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A POINTWISE CONVERGENCE THEOREM

FOR SEQUENCES OF CONTINUOUS FUNCTIONS

BY

K. SCHRADER

Abstract. Let {fk} be a sequence of continuous real valued functions defined on an

interval /and TV a fixed nonnegative integer such that iï fk(x)=f(x) for more than N

distinct values of x e I then fh(x)=fi(x) for x e /. It follows that there is a subsequence

igi) °f ifk) such that for each x the subsequence {g¡(x)} is eventually monotone. Thus

limy-. + «, g/(x)=f(x) exists for all x, where fis an extended real valued function. If

\ftc(x)\ is bounded for each x e / then lim,- + „ g¡{x)=f(x) exists as a finite limit for

all x e I. For N=0 this reduces to picking a monotone subsequence from a sequence

of continuous functions whose graphs are pairwise disjoint.

1. Introduction. We are interested in sequences {fk} of real valued functions

defined on some interval /. In particular we are interested in sequences {/} which

satisfy the hypothesis H(A0 or K(A) for some fixed integer N.

H(A) The sequence {/,} has the property that if/c(x)=/(x) for more than N

distinct values of x, then fk(x) =/(x) for all x el.

K(A) The sequence {fk} has the property that if fk(x¡) =f(Xi) for xx<x2< ■ ■ ■

<xN + x then fk(x) =/(x) for xx^x^xN+x.

We note that H(A) makes sense for all nonnegative integers N while K(A)

makes sense for all positive integers N. Also, H(A) implies K(A) for AS: 1.

The hypothesis K(A^) will be used in the theorems to follow because this hy-

pothesis on solutions is often encountered in the study of boundary value problems

for nonlinear ordinary differential equations of the form

(LI) /N+1)=f(x,y, y',...,ym).

If it is known that/is continuous and solutions of initial value problems for (1.1)

are unique then H(A') and K(A) are equivalent for solutions of (1.1) when N^ 1.

The uniqueness of solutions of initial value problems for (1.1) is not always assumed

so it is convenient to use K(A) rather than H(A). In this regard, compare the

results in [9] and those in [15, Theorem 6.1].

There are a number of papers in which it is assumed that hypothesis H(Ar) or

K(A) hold on some family F of functions and in addition it is assumed that there

exists some function in F solving any given N+ 1 point boundary value problem.

Results following from this type of hypotheses or variations of it plus perhaps
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other assumptions may be found in [2], [3], [6], [10], [11], [12] and [18]. In par-

ticular, some uniform convergence theorems are known for a family of functions

F satisfying both the "uniqueness" and the "existence" hypotheses for A+1 point

boundary value problems. See [2, Theorem 2] and [18, Theorem 5] for such

results.

Recently there have been a number of papers in ordinary differential equations

which have assumed "uniqueness" as in H(N) or K(A) or a variation thereof for

the family of solutions of (1.1) without assuming the existence of solutions to all

A+1 point boundary value problems. Results following from such hypotheses

plus perhaps other assumptions are found for example in [1], [4], [7], [8], [9], [14],

[15], [16], [17], and [19].

In [9], Lasota and Opial show that if/in (1.1) with A= 1 is continuous on Ix R2

for an open interval /, if solutions of all initial value problems for (1.1) are unique

and exist on / and if H(l) holds, then all two point boundary value problems

have unique solutions. Thus by assuming the "uniqueness" of solutions of all two

point boundary value problems for (1.1) with A= 1 they are able to conclude the

"existence" of solutions of all two point boundary value problems for (1.1) with

A=l. This theorem has been extended to A=2 in [5] where it is shown that iff

in (1.1) with A=2 is continuous on IxR3 for an open interval /, if solutions of

initial value problems exist on / and if K(2) holds, then solutions of all two and

three point boundary value problems do exist and are unique.

Because of the rather surprising results mentioned above, i.e. "uniqueness"

implies "existence" type theorems for solutions of boundary value problems for

some ordinary differential equations, one cannot help wondering whether some

version of the convergence theorems in [2] and [18] where "uniqueness" and

"existence" were both assumed as hypotheses may in fact be true with only the

"uniqueness" assumption as hypothesis. Although one cannot conclude the

existence of a uniformly convergent subsequence {g,} of an arbitrary bounded

sequence of continuous functions {/.} satisfying K(A) on / as in [2] and [18], we

can conclude pointwise convergence for the subsequence {g¡}. The proofs are

constructive in nature and yield a considerable amount of information about the

nature of the convergence of the subsequence {gj}.

2. Convergence theorems. We begin by stating without proof some known

results which we will refer to repeatedly.

Theorem 2.1. Let I be an interval and {/.} a sequence of continuous real valued

functions defined on I having the property that for each k,j either fk(x) úf¡(x) holds

for all x e / or else fk(x) ^/(x) holds for all xe I. Then there exists a subsequence

{ëi} °f{fkS which is a monotone sequence on I.

Corollary 2.2. Let I be an interval and{fk} a sequence of continuous real valued

functions defined on I having the property H(0). Then there exists a subsequence {g¡} of

{A} which is a strictly monotone sequence on I.
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The next theorem appears as Theorem A in a paper by Ramsey [13] and will be

used in later proofs.

