block et al., 2008; McCann and Guttman,

2008). Biotrophic fungi and oomycetes have evolved specialized
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structures called haustoria that penetrate the host tissue, invagi-

nating the host plasma membrane. Haustoria probably play a dual

role as they have been proposed to enable effector secretion and

uptake of nutrients, although this idea remains to be demon-

strated (Panstruga and Dodds, 2009; de Jonge et al., 2011). In

contrast, several fungal and oomycete effectors can enter plant cells

independently of the pathogen, probably via receptor-mediated

endocytosis (Kale and Tyler, 2011). Finally, plant parasitic nema-

todes use a specialized feeding organ, referred to as the stylet, to

inject their effector proteins into parasitized plant vascular cells

(Davis et al., 2008; Gheysen and Mitchum, 2011).

Following their translocation into plant cells, microbial effec-

tors may be addressed to different subcellular compartments

where they may manipulate a variety of host cellular functions.

A particularly important role in plant defense responses has

been attributed to nuclear dynamics since a growing number of

reports has revealed that nuclear localization of not only pathogen

effectors, but also of R proteins and key host components, includ-

ing transcription factors (TFs) and regulators, is essential for plant

immunity (Wiermer et al., 2007; Liu and Coaker, 2008; Deslandes

and Rivas, 2011; Rivas, 2011). The fact that a significant num-

ber of effector proteins is translocated into the host cell nucleus

(Table 1) suggests that effectors may manipulate host transcrip-

tion or directly target essential nuclear host components for the

benefit of the pathogen. Along these lines, it has been additionally

proposed that some effectors may affect histone modification and

chromatin remodeling (Kay and Bonas, 2009). Indeed, chromatin

configuration allows or prevents protein access to specific DNA

regions and regulates essential cellular processes such as DNA

replication, DNA repair, and transcription (Clapier and Cairns,

2009). Although chromatin remodeling has only been formally

demonstrated in the case of effector proteins from Agrobacterium

tumefaciens (Citovsky et al., 2007), it is now well accepted that

modulation of chromatin configuration is a strategy employed by

Table 1 | Examples of effector proteins with demonstrated nuclear localization from different phytopathogenic microorganisms.

Effector Species Function/features Reference

VIRUSES

2b Cucumber mosaic virus PTGS suppression Lucy et al. (2000)

NIa Tobacco etch potyvirus protease Carrington et al. (1988), Restrepo et al. (1990)

NIb Tobacco etch potyvirus RNA-dependent RNA polymerase Allison et al. (1986), Li et al. (1997)

p25 Beet necrotic yellow vein virus Symptom development Tamada et al. (1999), Vetter et al. (2004)

ORF3 Groundnut rosette virus RNA protection/movement Ryabov et al. (2004)

P6 Cauliflower mosaic virus Symptom development Daubert and Routh (1990), Haas et al. (2005)

p50 Tobacco mosaic virus Viral replicase Burch-Smith et al. (2007)

OOMYCETES

Nuks Phytophthora infestans Unknown Kanneganti et al. (2007)

CRNs P. infestans Unknown Schornack et al. (2010)

AeCRN5 Aphanomyces euteiches Unknown Schornack et al. (2010)

FUNGI

Uf -RTP1 Uromyces fabae Unknown Kemen et al. (2005)

NEMATODES

Hs-UBI1 Heterodera schachtii Mono-ubiquitin domain Tytgat et al. (2004)

SPRYSEC Globodera pallida Defence suppression Jones et al. (2009)

BACTERIA

SAP11 Aster Yellows phytoplasma strain

Witches’ Broom

Unknown Bai et al. (2009)

VirE2 Agrobacterium tumefaciens T-strand coating/integration Tinland et al. (1992),Tzfira and Citovsky (2002)

VirD2 A. tumefaciens T-strand capping Tzfira and Citovsky (2002)

VirF A. tumefaciens T-strand uncoating/integration Tzfira et al. (2004)

VirE3 A. tumefaciens Tumor formation Garcia-Rodriguez et al. (2006)

6b A. tumefaciens ADP-ribosyltransferase; histone chaperone Kitakura et al. (2002), Tinland et al. (1990)

HopU1 Pseudomonas syringae mono-ADP-ribosyltransferase Fu et al. (2007)

HopAI1 P. syringae phospho-Thr lyase Zhang et al. (2007)

AvrBs3 Xanthomonas campestris pv.

vesicatoria

TAL; cell hypertrophy Boch et al. (2009), Kay et al. (2007), Moscou

and Bogdanove (2009)

PthXo1 Xanthomonas oryzae pv. oryzae TAL; nutrient (sugar) acquisition/copper resistance Chen et al. (2010), Yuan et al. (2010)

AvrXa7 X. oryzae pv. oryzae TAL; nutrient (sugar) acquisition Chen et al. (2010), Yuan et al. (2010)

HsvG Pantoea agglomerans TAL Nissan et al. (2011)

PopP2 Ralstonia solanacearum Acetyltransferase Deslandes et al. (2003), Tasset et al. (2010)

XopD X. campestris SUMO protease; TF targeting Canonne et al. (2011), Kim et al. (2008)
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bacterial virulence proteins to subvert plant immunity (Ma et al.,

2011). Alternatively, nuclear translocation of effectors may affect

subcellular localization of their cognate R proteins in a process that

is essential for R protein-mediated plant immunity (Burch-Smith

and Dinesh-Kumar, 2007; Shen and Schulze-Lefert, 2007).

In eukaryotic cells, trafficking of protein and RNA molecules

between the cytoplasm and the nucleus occurs through nuclear

pore complexes (NPCs). NPCs are composed of multiple sub-

units of nucleoporins (Nups) organized in a donut-shaped com-

plex of eightfold symmetry that spans the double membrane

of the nuclear envelope (Meier, 2007; Figure 1). Nucleocyto-

plasmic transport of macromolecules depends on import and

export receptors (importins and exportins), which translocate

cargo through the nuclear pore following their respective recog-

nition of exposed nuclear localization signals (NLSs) and nuclear

export signals (NESs) on cargo proteins (Merkle, 2001; Meier,

2007; Patel et al., 2007). NLSs are typically classified as either

monopartite NLSs composed of a continuous stretch of basic

amino acids (Kalderon et al., 1984a,b), or bipartite NLSs com-

posed of two sets of two to three positively charged amino acids

separated by a 10-amino acid linker region (Dingwall et al., 1982;

Robbins et al., 1991). α-importins are adapter proteins that bind to

NLS-containing cargo proteins and bridge their interaction with

importin β. The trimeric complex importin-α/importin-β/cargo

FIGURE 1 | Model for nucleocytoplasmic transport of macromolecules

through the nuclear pore complex. Cytoplasmic proteins with a nuclear

localization signal (NLS) are translocated into the nucleus through nuclear

pore complexes that are composed of nucleoporins and span the double

membrane of the nuclear envelope. The NLS in cargo proteins is recognized

by importin-α (Impα) that bridges the interaction of cargo proteins with

importin-β (Impβ) and promote their transport into the nucleus. The

directionality of transport is maintained by the Ras-related nuclear (Ran)

protein through its binding to GDP (cytoplasmic side) or GTP (nuclear side).

Export receptors or exportins (Exp) recognize nuclear export signals (NES)

in cargo proteins, promoting their nuclear export to the cytoplasm.

protein is translocated into the nucleus across the NPC, thanks

to the interaction between Nups and importin β (Figure 1).

The directionality of the nuclear transport is maintained by the

ratio of additional import factors such as Ran-GDP (cytoplasmic

side) and Ran-GTP (nuclear side). Upon binding of Ran-GTP in

the nucleus, the complex is disassembled and importin-α and β

shuttle back to the cytoplasm to allow additional rounds of trans-

port (Merkle, 2001; Meier, 2007; Figure 1). Nuclear export of

proteins classically occurs through the nuclear export pathway

mediated by an evolutionarily conserved CRM1/exportin protein

that belongs to the importin-β family. The CRM1–Ran-GTP com-

plex binds directly to the leucine-rich NES contained in cargo

and directs the export of the ternary complex from the nucleus.

The cargo is released from the complex by hydrolysis of Ran-

GTP to Ran-GDP in the cytoplasm (Ossareh-Nazari et al., 2001;

Figure 1).

Mounting evidence suggests that pathogen effectors co-opt the

host cell nuclear transport machinery, including α-importins, to

target plant cell nuclei (Vetter et al., 2004; Kay and Bonas, 2009;

Schornack et al., 2010). In other cases, α-importin-independent

translocation of effector proteins into the nucleus has been

reported (Kanneganti et al., 2007). In addition, mutations in

cellular factors involved in the transport of macromolecules

through the nuclear envelope, compromise plant resistance signal-

ing, underlining the importance of nucleocytoplasmic trafficking

during plant innate immunity (Kinkema et al., 2000; Mou et al.,

2003; Zhang and Li, 2005).

Here, we provide an overview on our current knowledge about

translocation of microbial effectors into the host cell nucleus. We

first discuss nuclear-targeted effectors from bacteria and viruses,

whose functional characterization is rather well documented. Sec-

ond, we summarize recent data involving nuclear effectors from

nematodes and filamentous pathogens, for which further func-

tional studies are required before concluding on the specificities

and commonalities of the virulence strategies that are hidden

behind nuclear targeting of effector proteins.

