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The present approach to modeling and design of microelectronic and microelectromechanical 
devices (MEMS) (hereafter simply referred to as a microdevice) involves the generation of a geo- 
metric model for the complicated two or three-dimensional microdevice, the generation of a mesh 
for the geometric model, a mesh based numerical analysis, and postprocessing steps such as visu- 
alization. The time consuming steps in such an approach are the generation of a mesh and mesh- 
based numerical analysis. Meshless methods, which do not require the generation of a mesh, are 
very attractive for numerical solution of partial differential equations. In this paper we introduce a 
new meshless technique, referred to as a point collocation method, for numerical solution of par- 
tial differential equations. The effectiveness of the point collocation method is demonstrated by 
solving one and two-dimensional Poisson equation, the solution of which is required in the analy- 
sis of both electronic and microelectromechanical devices. 

Introduction 
The idea of a meshless or a meshfree method for numer- 

ical analysis of partial differential equations is very appealing 
as a meshfree method does not require the generation of a 
mesh for complicated two and three dimensional structures. 
Meshfree methods are even more appealing for emerging 
technologies such as microelectromechanical systems 
(MEMS) ([l], [4]) because of the mixed-technology nature of 
microdevices. For example, if we consider electromechanical 
systems involving coupled elastic and electrostatic energy 
domains, one needs to generate a volume mesh for the elec- 
tromechanical microdevice to perform finite-element based 
elastic analysis and a surface mesh for the same microdevice 
to perform exterior electrostatic analysis based on acceler- 
ated boundary-element methods [4]. A requirement is that 
the surface mesh has to be compatible with the volume mesh 
so one does not have to worry about interpolating solutions 
from one mesh to another mesh. When a microfluidic energy 
domain is also encountered, such as in the design of MEMS 
based accelerometers, three different types of meshes are 
required. The complexity of mesh generation grows signifi- 
cantly when more than one energy domain is involved and 
microelectromechanical system designs often involve at least 
two energy domains. 

In this paper we describe a new meshless technique 
referred to as a point collocation method based on reproduc- 
ing kernel approximations. Using this technique, the numeri- 

cal solution of partial differential equations can be performed 
by simply sprinkling points. This paper is organized as fol- 
lows: The reproducing kernel technique is introduced in Sec- 
tion 2. The point collocation method based on reproducing 
kernel approximations is described in Section 3 and numeri- 
cal results are shown in Section 4. 

2. Reproducing Kernel Technique 
The key idea in a reproducing kernel method is to con- 

struct an approximation ua(x, y )  to u ( x ,  y) by employing a 
corrected kernel ([2]). In two-dimensions, a corrected kernel 
approximation can be written as 

u ~ ( x ,  y) = JiGa(r - s, y - s)u(s) ds (1) 
n 

where Ed(x - s, y - s) is the corrected kernel function which 
is given by 

Ed(x-s,y-s)  = c ( x , y , s ) w d ( x - s , y - s )  (2) 

where C ( x ,  y, s) is a correction function and 
wd( x - s, y - s) is the kernel function. If the correction func- 
tion is taken to be unity i.e. C(x ,  y ,  s) = 1 , then the approx- 
imation reduces to the classical smooth particle 
hydrodynamics technique ([3]). The smooth particle hydro- 
dynamics approach is, however, not a stable method for 
numerical solution of partial differential equations posed on 
finite domains. 
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The correction function is typically expressed as a linear 
combination of polynmial basis functions. The highest 
order polynomial terms to be included in the correction func- 
tion definition depends on the highest order derivative terms 
contained in the governing partial differential equations. For 
second order partial differential equations, a correction func- 
tion that can exactly reproduce up to second derivatives is 

2 C(x,y,s) = co+c1(:c-s)+c2(y-s)+c3(x-s)+ 
(3) 

where co, cl, ..., c5 are the unknown correction function 
coefficients. Note that if only the first derivative calculation is 
required, then only the first three coefficients need to be con- 
sidered in the correction function definition. The correction 
function coefficients can be determined by establishing the 
reproducing conditions. To obtain the reproducing condi- 
tions, consider a Taylor series expansion for u ( s )  in two- 
dimensions 

2 c4(y -s:l + C , ( X  - s)(y - s) 

2 2  
+ au au a u  

ax a y  2! ax2 ld ,  
u ( s )  = u(x,y)-(x-s:l- - (y-s)-+-- 

2 a u  2 2  
-- (y-s) a +(:x-s)(y-s)-+ ... 