AGROBACTERIUM TUMEFACIENS

Agrobacterium tumefaciens is a soil phytopathogenic bacterium

with the unique ability to transfer a segment of its Ti plasmid

(T-DNA) into plant cells and integrate it into the chromosomal

DNA. As a result, Agrobacterium infection induces the formation

of crown gall tumors on dicotyledonous plants (Gelvin, 1998).

T-DNA is transported from the bacterium to the host cell as a

single-stranded DNA (ssDNA) molecule, named the T-strand, via

the so-called type IV secretion system (T4SS), which is ances-

trally related to bacterial conjugation machines (Christie, 2004;

Christie et al., 2005). Conjugation systems enable bacteria to adapt

to changing environments through acquisition of fitness traits.

Throughout evolution, conjugation has substantially contributed

to genome rearrangement and plasticity. The genes responsible

for the processing and transfer of the T-DNA to plant cells are

present in the Virulence region of the Ti plasmid and are called vir

genes. The translocated virulence proteins are effector proteins,

also delivered into the host cell through the T4SS. Once in the

plant cell,Vir proteins form a nucleoprotein complex (T-complex)

with the T-strand, as well as with host proteins, to mediate the
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transformation of a normal plant cell into a crown gall tumor cell

(Lacroix and Citovsky, 2009).

A subset of the Vir proteins that are translocated into plant

cells is targeted to the nucleus and historically Vir proteins were

the first nuclear-localized effectors described (Tinland et al., 1992).

Studies on nuclear-targeted proteins from Agrobacterium provide

a fascinating illustration of the great diversity of molecular activi-

ties that bacterial effectors are able to display in the host nucleus to

subvert basic cellular processes. Among the Vir proteins involved

in the processing and/or transfer of the T-DNA to the plant cell,

VirE2 is the most abundant protein produced after induction of

the vir genes. It binds in an unspecific and highly cooperative

manner to ssDNA, coating the T-strand to protect it from the

attack of host nucleases (Figure 2). Another Vir protein, VirD2, is

covalently attached to the 5′ end of the T-strand following gen-

eration of nicks at the border repeats surrounding the T-DNA

in the Ti plasmid (Tzfira and Citovsky, 2002; Figure 2). VirE2 is

translocated into plant cells independently of the T-strand-VirD2

complex (Vergunst et al., 2000). Both VirD2 and VirE2 have NLSs,

which helps target the T-strand to the plant cell nucleus. However,

nuclear import of the T-complex is mediated by VirD2, following

its binding to the host importin-α (Ballas and Citovsky, 1997; Bako

et al., 2003). VirE2, which has low binding affinity for importin-

α (Citovsky et al., 2004), interacts with the nuclear protein VIP1

(VirE2-interacting protein 1; Tzfira et al., 2001) that then binds

to importin-α and guides VirE2 nuclear import, and association

with the host chromatin (Tzfira and Citovsky, 2002; Citovsky et al.,

2004; Lacroix et al., 2008). VIP1 is a basic domain-leucine zipper

(bZIP) protein that may act as a TF involved in plant defense

(Tzfira et al., 2001; Djamei et al., 2007).

VirE2 has been shown to modulate chromatin functions and

facilitate T-DNA integration. In Arabidopsis, VIP1 directly inter-

acts with various core histones, such as H2A, and it may therefore

bridge the association of VirE2 with the plant nucleosome, facil-

itating T-DNA integration (Li et al., 2005; Lacroix et al., 2008;

Figure 2). Furthermore, another VirE2-interacting protein, VIP2,

may regulate histone gene transcription (Anand et al., 2007). In

agreement with this observation, expression of several histone

genes is induced upon Agrobacterium infection (Veena et al., 2003).

It is thus tempting to speculate that VirE2 and/or other Agrobac-

terium effectors may modulate histone gene expression to facilitate

infection.

VirD2-interacting proteins have also been described. For exam-

ple, the nuclear kinase CAK2Ms, a member of the conserved

cyclin-dependent kinase-activating kinase family, interacts with,

and phosphorylates VirD2, perhaps modulating its activity. In

addition, a TATA box-binding protein (TBP) also interacts with

VirD2, possibly guiding the T-DNA to transcription-prone sites

in the host genome, which are preferential for T-DNA integration

(Bako et al., 2003; Figure 2).

FIGURE 2 | Model for integration of Agrobacterium tumefaciens T-DNA

into the host cell chromatin. (A) The T-strand is transported into the host cell

nucleus as an ssDNA molecule. VirE2 coats the T-strand to protect it from the

attack of host nucleases, whereas VirD2 is covalently attached to the 5′ end of

the T-strand. VirE2 interacts with the nuclear protein VIP1, which acts as a

molecular bridge between VirE2 and nucleosomes thanks to its association

with core histones, thereby facilitating T-DNA integration. The role of VIP2 in

this process remains to be determined. VirD2-intercating proteins CAK2Ms

and TBP are also represented. VirF interacts with VIP1 attached to both

nucleosomes and the T-complex. (B) Before integration, VirF helps uncoat the

T-strand promoting proteasomal degradation of VIP1, VirE2 and, very likely,

VIP1-interacting core histones. This creates a chromatin environment favorable

for T-DNA integration. Whether synthesis of the second-strand occurs before

or after association of the T-strand with the chromatin remains unknown. It is

possible that second-strand synthesis and integration represent coupled

events.
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An additional group of Vir proteins is involved in hijacking

the host cell metabolism to allow the integration and expression

of the genes carried on the T-DNA. Before integration, VirF, an F-

box protein translocated into the host cell, helps uncoat the T-DNA

from VirE2 and VIP1 proteins (Schrammeijer et al., 2001). Indeed,

as part of the Skp1-Cdc53-cullin-F-box (SCF) complex,VirF binds

VIP1 that is attached both to nucleosomes and to the T-complex,

promoting proteasomal degradation of both VIP1 and its asso-

ciated VirE2 (Tzfira et al., 2004; Figure 2). It has been proposed

that VirF may additionally induce degradation of the core histones

that are bound to VIP1 (Li et al., 2005; Loyter et al., 2005; Lacroix

et al., 2008), thereby inducing their local destabilization and cre-

ating a chromatin environment favorable for T-DNA integration

(Figure 2). In agreement with the observation that some plant

species do not require VirF for transformation (Hirooka et al.,

1987), recent data show that a plant F-box protein, named VBF

(VIP1-binding F-box protein), is able to functionally replace VirF.

VBF is induced by Agrobacterium infection and, as VirF, regulates

the protein levels of VIP1 and its associated VirE2 after binding

to VIP1 (Zaltsman et al., 2010). VBF expression in and export

from Agrobacterium lead to increased tumorigenesis, indicating

that Agrobacterium subverts a component of the host cell protea-

some, whose expression is induced during pathogen infection, to

promote plant genetic transformation.

VirE3 is conserved among all the Agrobacterium Ti plasmids

studied so far. Even the Agrobacterium rhizogenes Ri-plasmid that

lacks the genes virE1 and virE2 contains a copy of virE3, suggesting

that the VirE3 protein plays an important role during transforma-

tion (Garcia-Rodriguez et al., 2006). Indeed, mutations in virE3

diminish tumor formation on tobacco, tomato, and sunflower

(Garcia-Rodriguez et al., 2006). The VirE3 protein has NLSs that

mediate its interaction with importin-α and nuclear localization

(Garcia-Rodriguez et al., 2006). VirE3 additionally interacts with

pCsn5, a component of the COP9 signalosome and pBrp, a plant-

specific general TF that belongs to the TFIIB family. When bound

to DNA, VirE3 is able to promote gene transcription. These data

suggest that nuclear VirE3 may act as a transcriptional activator

to induce the expression of genes needed for tumor development

(Garcia-Rodriguez et al., 2006).

Finally, the 6b gene in the T-DNA from A. tumefaciens has

oncogenic activity in plant cells, inducing tumor formation, and

alterations in leaf morphology (Tinland et al., 1990). The tobacco

protein NtSIP1 was identified in a yeast two-hybrid screen as a

6b-interacting protein (Kitakura et al., 2002). NtSIP1 is localized

in the nucleus and appears to act as a TF because its predicted

amino acid sequence includes two predicted NLSs and a puta-

tive DNA-binding motif, which is similar to the triple helix motif

of rice TF GT-2 (Dehesh et al., 1992). Nuclear localization of 6b

was enhanced by co-expression with NtSIP1 in tobacco cells. In

addition, a fusion protein between the DNA-binding domain of

yeast GAL4 and 6b activated the transcription of a reporter gene

in tobacco (Kitakura et al., 2002). Finally, an acidic C-terminal

domain of 6b is required for its nuclear localization and trans-

activation as well as for hormone-independent proliferation of

tobacco cells. These data suggest that 6b may affect transcription

of plant genes controlled by NtSIP1 and function in the prolifera-

tion of plant cells through an association with NtSIP1. In addition

to NtSIP1, 6b associates with other Arabidopsis proteins in the

nucleus, including key components of the microRNA pathway and

the core histone H3 (Terakura et al., 2007; Wang et al., 2011). Based

on this finding, 6b has been proposed to act as a histone chaperone,

which works together with other chromatin remodelers to affect

nucleosome assembly, histone displacement and transcription in

a gene-specific manner (Terakura et al., 2007). Recent structural

analysis suggests that 6b displays an ADP-ribosyltransferase activ-

ity (Wang et al., 2011). Since 6b directly interacts with H3, it will

be interesting to determine whether H3 can be modified by 6b

and how potential 6b-mediated ribosylation of H3 may affect

transcription.

OTHER GRAM-NEGATIVE BACTERIA
Gram-negative bacteria have evolved a sophisticated mechanism

to deliver effector proteins into host cells. Indeed, the so-called

type III secretion system (T3SS) provides a continuous channel

for Type III effectors (T3Es) to travel from the bacterial cytoplasm

directly into the cytoplasm of eukaryotic cells in a process that

involves transport across (i) the two bacterial membranes sepa-

rated by a peptidoglycan layer and (ii) the plasma membrane of

the plant cell, which is surrounded by a thick cell wall (Buttner and

He, 2009). In plant pathogenic bacteria, T3SSs are encoded by hrp

(for HR and pathogenicity) genes that are required by bacteria to

elicit the HR in resistant plants and to cause disease in susceptible

plants (Lindgren et al., 1986)

In Ralstonia solanacearum, PopB is a small basic T3SS-secreted

protein that carries a functional C-terminal bipartite NLS and

a predicted helix forming a coiled-coil domain, suggesting that

PopB might interact with other proteins (Gueneron et al., 2000).

In addition to PopB and PopP2 (see below), at least three other

R. solanacearum T3Es of unknown function (RSp0216, RSc1349,

and RSc3272) appear to be nuclear localized when expressed in

plant cells (Anne-Claire Cazalé, personal communication).

The T3E from Xanthomonas campestris pathovar vesicatoria

(Xcv) HpaA (for Hrp-associated) is specifically required for dis-

ease development in pepper plants. hpaA mutants are affected in

pathogenicity whereas they partially retain the ability to induce an

HR (Huguet et al., 1998). HpaA presents two functional NLSs that

are important for full HpaA-mediated disease development in the

plant (Huguet et al., 1998).

Effector mining in Pseudomonas syringae pv. tomato DC3000,

which infects Arabidopsis thaliana and tomato, has identified more

than 30 candidate effector genes (Grant et al., 2006; Lindeberg

et al., 2006; Cunnac et al., 2009). Systematic survey of P. syringae

T3Es containing putative NLSs has identified AvrE, Hopl1, and

HopY1, although their nuclear localization in plant cells remains to

be demonstrated (Lionel Navarro, personal communication). The

P. syringae T3E HopU1 displays mono-ADP-ribosyltransferase

(ADP-RT) activity and mutation of HopU1 catalytic site abol-

ishes HopU1-mediated suppression of plant innate immunity

(Fu et al., 2007). HopU1 targets Arabidopsis RNA-binding pro-

teins with RNA-recognition motifs (RRMs), including GRP7, a

glycine-rich RNA-binding protein (GR-RBP). Arabidopsis grp7

mutant displays increased susceptibility to P. syringae inoculation

as compared to wild-type plants. Both HopU1 and GRP7 present

a dual nucleo-cytoplasmatic localization (Fu et al., 2007). The
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observation that ADP-ribosylation of GRP7 by HopU1 requires

two arginine residues within the RRM indicates that this modifi-

cation may affect the RNA-binding ability of GRP7. By disabling

the function of GR-RBPs, the pathogen may modify the host RNA

status, resulting in reduced amounts of immunity-related mRNAs

available in the plant and suppression of host immunity.

The P. syringae T3E HopAI1 displays phospho-Thr lyase activ-

ity and disrupts defense signal transduction by directly inactivating

MAPKs in plants (Zhang et al., 2007). A nuclear localization of

HopAI1 has not been reported. However, based on the functional

similarities between HopAI1 and the T3E OspF of the animal

pathogen Shigella flexneri, which also displays phospho-Thr lyase

activity that targets the phosphorylated MAPKs in the nucleus

(Li et al., 2007), it is tempting to speculate that HopAI1 may

be targeted to host cell nuclei. Interestingly, OspF remodels host

chromatin by inducing dephosphorylation and deacetylation of

H3, which leads to decreased expression of specific immunity-

related genes (Arbibe et al., 2007). This function is accomplished

through the interaction of OspF with host retinoblastoma pro-

tein, which has been linked to histone modification (Zurawski

et al., 2009). Whether HopAI1 is also able to target nuclear MAPKs

and/or modulate histone modifications in plant cells is an exciting

perspective for future research.

Although in most cases the cellular activities that are manip-

ulated by nuclear effectors remain to be determined, the action

of the following nuclear T3Es has been relatively well character-

ized and illustrates varied pathogen strategies that lead to the

establishment of a cellular environment that favors pathogen

proliferation.

TAL EFFECTORS FROM XANTHOMONAS AND RALSTONIA

Transcription activator-like (TAL) proteins, also called AvrBs3

family members, are T3Es only identified to date in plant patho-

genic Xanthomonas spp. and R. solanacearum (for recent reviews,

see Boch and Bonas, 2010; Bogdanove et al., 2010; Scholze

and Boch, 2010). Historically, TAL effectors were the first plant

pathogen T3Es shown to be specifically addressed to the nuclear

compartment (Yang and Gabriel, 1995; Van den Ackerveken et al.,

1996). Moreover, AvrBs3 is also a rare example of a plant pathogen

T3E for which translocation into the plant nucleus was evi-

denced by immunodetection after bacterial infection (Szurek et al.,

2002).

Transcription activator-like effectors act as transcriptional acti-

vators in the plant cell nucleus and provide a fascinating example

of manipulation of the eukaryotic transcriptional machinery by

directly promoting specific host gene reprogramming. More than

a hundred TAL candidate sequences have been identified to date,

mostly in Xanthomonas spp. genomes. Most TAL proteins contain

NLSs and an acidic domain involved in transcriptional activa-

tion and localize to the nucleus through their interaction with

importin-α (Szurek et al., 2001). However, the signature domain

of TAL effectors is located in the central part of the proteins

and consists of tandemly arranged nearly identical repeat units

(Figure 3A). These repeats are 34- or more rarely 35-amino acid

long and the number of repeats may vary from 1.5 to 33.5 repeats

(Boch and Bonas, 2010) although a minimum of 6.5 repeats is

required to detect a transcription activator function (Boch et al.,

2009). These TAL repeats were shown to be a novel type of

DNA-binding domain (Kay et al., 2007; Romer et al., 2007) in

which the target DNA-recognition specificity results from a one-

repeat-to-one-bp correlation with different repeat types exhibiting

a different DNA base pair specificity (Boch et al., 2009; Moscou and

Bogdanove, 2009). Each repeat domain of a TAL effector contains

two hypervariable residues at positions 12 and 13 per repeat which

have been termed RVDs (for repeat-variable di-residues) and that

are directly involved in the pairing to one specific nucleotide of

the target DNA sequence. Some RVDs are specific for a particular

DNA bp whereas others recognize more than one bp (Figure 3A;

Boch et al., 2009; Moscou and Bogdanove, 2009). The succession of

RVDs in each repeat therefore determines the nature of the target

promoter sequence that has been defined as a “TAL box” element

(Scholze and Boch, 2011). Quite remarkably, this specific recogni-

tion property of TAL effectors can be used to create artificial TAL

effectors with novel DNA-recognition specificities and opens the

way to various biotechnological applications (Boch et al., 2009;

Geissler et al., 2011).

First structural data on TAL repeats revealed that a repeat folds

into a helix-turn-helix structure reminiscent of a tetratrico pep-

tide repeat (TPR; Murakami et al., 2010). TPRs are 34-amino acid

long but are known to be involved in protein–protein interactions

in prokaryotes and eukaryotes rather than protein–DNA interac-

tions. The evolutionary origin of TAL effectors remains unknown

but several types of TAL repeats exist in nature: whereas 34 aa

repeats are prevalent in Xanthomonas spp., 35 aa repeats are found

in R. solanacearum (Cunnac et al., 2004) or some Xanthomonas

strains (Kay et al., 2005; Schornack et al., 2008). The biological

implications of such differences are unclear but raise intriguing

evolutionary questions since they suggest that TAL effectors con-

taining 35-amino acid repeats independently arose by successive

duplications of an initial variant repeat.

The pathogenic strategy of some Xanthomonas spp. appears to

rely massively on host gene reprogramming by TAL effectors since

some X. oryzae strains can harbor up to 28 TAL family mem-

bers (including pseudogenes; Gonzalez et al., 2007), several of

them being essential virulence factors for infection of rice (White

et al., 2009). No TAL effector candidates were identified in the

X. campestris pv. campestris (Xcc) strains B100, 8004, and ATCC

39913 for which a full sequence is available (da Silva et al., 2002;

Vorhölter et al., 2003; Qian et al., 2005). However, recent work has

identified between 1 and 4 TAL effector sequences in the genomes

of 60% of a total of 55 surveyed Xcc strains (Boris Szurek and

Laurent Noël, personal communication). The molecular functions

of these newly identified TAL effector candidates are unknown

but this finding suggests that TAL-based virulence strategies are

widespread among xanthomonads.

The role of most TAL effectors in virulence is still unknown

but there is some evidence of their role in pathogen proliferation

and dispersal. For example, AvrBs3 from X. campestris pv. vesi-

catoria induces cell hypertrophy in leaves of susceptible pepper

hosts, leading to epidermal rupture that is thought to be involved

in bacterial dissemination (Marois et al., 2002). AvrBs3 binds to

the UPA box, a TAL box found in the promoters of some pepper

genes including UPA20 (Figure 3B). UPA20 encodes a TF that

controls expression of auxin-induced genes and α-expansins and
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FIGURE 3 |TAL effector-DNA specificity and implications in plant

disease/resistance. (A) TAL effectors contain an N-terminal domain

required for T3SS-dependent secretion (T3S), a tandem repeat domain

(in blue), nuclear localization signals (NLS) and an acidic activation

domain (AAD). The central repeat domain confers DNA-binding

specificity. One 34-amino acid repeat is shown with the variable

di-residue (in red) at positions 12 and 13. The type of di-residue confers

specificity for one or several DNA bases, as indicated, and di-residues

from each repeat define a specific DNA “TAL box.” (B) Upon binding to

the TAL box in the promoter of a plant susceptibility gene, transcription

is activated (green arrow), which contributes to disease development.