2! a y 2  axay 
Substituting the expansion for u(s) and the definition of the 
corrected kernel function given in equation (2) into equation 
(l) ,  one obtains 

2 au- au- l a u -  u"(x,y) = u(x,y)iii0 - zml  - -m +--m3+ 

(5 )  
ay 2ax2 

2 l a  u- a 2  
2ay2 axay --m ++u)iTi5 

where 
- mo = comm + clm10 . t  cZmOl + c3m20 + c4mO2 + ~ 5 m 1 1  (6) 
- 
ml = comlo + clm20+ c2mll + c3m30 + ~411212 + c5m21 (7) 

m2 = cOmOl + c lml l  .+ c p o 2  + c3m21+ c4m03 + c5m12 (8) 

~i i ,  = comzo + clm30 .t c2m21 + ~ 3 m 4 0  + ~ 4 ~ ~ 2 2  + c5m31 (9) 

m4 = comO2 + clm12 i- ~ 2 m 0 3  + c3m22 + c4mw + ~ 5 m 1 3  (10) 

fi5 = cOmll + clm21 i- c2m12 + c3m31 + ~ 4 m 1 3  + ~ 5 m 2 2  (1 1) 

and 

- 

- 

m $ x , y )  = ~ ( x - s ) ~ ( y - s ) j w d ( x - s , y - s ) d S  (12) 
n 

To exactly reproduce the function, we enforce 
u'(x, y)  = u(x, y)  . From equation (5 ) ,  the reproducing con- 

The unknown correction function coefficients can be 
determined by satisfying the above moment conditions. 
Using the definitions given in equations (6) - (1 l), equation 
(13) can be written in a matrix form to obtain the correction 
function coefficients. 

M C  = B (14) 

where M is the 6 x 6 moment coefficient matrix, is the 
6 x 1 unknown coefficient vector and is the known 
6 x 1 right-hand side vector. In a similar manner, the first 
and the second derivatives of the correction function coeffi- 
cients can be computed by deriving the reproducing condi- 
tions for the first and second derivatives of the function, 
respectively. 

Assuming that the domain f2 is represented by N P  
distinct points or particles, a discrete approximation for equa- 
tion (1) can be written as 

NP 

u"(x, Y) = WJx-xI ,  Y - Y I ) u ( x I ,  YI)AVI (15) 
I =  1 

where xI , yI are the x- and y-coordinates of point I ,  
u(xI ,  yI) is a nodal value associated with point Z , and AVI 
is a volume (or area in 2-D) associated with node 1 .  Note 
that, in general, the value of the unknown function at node Z 
is given by ua(xI,  yI) and not u(xI ,  y r )  . The discrete 
form of a corrected kernel function is given as 

I J X -  X I ,  Y - Y I )  = C(x-xI ,  Y - ~ I ) - w d ( x - ~ p  Y -YI> (16) 

The multidimensional kernel function is constructed as prod- 
ucts of one-dimensional kernel functions. In two dimensions 

1 x - - I  1 Y-YI 
w,(x-x,,y-y,) = --w - --w - 

d, ( d, I d ,  ( d, 
(17) 

where d, , d, are the dilational parameters along the x and 
y directions, respectively, and the kernel function is taken as 
the cubic spline function i.e. 

Z I  < -2 

-2 s Z I  5-1 

1 q 1 2  

ditions for the function can be obtained as 
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where z I  = ( x  - x,) /d,  for the x-dimensional kernel func- 
tion and zI = ( y - y , ) / d ,  for the y-dimensional kernel 
function. 

3. Point Collocation Method 
The key idea in a point collocation approach is to satisfy 

the governing partial differential equation at each of the 
points covering the domain of interest. If a Dirichlet or a 
Neumann boundary condition is imposed on a node that is on 
the boundary, then an equation that satisfies the boundary 
condition is developed for the boundary node instead of satis- 
fying the governing partial differential equation. 