Plant resistance may result from either a molecular decoy strategy

where the TAL box drives the expression of a plant “executor”

(Resistance) gene (orange arrow) to counter the pathogen, or from

occurrence of a mutation in the TAL box DNA sequence which prevents

binding of the TAL effector.

is crucial for the development of plant cell hypertrophy (Kay et al.,

2007; Romer et al., 2007).

A second example illustrating how bacteria use a TAL effec-

tor to manipulate host transcription to its own benefit involves

the rice gene Xa13. Xa13, which is transcriptionally activated by

the TAL effector PthXo1 (Yang et al., 2006; Romer et al., 2010),

is defined as a susceptibility gene since its expression facilitates

X. oryzae pv. oryzae (Xoo) infection. It was recently shown that

Xa13 corresponds to OsSWEET11 that belongs to a recently dis-

covered family of sugar transporters mediating sugar efflux in

plants (Chen et al., 2010). PthXo1-mediated induction of OsS-

weet11 transcription most probably causes glucose efflux from

rice cells in order to feed bacteria. An additional TAL effector

from Xoo, AvrXa7, triggers induction of OsSWEET14, and conse-

quently allows overcoming xa13-mediated resistance by inducing

sugar release through another SWEET transporter (Chen et al.,

2010). A separate report showed that Xa13 is a plasma membrane

protein interacting with two copper transporter proteins that con-

tribute to decrease the copper content of xylem sap (Yuan et al.,

2010). Since Xoo is a vascular pathogen that spreads through xylem

vessels, PthXo1-dependent increased transcription of Xa13 might

pave the way for Xoo successful infection by clearing its path of

toxic amounts of copper (Yuan et al., 2010).

In order to circumvent TAL-mediated pathogenic strategies,

resistant plants have developed defense strategies based on sub-

verting the recognition specificities of TAL effectors to trap the

pathogen. Indeed, point mutations in the promoter of a key

susceptibility gene may alter TAL effector recognition, and subse-

quent gene activation, leading to plant resistance. For example, the

resistance xa13 and susceptibility Xa13 alleles show sequence poly-

morphisms only in their promoter regions, resulting in induced

expression of Xa13 but not recessive xa13 upon Xoo infection

(Figure 3B; Chu et al., 2006). However, such a resistance strat-

egy would be much limited (or presumably take longer to be

effective) in some other cases where TAL effectors target multiple

host susceptibility genes. The pepper Bs3 resistance gene illus-

trates a more subtle mechanism to promote resistance since, in

this case, TAL effectors are lured into inducing the expression of

a gene that promotes plant defense (Figure 3B; Boch and Bonas,

2010). Induction of Bs3 expression specifically triggers resistance

and HR responses to Xanthomonas strains carrying the TAL T3E

AvrBs3 (or related effectors displaying the same DNA-recognition
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specificity; Romer et al., 2007). Bs3 encodes a protein homologous

to flavine-dependent mono-oxygenases, which play roles in auxin

biosynthesis and glucosinolate metabolism, therefore contribut-

ing to plant defense against pathogens (Schlaich, 2007). Although

it is not known whether Bs3-triggered cell death is due to toxin

production or induction of defense signaling, resistant plants in

this case have evolved a molecular trap to detect AvrBs3 activity.

Indeed, by mimicking the upa20 promoter, BS3 subverts the vir-

ulence function of AvrBs3 and instead initiates plant immunity

(Romer et al., 2007). Interestingly, this strategy should prove use-

ful to engineer durable resistance to multiple pathogenic strains

(or species). Along these lines, it has been already demonstrated

that different TAL boxes combined into one promoter render

this promoter responsive to several TAL effectors (Romer et al.,

2009).

Finally, similar to Xanthomonas TAL proteins, HsvG and HsvB

effectors of gall-forming Pantoea agglomerans act as transcrip-

tional activators, although they are structurally distinct from TAL

effectors (Nissan et al., 2006). HsvG and HsvB determine host

specificity on gypsophila and beet, respectively. Both proteins

present two functional NLSs required for their nuclear target-

ing and are able to bind DNA and activate transcription (Nissan

et al., 2006; Weinthal et al., 2011). Although the mode of action of

HsvG and HsvB remains unknown, it has been hypothesized that

it involves modulation of host phytohormones associated with

gall formation. A recent report showed that HsvG induces the

transcriptional activation of a gene named HSVGT in Gypsophila

paniculata (Nissan et al., 2011). HSVGT encodes a predicted acidic

protein of the DnaJ family, which presents a bipartite NLS as well

as zinc-finger and leucine zipper DNA-binding motifs, typical of

TFs. HsvG binds to the HSVGT promoter indicating that HSVGT

is a direct target of HsvG (Nissan et al., 2011). These data indicate

that HsvG functions as a TF in gypsophila.

XopD FROM XANTHOMONAS CAMPESTRIS

XopD from the bacterial strain Xcv (XopDXcv) promotes bacte-

rial growth and delays the onset of leaf chlorosis and necrosis

in late infection stages of tomato, presumably to sustain bacte-

rial populations in infected tissues (Kim et al., 2008). XopDXcv

is a modular protein of 760 amino acids that shows different bio-

chemical activities and contains (i) a recently identified N-terminal

domain of 215 amino acids (Canonne et al., 2010), (ii) a helix-

loop-helix domain (HLH), (iii) two tandemly repeated EAR (ERF-

associated amphiphilic repression) motifs, previously described in

plant transcriptional repressors during defense responses (Kazan,

2006), and (iv) a C-terminal cysteine protease domain with struc-

tural similarity with the yeast ubiquitin-like protease 1 (ULP1;

Figure 4A). Consistent with its protein structure, XopDXcv dis-

plays small ubiquitin-like modifier (SUMO) protease (Canonne

et al., 2010) and non-specific DNA-binding activities (Kim et al.,

2008). XopDXcv has been additionally shown to repress tran-

scription of defense- and senescence-associated plant genes in an

EAR-dependent manner, suggesting that XopDXcv may target host

TFs (Kim et al., 2008).

FIGURE 4 | Examples of virulence strategies displayed by bacterial

effectors in the plant cell nucleus. (A) XopD from the strain B100 of Xcc is a

modular protein with an N-terminal domain of unknown function, a

helix-loop-helix domain (HLH), three tandemly repeated transcriptional

repressor domain of the EAR type and a C-terminal SUMO protease domain.

It has been suggested that XopD DNA-binding activity through its HLH

domain may provide access to chromatin and that XopD may thus modulate

host transcription by altering chromatin remodeling. XopD may additionally

interact with host TFs and repress their transcriptional activity directly via its

EAR domains and/or by TF deSUMOylation. Recent work shows that the HLH

domain of XopD targets the Arabidopsis TF AtMYB30 leading to repression of

AtMYB30 trasncriptional activity and suppression of the plant HR and defense

responses. (B) The R. solanacearum effector protein PopP2 displays

acetyltransferase activity, suggesting that PopP2 may directly manipulate host

transcription through chromating remodeling following acetylation of histone

residues. PopP2 acetyltransferase activity may also promote the recruitment

of TFs and enhance their DNA-binding affinity, resulting in modulation of host

transcription. Finally, the interaction of PopP2 with host proteins, such as the

cysteine protease RD19 and the resistance gene RRS1-R may additionally

affect RRS1-R-meadited transcriptional reprogramming.
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XopD is targeted to plant cell subnuclear structures named

nuclear bodies (or nuclear foci; Hotson et al., 2003; Canonne

et al., 2010). The molecular mechanism allowing XopD nuclear

import remains unknown but a truncated XopD version con-

taining only the HLH domain of XopD (amino acids 216–405),

and not comprising its putative NLS, has been shown to be nec-

essary and sufficient for XopD nuclear import and subnuclear

targeting (Canonne et al., 2011). Intriguingly, expression of XopD

appears to induce reorganization of the nuclear structure in host

cells, leading to non-specific relocalization of all tested nuclear

proteins into nuclear bodies. In addition, DAPI staining showed

that DNA accumulation is weaker in nuclear bodies, where XopD

is expressed, compared to the nucleoplasm, where DNA distri-

bution seems to remain unaltered (Canonne et al., 2011). It is

thus enticing to speculate that XopD-induced modification of

the nuclear structure and protein distribution may be part of a

general virulence strategy, which allows Xanthomonas to perturb

plant cell responses to bacterial infection. Along these lines, it has

been proposed that the presence of the HLH and EAR domains

in XopD may provide access to chromatin and/or transcriptional

units, leading to modulation of host transcription by affecting

chromatin remodeling and/or TF activity (Kay and Bonas, 2009;

Figure 4A).

In agreement with the idea that plant TFs and/or regula-

tors might be direct targets of XopD, recent data show that

XopD from the strain B100 of X. campestris pathovar campestris

(XopDXccB100), which presents a similar protein structure to

XopDXcv (Canonne et al., 2012), is able to target the Ara-

bidopsis MYB TF AtMYB30. AtMYB30 is a positive regula-

tor of defense and cell death associated responses through the

activation of the lipid biosynthesis pathway that leads to the

production of very long chain fatty acids (VLCFAs; Raffaele

et al., 2008). In agreement with the finding that transcriptional

activation of VLCFA-related genes by AtMYB30 is required to

mount an efficient defense response during bacterial infection,

it has been demonstrated that AtMYB30 transcriptional activ-

ity is tightly controlled by the plant cell. Indeed, AtMYB30 is

able to induce partial nuclear relocalization of the secreted phos-

pholipase At sPLA2-α, which is otherwise localized intracellularly

in Golgi-associated vesicles before being secreted to the extra-

cellular space. The physical interaction between AtMYB30 and

At sPLA2-α leads to repression of the AtMYB30-mediated tran-

scriptional activity and negative regulation of plant HR and

defense responses (Froidure et al., 2010). These data highlight

the importance of dynamic nucleocytoplasmic protein trafficking

for the regulation of defense-related transcription. Interestingly,

in addition to the control of AtMYB30 activity exerted by the

plant cell, AtMYB30 transcriptional activation is additionally con-

trolled by bacteria. Indeed, XopDXccB100 specifically interacts

with AtMYB30. This protein association, which appears to be

independent of nuclear foci formation, leads to inhibition of the

transcriptional activation of AtMYB30 target genes and suppres-

sion of plant defense during Xanthomonas infection (Canonne

et al., 2011; Figure 4A). The HLH domain of XopDXccB100 is

necessary and sufficient to mediate interaction with AtMYB30

and repression of AtMYB30 transcriptional activation and plant

resistance responses.

Considering XopD modular structure and varied biochemical

activities, it is likely that XopD mediates multiple protein–DNA

and protein–protein interactions to modulate host transcription.

In addition, XopD-dependent bacterial strategies used to subvert

plant resistance may vary depending on the Xanthomonas/host

plant interaction. XopD SUMO protease, EAR transcription

repressor, and DNA-binding activities are at least partially involved

in promoting virulence in tomato during Xcv infection (Kim et al.,

2008). As previously mentioned, the HLH domain of XopD is

necessary and sufficient to suppress AtMYB30-mediated defense

during Arabidopsis infection by Xcc, while the EAR motifs and Cys

protease domains are not involved in this process. It is thus tempt-

ing to speculate that the EAR and the Cys protease domains in

XopD are likely involved in targeting host defense-related compo-

nents other than MYB30. Together, these data suggest that different

XopD host targets are involved in the outcome of the interaction

between Xcc and Arabidopsis. Future work should uncover addi-

tional XopD-related molecular interactions during Xanthomonas

infection.

PopP2 FROM RALSTONIA SOLANACEARUM

The YopJ/AvrRxv family of T3Es is present in both mammalian

and plant pathogens, indicating that they play important roles in

the interaction with the host (Orth, 2002; Roden et al., 2004).

YopJ/AvrRxv-like effectors belong to the C55 peptidase family

of the clan CE of cysteine proteases, which share a nucleophile

cysteine and a predicted catalytic core composed of three con-

served amino acid residues (H,D/E,C; Hotson and Mudgett, 2004;

Rawlings et al., 2006). YopJ/AvrRxv family members differ in their

subcellular localization, indicating that their host targets may be

diverse. For example in Xcv, AvrRxv is a cytoplasmic protein (Bon-

shtien et al., 2005), XopJ is targeted to the plasma membrane

(Thieme et al., 2007) and AvrBsT localizes to both cytoplasm and

nucleus, although the biological significance of AvrBsT nuclear

localization remains to be elucidated (Szczesny et al., 2010).

PopP2, a member of the YopJ/AvrRxv T3E family, is injected in

plant cells by R. solanacearum, the causal agent of bacterial wilt in

more than 200 plant species (Hayward, 1991). The RRS1-R resis-

tance gene from Arabidopsis plants of the Nd-1 ecotype confers

broad-spectrum resistance to several strains of R. solanacearum.

RRS1-R encodes an R protein with original structure since it

belongs to the Toll/interleukin1 receptor (TIR)-NBS-LRR sub-

class of R proteins and presents a C-terminal WRKY motif that is

characteristic of the WKRY class of zinc-finger plant TFs (Deslan-

des et al., 2003; Figure 4B). RRS1-R presents a putative bipartite

NLS and is localized in the nucleus. Intriguingly, PopP2, which

presents an NLS that is required for its nuclear targeting (Des-

landes et al., 2003), promotes nuclear accumulation of RRS1-R,

possibly by preventing its proteasomal degradation (Tasset et al.,

2010). PopP2 and RRS1-R physically interact in the nucleus of Ara-

bidopsis cells but whether and how this protein interaction affects

host transcription remains to be determined. The Arabidopsis cys-

teine protease RESPONSIVE TO DEHYDRATATION19 (RD19)

was identified in a yeast two-hybrid screen as a PopP2-interacting

protein (Figure 4B). In plant cells, PopP2 induces nuclear targeting

of RD19, which is otherwise localized to mobile vacuole-associated

vesicles and destined to the lytic vacuole (Bernoux et al., 2008).
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RD19 does not contain a predicted NLS and the molecular mech-

anism allowing its nuclear recruitment is still unknown. It has

been proposed that a PopP2-induced membrane permeabiliza-

tion process would lead to the release of RD19 from mobile

vacuole-associated compartments into the cytoplasm, where it

would become available for SUMOylation (Bernoux et al., 2008).

Indeed, lysine residues with high probability of being SUMOy-

lated are present in RD19. Therefore, it has been suggested that

RD19 SUMOylation may generate the signal required for its

nuclear translocation. Alternatively, PopP2 may intercept RD19

on its way to the vacuole through retrograde transport from

the endomembrane system, which has some continuity with the

nuclear envelope. RD19 interacts with PopP2, but not RRS1-R, in

the plant cell nucleus. Since RD19, whose expression is induced

by R. solanacearum infection, is required for Arabidopsis resistance

to Ralstonia, it was proposed that RD19 associates with PopP2 to

form a nuclear complex that is required for activation of the plant

resistance response (Figure 4B). PopP2 interaction with RRS1-R

may lead to regulation of defense-related gene expression either

directly via RRS1-R WKRY domain or through the action of addi-

tional plant TFs (Deslandes et al., 2003; Tasset et al., 2010). In

this context, it has been suggested that, once in the nucleus, RD19

may function as a transcriptional activator and/or compete with

RRS1-R for similar or overlapping cis-elements in the promoters

of defense-related genes (Bernoux et al., 2008).

The conserved cysteine residue in PopP2 catalytic triad is

required to trigger RRS1-R-mediated resistance. Since PopP2 is

able to display acetyltransferase activity, in addition to the pro-

posed indirect modulation of transcription by PopP2 via its inter-

action with RRS1-R or RD19, it has been suggested that PopP2

may directly manipulate host transcription (Tasset et al., 2010;

Figure 4B). Indeed, acetylation of lysine residues of histone tails

facilitates access of TFs to DNA by disrupting higher-order pack-

aging of the chromatin (Kornberg and Lorch, 1999). Addition

of acetyl groups may also neutralize the positive charge of his-

tones, thereby reducing their affinity for DNA (Hong et al., 1993).

In addition, acetylation forms docking sites for recruitment of

transcriptional co-activators and impairs the ability of the lysine

side chain to form hydrogen bonds thereby enhancing specific or

inhibiting non-specific DNA-binding activities of TFs (Mujtaba

et al., 2004; Friedler et al., 2005). It has been therefore proposed

that PopP2 autoacetylation and/or acetylation of its host targets

may affect gene transcription in host cells (Tasset et al.,2010). Iden-

tification of host targets of PopP2 should provide insight into the

molecular mechanisms developed by R. solanacearum to suppress

plant resistance.

PHYTOPLASMA
Phytoplasma are specialized bacteria that are intracellular obligate

parasites of plant phloem tissue and their transmitting insect vec-

tors. Phytoplasmas secrete effectors into cells of plants and insects

to target host molecules that modulate plant development and

increase phytoplasma fitness (Sugio et al., 2011b). As phytoplasma

are located intracellularly for much of their life cycle, it is likely that

their effectors are released into the cytoplasm of host cells via Sec-

dependent translocation. Fifty-six secreted effector proteins were

identified in AY-WB (Aster Yellows phytoplasma strain Witches’

Broom) and four contain NLSs. For one of these four effectors,

named SAP11, it was further shown that the NLS sequence is

required for SAP11 accumulation in Nicotiana benthamiana cell

nuclei (Bai et al., 2009). Phytoplasmas are limited to the phloem

sieve cells of their plant hosts, which have no nuclei, suggesting the

possibility that SAP11 targets tissues beyond the phloem. Consis-

tent with SAP11 nuclear targeting, SAP11 binds and destabilizes a

class I and a subset of class II TCP TFs to manipulate plant devel-

opment and jasmonic acid biosynthesis (Sugio et al., 2011a). As a

result, fitness of the leafhopper insect vector is improved, which

ensures efficient transmission of the phytoplasma to other plants

(Sugio et al., 2011a).