Let us denote N ,  to be the number of points carrying a 
Dirichlet boundary condition, N ,  to be the number of points 
carrying a Neumann boundary condition and N ,  to be the 
remaining nodes with no boundary conditions. The total 
number of points covering the domain equals N ,  + N ,  + N ,  . 
To illustrate the point collocation approach, consider the fol- 
lowing model problem 

&u = f in SZ 
u = g on rg 

(19) 
au - = h on rh 
an 

where L is the differential operator, u is the unknown, f is 
the forcing term, rg is the portion of the boundary where 
Dirichlet boundary conditions are specified and rh is the 
portion of the boundary where Neumann boundary condi- 
tions are specified. In a point collocation method, the idea is 
to find an approximate solution ua(x,  y )  that approaches the 
exact solution u ( x ,  y)  as the number of points N P  increases. 
ua(x,  y )  then satisfies the governing equations in (19) 

LU' = f in R 
ua = g on I'g 

In a point collocation approach, equation (20) is satisfied at 
every point or a node. For a node that is in the interior and is 
not constrained, the collocation approach satisfies the equa- 
tion 

Lua(.xi, y i )  = f ( x ,  y i )  i = 1,2, ..., N ,  (21) 

For points that are constrained by a Dirichlet boundary con- 
dition, the point collocation technique satisfies 

u a ( x p y i )  = g ( x i , y i )  i = 1, 2,  ..., N ,  (22)  

and for points with Neumann boundary conditions, the fol- 
lowing equation is satisfied 

&'(xi, y i )  = h(xi ,  y i )  i = 1, 2 ,  ..., N ,  (23)  an 

Employing a discrete approximation for ua as given in equa- 
tion (13,  the point collocation approach gives rise to a matrix 
problem 

Ku = b (24)  
N P X N P  . N P x  1 

is the known right- 
where K E fli 
is the unknown vector and b E fli 
hand side vector. 

4. Results 
The first example we will consider is a one dimensional 

problem with a known exact solution. The governing equa- 
tion is 

IS the coefficient matrix, u E fli 
N P x l  . 

2 

- -  a u  - 2  o < x < 2  
a x 2  (25) 
u(0)  = 0 
~ ( 8 )  = 64 

The exact solution is given by 

(26) 
2 u ( x )  = x 

The point collocation method for this problem gives 
nodally exact results. A random distribution of 11  points is 
considered and the distribution of the points is as shown in 
Figure 1. Note that some points are very close to each other 

PDSnlO" 

Figure 1 
ysis of the Poisson equation 

Random point distribution for one-dimensional anal- 

and this does not pose any problem to the point collocation 
method. The computed solution is shown in Figure 2. The 
numerical solution and its derivative match exactly with the 
exact solutions. 

The next example is a two-dimensional Poisson problem 
with a constant forcing term. The governing equation is 

- + - = 4  aLu aLu O < x < 2  O < y < 2  (27) 
a x 2  a y 2  

and Dirichlet boundary conditions are applied along the four 
edges 
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Figure 2 Numerical solution, u, matches the exact solution 

u(x  = 0 )  = y2 

u(x = 2) = 4 + y 2  

u(y = 0) = x2 

u (y  = 2) = 4 + x 2  

The exact solution for lhis Dirichlet Poisson problem is given 

(29) 

The point collociition method, for all discretizations, 
produces the exact solution. We show results again for a ran- 
dom distribution of points, which is shown in Figure 3. The 

by 

u(x ,  y) = x2 + y2 

Figure 3 
tion of the two-dimensional Poisson equation 

A random point distributions considered for the solu- 

solution, u , obtained with the random discretizations is 
shown in Figure 4. The computed solution matches with the 
exact solution. The computed derivatives also match with the 
exact derivatives. From this example we can conclude that 
the point collocation method exactly reproduces a quadratic 
solution for a Dirichleit Poisson problem. Even though we do 
not show the results here, a point collocation method can also 
exactly reproduce a linear solution for a Dirichlet Poisson 

%-am y-BxIs 0 0  

Figure 4 Computed solution obtained with a random distri- 
bution of points. 

problem. A closer look at the random distribution of points in 
Figure 3 shows that some points are positioned very close to 
each other. The point collocation method is not sensitive to 
such point distributions and exact solutions are obtained for 
all point distributions for this Dirichlet Poisson problem 

5. Conclusion 
A point collocation method is described in this paper for 

analysis of one and two-dimensional partial differential equa- 
tions. Numerical results are shown for a Poisson equation 
and the accuracy of the point collocation method is estab- 
lished. The results indicate that the point collocation method 
is a promising technique for meshless analysis of electronic 
and microelectromechanical devices. 
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