VIRUSES
Several viral encoded proteins have been shown to translocate

into the nuclei during infection. For example, nuclear targeting

in infected cells has been observed for various proteins of the

rhabdoviruses Sonchus yellow net virus (SYNV) and Maize fine

streak virus (MFSV; Goodin et al., 2002; Tsai et al., 2005). An addi-

tional example of a viral protein addressed to nuclei is the 2b

protein, a virulence determinant encoded by Cucumber mosaic

virus (CMV) that suppresses initiation of post-transcriptional

gene silencing (PTGS) in transgenic N. benthamiana. CMV 2b

protein contains an NLS that is essential for translocation of 2b to

the nuclei of tobacco cells. Furthermore, nuclear targeting of 2b

protein is required for efficient suppression of PTGS (Lucy et al.,

2000).

The NIa and NIb proteins of Tobacco etch potyvirus (TEV)

contain two NLSs and have been shown to be translocated to the

nucleus of infected cells (Restrepo et al., 1990; Carrington et al.,

1991; Li et al., 1997). The NIa proteinase is required for proteolytic

maturation of most TEV proteins (Carrington et al., 1988) whereas

NIb functions as the RNA-dependent RNA polymerase (Allison

et al., 1986). Mutations in the NLSs of NIb disrupt its nuclear

translocation and RNA amplification of TEV (Li and Carring-

ton, 1995; Li et al., 1997). It has been additionally demonstrated

that NIa interacts with NIb and that this protein interaction is

important during TEV genome replication (Li et al., 1997).

The protein p25 encoded by Beet necrotic yellow vein virus

(BNYVV) is an important determinant of leaf symptom devel-

opment and also governs BNYVV invasion of plant roots and

induction of rootlet proliferation in sugar beet (Jupin et al.,

1992; Tamada et al., 1999). p25 actively shuttles between the

cytoplasm and the nucleus of infected cells (Haeberle and Stussi-

Garaud, 1995; Vetter et al., 2004). An N-terminal monopartite

NLS in p25 is responsible for nuclear accumulation of the pro-

tein via its interaction with importin-α, whereas a NES sequence

in the C-terminus of p25 mediates its active nuclear export in a

CRM1/exportin1-dependent manner. Importantly, modification

of the wild-type distribution of p25 between the nuclear and

cytoplasmic compartments is accompanied by alterations in p25-

related symptoms during virus infection (Vetter et al., 2004). These

data highlight the importance of nucleocytoplasmic protein traf-

ficking on the production of necrotic symptoms during BNYVV

infection.

Similarly, the regions involved in nucleocytoplasmic shuttling

of the ORF3 protein of Groundnut rosette virus (GRV) have been
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mapped (Ryabov et al., 2004). ORF3 is required for viral RNA

protection and movement through the phloem. In infected cells,

ORF3 is localized in cytoplasmic granules and also in nuclei, pref-

erentially targeting nucleoli, indicating that this protein can be

transported between cytoplasm and nucleus during the course

of virus infection (Ryabov et al., 1998, 2004). An arginine-rich

NLS in ORF3 is responsible for its nuclear targeting whereas

mutations in a leucine-rich NES disrupt nuclear import. The

importance of nuclear import and export of GRV ORF3 pro-

tein is underlined by the high sequence conservation of the

NLS and NES regions among different viruses (Ryabov et al.,

2004).

The Cauliflower mosaic virus (CaMV) open reading frame VI

product (P6) is a multifunctional protein essential for the viral

infection cycle. P6 is a translational reinitiation factor that asso-

ciates with the host translational machinery and thus permits

translation of downstream ORFs (Park et al., 2001). The P6 pro-

tein is the major determinant of host specificity in CaMV and

determines symptom severity (Daubert and Routh, 1990). P6 is

an abundantly synthesized CaMV protein that in the cytoplasm of

infected cells forms electron-dense inclusion bodies, also referred

to as viroplasms, where virus replication and assembly occur (Maz-

zolini et al., 1989). Viroplasms have been additionally detected at

the periphery of the nucleus and it has been shown that P6 is able

to enter the nucleus during viral infection, suggesting that P6 is

a nucleocytoplasmic shuttling protein (Haas et al., 2005). Nuclear

localization of P6 is consistent with the finding that P6 interacts

with nuclear-localized proteins (Park et al., 2001; Bureau et al.,

2004). The N-terminal region of P6 presents an amphipatic α-

helix containing a leucine zipper motif that is predicted to form

a parallel coiled-coil structure. P6 N-terminal region is well con-

served among CaMV strains and mediates the interaction between

P6 molecules in vitro, making of this region an essential deter-

minant for the formation of viroplasms (Haas et al., 2005). An

NES has been identified in P6 Leu-rich sequence that bears some

resemblance to NES sequences found in the BR1 protein of the

geminivirus Squash leaf curl virus (Ward and Lazarowitz, 1999)

and in several shuttling nuclear proteins, such as HIV Rev pro-

tein (Pollard and Malim, 1998). The NES in P6 determines its

CRM1-dependent nuclear export and thus P6 localization in the

cytoplasm (Haas et al., 2005). It has been suggested that P6 nuclear

export probably occurs very rapidly in infected cells, so that only

low amounts are present in the nucleus at any time. Therefore,

activity of CRM1-dependent export pathway would limit the

extent of P6 nuclear accumulation in the nucleus that could be

deleterious for the CaMV infectious cycle. Different hypotheses

regarding the role of P6 nuclear accumulation have been for-

mulated. Since P6 is able to bind single- and double-stranded

RNA (De Tapia et al., 1993; Cerritelli et al., 1998), it has been

proposed that, similar to the Rev protein of HIV-1 (Pollard and

Malim, 1998), P6 may control export of CaMV 35S RNA and its

spliced versions. Additionally, P6 has been detected in the nucleo-

lus where assembly of ribosomal subunits occurs, suggesting that

P6 may interact directly with ribosomes before their export to

render them competent for translation of the CaMV polycistronic

mRNA. In this context, the P6-interacting ribosomal proteins L18

and L24 (Leh et al., 2000; Park et al., 2001) could be targets for

P6 since they participate in the formation of the 60S riboso-

mal subunit in the nucleolus (Andersen et al., 2002). Finally, as

a nucleocytoplasmic protein, P6 may play a role in inhibition

of nonsense-mediated mRNA decay to prevent degradation of

the 35S RNA and its spliced versions (Maquat and Carmichael,

2001). Indeed, P6 nuclear export is mediated by the CRM1 path-

way (Kudo et al., 1998), which is known to be specifically used

for export of the ribosomal subunits and of some cellular mRNAs

(Weis, 2002).

The TIR-NBS-LRR immune receptor N is localized to the

cytoplasm and the nucleus of uninfected tobacco cells. During

Tobacco mosaic virus (TMV) infection, the viral replicase p50 is

delivered into the plant cell cytoplasm, where it is recognized by

the N protein, leading to the establishment of plant resistance

(Burch-Smith et al., 2007). In TMV-infected cells, cytoplasmic

p50 induces recruitment to the cytoplasm of NRIP1, a tobacco

rhodanase sulfurtransferase that otherwise localizes to the stroma

of chloroplasts. NRIP1 is able to interact with N but only in the

presence of p50 and NRIP1 rhodanase sulfurtransferase activity

is not necessary of its association with N or p50. In this context,

a cytoplasmic pre-recognition complex is formed that contains

NRIP1, p50, and possible additional host proteins (Caplan et al.,

2008). Interaction of N with this pre-recognition complex would

lead to its activation and, once activated, N would be either translo-

cated into the nucleus or able to send a signal that activates the N

nuclear pool, resulting in a successful defense response. Shuttling

of p50-activated N from the cytoplasm to the nucleus appears

to be required for an efficient defense response (Burch-Smith

et al., 2007). Similarly, NRIP1 nuclear relocalization is necessary

to provide full resistance to TMV infection (Caplan et al., 2008).

Although the molecular mechanism behind p50-mediated NRIP1

nuclear relocalization remains to be determined, different hypoth-

esis have been proposed to explain this finding. p50 might disrupt

global chloroplast import by an unknown mechanism that would

affect translocation of NRIP1. Otherwise, interaction with p50

might mask the chloroplast targeting signal in NRIP1 facilitat-

ing its nuclear import. Alternatively, NRIP1 may be released from

chloroplasts into the cytoplasm and the nucleus following p50-

induced permeabilization of the outer membrane. Finally, the

close physical association between stromules and nuclei might

enhance the nuclear import of chloroplastic factors, including

NRIP1.

FILAMENTOUS PATHOGENS
Plant pathogenic fungi and oomycetes, collectively referred to as

filamentous pathogens, are responsible for a variety of diseases

in natural populations and agricultural crops. As sophisticated

manipulators of plant cell functions, filamentous pathogens are

intimately associated with host plants cells. As previously men-

tioned, haustoria are highly specialized structures that develop

within plant cells and appear to be involved in nutrient acquisi-

tion (Hahn and Mendgen, 2001). In addition, haustoria contain

specific membrane proteins required for pathogenicity (Avrova

et al., 2008), are highly enriched in secreted effector proteins and

most probably play a role in mediating effector translocation into

host cells, although this hypothesis remains to be formally demon-

strated (Panstruga and Dodds, 2009). Following secretion from the
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pathogen, effectors that carry host-translocation signals are trans-

ported into the plant cell. However, in order to reach the host

cytoplasm, effectors need to travel across two membranes, one

pathogen-derived and one host cell-derived membrane surround-

ing the haustorium, and the nature of the mechanism directing

effector delivery is still unclear.

Catalogs of the complete set of secreted proteins for a num-

ber of filamentous pathogens have been recently generated thanks

to extensive genome sequencing programs coupled with robust

computational predictions of secretion signals and other sequence

motifs characteristic of effectors (Dean et al., 2005; Kamper et al.,

2006; Haas et al., 2009; Duplessis et al., 2011). From these stud-

ies, it is clear that oomycetes and phytopathogenic fungi secrete

a suite of effector molecules that is considerably larger than the

effector repertoires of phytopathogenic bacteria. These candidate

effector proteins are predicted to modulate host innate immunity

and enable parasitic infection (Kamoun, 2007; Hogenhout et al.,

2009).

OOMYCETES

Oomycota or oomycetes form a distinct phylogenetic lineage of

fungus-like eukaryotic microorganisms. Species of the oomycete

genus Phytophthora are devastating pathogens of dicotyledoneous

plants. Sequencing and analysis of oomycete genomes has revealed

that the predicted proteomes include a large repertoire of candi-

date host-translocated effector proteins that have been classified

in two main classes, named RXLR and CRN (for crinkling and

necrosis; Haas et al., 2009). Both RXLR and CRN effector proteins

present a modular architecture and include a signal peptide, con-

served N termini functioning in host delivery and highly diverse

C-terminal domains directing the effector activity (Haas et al.,

2009; Schornack et al., 2010). Indeed, RXLR effectors are defined

by a conserved N-terminal RXLR motif, flanked by a high fre-

quency of acidic (D/E) residues, that enables delivery of effector

proteins inside plant cells (Whisson et al., 2007; Dou et al., 2008).

It has been proposed that RxLR motifs enable effectors to bind

to host cell surface phosphatidylinositol-3-phosphate (PI3P) and

subsequently enter host cells through lipid raft-mediated endo-

cytosis (Kale et al., 2010). However, this mechanism of effector

translocation and the experiments that support it are still under

debate (de Jonge et al., 2011; Stassen and Van den Ackerveken,

2011). Similar to RXLR effectors, N termini of CRN proteins

present a conserved but not invariant LXLFLAK motif, which is

required for effector targeting and translocation (Schornack et al.,

2010). Aphanomyces euteiches CRN-like sequences carry a con-

served N-terminal LQLYLALK motif similar to the Phytophthora

LXLFLAK sequence (Gaulin et al., 2008). It has been demonstrated

that the LQLYLALK motif in A. euteiches CRNs is able to mediate

effector translocation (Schornack et al., 2010).

Five hundred sixty-three RXLR effectors are predicted for the

strain T30-4 of Phytophthora infestans (Haas et al., 2009), whereas

they appear to be absent in Pythium ultimum (Levesque et al.,

2010) and A. euteiches (Gaulin et al., 2008), suggesting that these

effectors have evolved only recently within the Peronosporales,

coinciding with the appearance of haustoria (Levesque et al.,

2010). In contrast, the CRN family is ubiquitous in plant path-

ogenic oomycetes (Gaulin et al., 2008; Levesque et al., 2010),

suggesting that the CRNs belong to an ancient effector family that

arose early in oomycete evolution before the emergence of hausto-

ria. Recent evidence however indicates that a significant part of the

oomycete secretome was probably acquired from fungi through

horizontal gene transfer events, and this may have facilitated the

spread of oomycetes to plant hosts (Richards et al., 2011). Conser-

vation of the RXLR motif, which has not been described in fungal

effectors, has enabled the computational development of genome-

wide catalogs of candidate RXLR effectors from several oomycete

pathogens (Tyler et al., 2006; Win et al., 2007; Jiang et al., 2008;

Haas et al., 2009). In addition, putative RXLR effector genes have

been used in high-throughput screens to predict novel functional

activities (Vleeshouwers et al., 2008; Oh et al., 2009). Similarly,

LXLFLAK-type motifs may be used in genome-wide searches to

identify oomycete effector proteins.

Subcellular localization studies of diverse CRN C termini unre-

lated in sequence and derived from two divergent species (CRN2,

CRNR8, CRN15, and CRN16 from P. infestans and AeCRN5 from

A. euteiches) revealed that CRNs accumulate in plant cell nuclei

(Schornack et al., 2010). NLS motifs were predicted in CRN8,

CRN16, and AeCRN5, suggesting that CRN proteins recruit the

host nuclear import machinery to achieve nuclear accumulation.

Indeed, CRN2, CRNR8, CRN16, and AeCRN5 nuclear accumula-

tion depends on the host nuclear import factor importin-α, and at

least in the case of CRN8, on a functional NLS. Moreover, cell death

induced by CRN8 requires its accumulation in host nuclei, sug-

gesting that CRN proteins are targeted to the host nucleus during

plant infection (Schornack et al., 2010). In P. sojae, CRN pro-

teins PsCRN63 and PsCRN115, which are involved in virulence

on soybean and suppression of host defense responses, contain an

NLS motif (Liu et al., 2011). Despite their high sequence simi-

larity (95.7% identity at the amino acid level), PsCRN63 triggers

cell death in N. benthamiana whereas PsCRN115 is able to sup-

press cell death induced by the P. sojae necrosis-inducing protein

PsojNIP (Qutob et al., 2002) and PsCRN63. A functional NLS

is required for PsCRN63 induction of cell death and exclusion of

PsCRN63 from the nucleus using a NES prevented cell death devel-

opment, suggesting that PsCRN63 triggers cell death in the plant

cell nucleus (Liu et al., 2011). In contrast, the NLS in PsCRN115 is

not required for cell death suppression. Although the subcellular

localization of PsCRN63 and PsCRN115 was not investigated, it

was therefore proposed that PsCRN63 and PsCRN115 may share

the same molecular host targets involved in cell death signaling

and that their distinct activities are dependent or their nuclear

localization (Liu et al., 2011).

Supressor of necrosis1 (SNE1) and Avr3a are nuclear-targeted

effectors from P. infestans that suppress plant cell death responses.

SNE1 is a highly hydrophilic secreted protein that presents NLSs

and is able to translocate to the cell nucleus and suppress the

action of secreted cell death-inducing effectors that are expressed

during the necrotrophic growth phase of P. infestans, as well as pro-

grammed cell death mediated by a range of Avr–R protein inter-

actions (Kelley et al., 2010). Avr3a has been shown to interact with

and stabilize the U-box E3 ligase CMPG1 that is required for cell

death trigerred by P. infestans elicitin INF1 (ICD) and is degraded

by the 26S proteasome (Bos et al., 2010). This protein interac-

tion, which leads to suppression of ICD, occurs in the nucleus
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and, more particularly, in the nucleolus of host cells (Gilroy et al.,

2011). It has been therefore proposed that the nucleus is likely

a major site of CMPG1 activity and 26S proteasome-mediated

degradation. In an additional study, the authors searched for P.

infestans proteins that contain a signal peptide and an NLS and

identified four proteins called, Nuk6, Nuk7, Nuk10, and Nuk12.

All four proteins were found in the nucleus of N. benthamiana cells

in Agrobacterium-mediated transient expression assays. Nuclear

localization of Nuk6, Nuk7, and Nuk10 is dependent on NbIMPα1

and NbIMPα2, whereas Nuk12 can target nuclei independently

of these host α-importins (Kanneganti et al., 2007; Vleeshouwers

et al., 2011). Interestingly, a mutation in the MOS6 gene, encod-

ing AtImpα3 (one of the nine Arabidopsis α-importins), enhanced

susceptibility to an additional oomycete plant pathogen Hyaloper-

onospora parasitica (Hpa; Palma et al., 2005). This finding confirms

the importance of protein nucleocytoplasmic trafficking during

defense responses against oomycete pathogens.

Finally, sequencing of the Hpa genome predicted 134 high-

confidence effector gene candidates of the RxLR type (HaRxLs),

which is significantly fewer than in Phytophthora genomes (Baxter

et al., 2010). Notably, a recent study showed association of the plant

cell nucleus with developing haustoria in Arabidopsis mesophyll

cells, possibly by moving through the actin cytoskeleton (Caillaud

et al., 2011). In this context, it is tempting to speculate that haus-

toria directly influence the position of the nucleus in the cell in

order to enhance delivery of effectors that compromise defense-

related nuclear processes. Indeed, 66% of 49 tested HaRxLs target

the nucleus, either as strictly nuclear or nuclear–cytoplasmic.

However, only 37.5% of the 16 strictly nuclear HaRxLs carried

a canonical NLS (Caillaud et al., 2011), suggesting that endoge-

nous host proteins may facilitate nuclear delivery of these effectors.

Interestingly, 21% of the HaRxLs tested localized to the nucleolus,

indicating that Hpa hijacks the plant cell transcriptional machin-

ery perhaps by acting on RNA biogenesis, transport, or splicing, on

ribosome biogenesis and thereby on protein translation to prevent

de novo induction of defense responses.

FUNGI

Similarly to oomycetes, pathogenic fungi have elaborated intri-

cate parasitic relationships to feed from their host plants and the

effector-dependent transcriptional reprogramming of host cells is

much plausible. The production of apoplastic effectors by filamen-

tous fungi is well documented (de Jonge et al., 2011; Stassen and

Van den Ackerveken, 2011). Similar to what has been described for

oomycete effectors, the N termini of various fungal effectors have

been reported to carry degenerate RxLR motifs that bind to PI3P

and mediate effector translocation, although this may not be a uni-

versal means of effector uptake (Kale et al., 2010). Indeed, powdery

mildew and rust fungi encode small secreted proteins that share an

N-terminal Y/F/WxC motif that is situated downstream of signal

peptide and not found in effectors from non-haustorial fungi or

oomycetes. It has been suggested that this motif mediates translo-

cation of fungal haustorial effectors into plant cells (Godfrey et al.,

2010).

The Uf-RTP1 protein from the rust fungus Uromyces fabae is

the only effector from a pathogenic fungus for which a nuclear

localization has been described to date. Indeed, Uf-RTP1 is a

haustorial secreted effector that presents a signal peptide and a

bipartite NLS that mediates Uf-RTP1 accumulation in plant cell

nuclei (Kemen et al., 2005). Homologs of Uf-RTP1 have been

found in other pathogenic rust fungi such as Puccinia graminis,

Melampsora spp., Uromyces appendiculatus, or Hemileia vastatrix

(Puthoff et al., 2008; Duplessis et al., 2011). However, the absence

of obvious structural features within their protein sequences ren-

ders prediction of their putative function(s) a difficult task. Mining

of effectors in the genome of Ustilago maydis identified among the

secreted effector candidates 14 proteins that contain a putative NLS

(Mueller et al., 2008), suggesting that virulence of this pathogen

may also rely on nuclear targeting of effector proteins.

NEMATODES
Research aimed at the identification and characterization of path-

ogenicity effectors of plant nematodes has been intensively devel-

oped since genome sequences of these pathogenic organisms were

first reported. Most nematode species are restricted to the roots

in which they form specialized feeding sites to become seden-

tary endoparasites (Gheysen and Mitchum, 2011). Two groups of

pathogens have been particularly studied: the root knot nematodes

(Meloidogyne spp.) and the cyst nematodes (Heterodera spp. and

Globodera spp.).

First suspicions about the existence of nuclear-localized pro-

teins involved in nematode parasitism of plants came from analysis

of first lists of genes encoding secretory proteins and identified as

candidate effectors. These proteins are expressed and produced

in pharyngeal glands and subsequently delivered into plant cells

by the stylet, a protrusible hollow mouth spear (Bellafiore and

Briggs, 2010). In Heterodera glycines, the identification of specific

secretory gland-expressed genes revealed 51 candidate effectors,

15 of which displayed canonical NLSs (Gao et al., 2003), whereas

inspection of the Meloidogyne incognita secretome yielded a total

of 66 effectors putatively addressed to the plant nucleus (Bellafiore

et al., 2008). These 66 candidates included 26 proteins with an NLS

motif and 40 additional proteins with putative nucleotide binding

activity such as DNA or chromatin interaction motifs. Similarly,

three esophageal gland-specific gene products from Meloidogyne

chitwoodi are predicted to be nuclear localized in host cells fol-

lowing cleavage of the leader peptide for protein secretion (Roze

et al., 2008). These lists of potential NLS-effectors include many

proteins of unknown function (Gao et al., 2003; Roze et al., 2008)

but also helicases, histones, DNA-binding domain proteins, and

the Nucleosome Assembly Protein, NAP-1 (Bellafiore et al., 2008).

Functional characterization of nematode effectors provided

direct evidence of their localization to the plant nucleus. A GFP

fusion to the Heterodera schachtii secreted protein Hs-UBI1, which

encodes a protein with a mono-ubiquitin domain, was shown to

be targeted to the nucleolus of tobacco cells (Tytgat et al., 2004).

Interestingly, other nematode effectors with some similarity to

components of E3-ubiquitin ligase complexes, such as a SKP1-

homolog protein, have been identified in other species (Gao et al.,

2003; Bellafiore et al., 2008) but their role during parasitic infection

remains elusive.

A functional analysis of identified NLS-containing effectors in

H. glycines demonstrated that two out of the eight tested effector

proteins were imported into the nuclei of both onion epidermal
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cells and Arabidopsis protoplasts (Elling et al., 2007). One of these

protein fusions was further transported into the nucleolus. Muta-

tion analysis of the NLS domains confirmed their role in effector

nuclear uptake. The authors also showed that GFP fusions with

three additional effectors also accumulated in the plant nucleus,

but only with effector truncated versions (containing the NLS

domain) and not with the full-length proteins (Elling et al., 2007).

Whether this differential behavior is due to artifactual mislocal-

ization or reflects the possible existence of an effector processing

mechanism within the plant cell remains to be determined.

Another report also showed that some effectors encoded by

genes belonging to the large SPRYSEC family in Globodera pallida

are addressed to the host cell nucleus. These stylet-secreted effec-

tors harbor a SPRY domain of 120 amino acids and unknown

function that was first identified in some receptors from Dic-

tyostelium. Two G. pallida SPRYSEC family proteins harbor NLSs

and present nucleolar localization in both tobacco leaf and root

cells whereas some other SPRYSEC proteins are cytoplasmic (Jones

et al., 2009). It was hypothesized that SPRYSEC effectors suppress

host defenses through interaction with a range of host targets in

different cell compartments (Jones et al., 2009). Interestingly, simi-

lar to viral and bacterial effectors, two SPRYSEC proteins were also

shown to interact with resistance proteins, including the potato R

protein Gpa2 (Rehman et al., 2009; Sacco et al., 2009).

Since some stylet-secreted proteins have features of DNA-

binding proteins (Bellafiore et al., 2008), it is tempting to speculate

that some nuclear-localized nematode effectors might act in repro-

gramming host transcription. Although expression of some TFs

involved in plant development have been shown to be induced

in nematode feeding sites (Grunewald et al., 2008; Barcala et al.,

2010), there is however no evidence supporting a direct role of

nematode effectors in modifying plant gene expression. It has been

reported that a 13-amino acid peptide, 16D10, secreted from the

esophageal glands of M. incognita, stimulates root growth and

the generation of extensive lateral roots in tobacco hairy roots.

16D10 has been shown to interact in planta with two putative plant

SCARECROW-like TFs (Huang et al., 2006). However, 16D10 has

not been visualized in the plant cell nucleus and its role in plant

cell developmental processes, as well as the role of its interacting

TFs, remains to be determined.

CONCLUDING REMARKS
Pathogenic microorganisms use an extremely diverse panoply of

effector proteins to counteract plant defense and ensure suc-

cessful colonization of their hosts. Although different subcellular

compartments are targeted by effector proteins following their

translocation into plant cells, it is now apparent that a significant

number of these effector molecules are specifically addressed to the

host plant cell nucleus. Nuclear targeting of effectors appears to be

a general microbial strategy since examples have been documented

in each main class of pathogenic organisms from viruses to nema-

todes, although no nuclear effectors from bacterial Gram-positive

plant pathogens have been described to date.

As mentioned above, the search for NLSs in the available

repertoires of predicted effector proteins from different microbes

may help identify nuclear translocated effectors. However, it is

worth mentioning that up to 45% of yeast proteins present a

predicted bipartite or monopartite NLS (and therefore the poten-

tial to enter the nucleus via the classical nuclear import pathway),

although only 25.8% of proteins localize to the nucleus at steady

state when chromosomally tagged with GFP (Huh et al., 2003).

Moreover, only 25.8 and 30.9% of the yeast proteins that have

been localized to the nucleus in the global GFP screen con-

tain a putative bipartite or monopartite NLS, respectively (Lange

et al., 2007). Therefore, about 43% of steady-state nuclear pro-

teins in yeast may not use the classical nuclear import pathway

to enter the nucleus. Similarly, in silico prediction of NLSs is

not systematically associated to nuclear localization of effector

proteins (Caillaud et al., 2011) and, in some cases, NLSs are dis-

pensable for effector nuclear targeting (Canonne et al., 2011).

Therefore, caution should be taken when interpreting data from

in silico effector analysis and functional studies of predicted effec-

tor proteins are absolutely required to validate their subcellular

localization.

Interestingly, nuclear translocation of effector proteins does not

seem to be restricted to pathogenic microorganisms since targeting

of effector proteins to the plant cell nucleus has been also recently

discovered in the context of plant–microbe symbiotic interactions.

Indeed, the secreted effector MiSSP7 from the ectomycorrhizal

fungus Laccaria bicolor is detected in host cell nuclei where it

induces reprogramming of the plant cell transcriptome to favor

mutualism (Plett et al., 2011). Another report established that the

arbuscular mycorrhizal fungus Glomus intraradices secretes a pro-

tein, SP7, which interacts with the pathogenesis-related TF ERF19

in the plant nucleus to promote symbiotic biotrophy (Kloppholz

et al., 2011). These findings highlight the importance of the host

nucleus in determining the fate of parasitic or mutualist interac-

tions and the almost ubiquitous microbial strategy that involves

direct interactions with host DNA and/or nuclear proteins. As

illustrated above for pathogens, outputs resulting from these mole-

cular interactions in the nucleus encompass various pathogenicity

processes and multiple stages of host infection, such as the sup-

pression of plant defense responses, the metabolic priming of host

cells, or pathogen dispersal.

It is clear that, despite significant recent advances in our field

describing nuclear targeting of effector proteins, a lot remains to

be done to obtain a global view on how transcriptional repro-

gramming of host cells or specific targeting of nuclear proteins

promote pathogen infection and plant disease. Oligonucleotide

microarrays or mRNA sequencing approaches should shed light

on the large-scale transcriptomic changes undergone by host cells

during nuclear targeting of effector proteins. Finally, a whole cel-

lular dynamics outlook, integrating the contribution to virulence

of nuclear effectors and that of effectors targeted to additional

subcellular compartments, represents an exciting perspective for

future research.
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