Theorem 2.3. Let Y be an infinite class, and p. and r positive integers; and let all

those subclasses of Y which have exactly r members, or, as we may say, let all r-

combinations of the members of Y be divided in any manner into p. mutually exclusive

classes C¡ (/= 1, 2,. . ., p) so that every r-combination is a member of one and only

one Ci ; then, assuming the Axiom of Selections, Y must contain an infinite subclass

A such that all the r-combinations of the members of A belong to the same C¡.

Corollary 2.4. If{fk} is any sequence of functions defined on an interval I then

either there is a subsequence {hj} of {/.} such that if i #_/' then h¡(x) / h¡(x) for any

x e I or else there is a subsequence {hj} of{fk} such that ifi^j there is some x e I with

ht(x) = hj(x).

Proof. If there are only finitely many distinct functions in {/.} then infinitely many

are identically equal and we are done. Thus we assume there are infinitely many

distinct functions in {fk} and, by picking a subsequence if necessary, we may

assume all the fk are distinct. Let p. = r = 2 and Y = {fk}. Let C1 = {{/c,/} : k¥=j,

fk(x)=fj(x) for some x e 1} and C2 = {{fk,f) : kj=j,fk(x)=£fj(x) for any x e I}. The

result now follows directly from Theorem 2.3.

We are now ready to establish the desired convergence theorems.

Theorem 2.5. Let I be a bounded interval and {fk} a sequence of continuous real

valued functions defined on I. If hypothesis K(l) is satisfied then there is a sub-

sequence {gj} of{fk} and a sequence of pairwise disjoint intervals {Jn}t=o cI such that

/= Un=°o Jn! Jo is empty or a single point and p(Jn) = 2~>(/) for n = 1, 2,... where

p. is Lebesgue measure; and {g,} is a monotone sequence of functions on each Jnforj

sufficiently large, depending on n.

Proof. Let JXA, JXt2 be disjoint intervals contained in / with p.(Jx,x) = p.(Jx¡2)

= 2~1p.(I) and /1#1 u/1>2=/. Let {f0,k}={fk}. It follows from Corollary 2.4 that

either there is a subsequence {n1>;} of {f0,k} such that if ft/kj then nli(x)#nliJ(x) for

any x in Jxx or else there is a subsequence {n1>;} of {f0,k} such that if i+j there is

some xeJxx with hXA(x) = hXJ(x). In the first case it follows from Corollary 2.2

that there exists a strictly monotone subsequence of {hXJ} on Jxx. In the second case

it follows from property K(l) and Theorem 2.1 that there exists a monotone

subsequence of {n1>;} on/12. We denote one ofJx¡x, Jx¡2 on which there is a mono-

tone sequence by Jx and the corresponding subsequence of {hXJ} by {fx,k}.

After Jn and {fn,k} have been chosen with p.(Jn) = 2~np.(I) and {fn¡k} a subsequence

of {fn-i,k} which is monotone on Jn then we consider the interval /— U" = i -4 and

let /B+i,i, /b+1,8 be disjoint intervals contained in /— {Jk = xJk with p(Jn+x,x)

= MA+i,2) = 2-(n + 1V(/) and /„+1>1u/n+li2 = /-Uí = iA. By Corollary 2.4

either there is a subsequence {nn+lii} of {fn,k} such that if i+j then nn+1>i(x)
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^An+lfí(x) for any x in Jn+X,x or else there is a subsequence {hn+XJ} of {fn¡k} such

that if iy^j there is some xeJn+xx with An+1>i(x) = An+1>J(x). In the first case it

follows from Corollary 2.2 that there exists a strictly monotone subsequence of

{^n+i.i) on /„+!,!■ In the second case it follows from property K(l) and Theorem

2.1 that there exists a monotone subsequence of {hn+Xij} on Jn+X_2. We denote one

of/„+!,!, Jn+i,2 on which there is a monotone subsequence by Jn+X and the

corresponding subsequence of {An+1-J} by {fn+x,k}.  By construction we have

p.(Jn+x) = 2-^W).
Let x0 be the unique limit point of the set of midpoints of the intervals {./„}» =°i.

Here we note that if any of the Jn are empty then / was empty or a single point and

the proof of the theorem is trivial. Let {hk}={fkik} and choose {g,} to be a sub-

sequence of {hk} having the property that gj(x0) is monotone provided x0 6 /. If

x0 e Jn for some n = 1, 2,... or if x0 i I we choose J0 = 0 ■ Otherwise, let J0 = {x0}.

It should now be clear that all the claims in the theorem are satisfied.

To see that it is not possible in general to choose Jx with P.(Jx)>2~1p.(I), con-

sider the example fk(x) = k(x—l) on 0^x<2. To see that it is not possible in

general to eliminate the set J0 = {x0}, consider the example fk(x) = k2x — k2 + k on

Oáx:£l. In this example it is necessarily the case that /0 = {1}. These examples

may be modified to give similar examples where the {fk} are uniformly bounded.

The next theorem is the main result of the paper. We observe that this theorem

yields detailed information about the convergence behavior of the subsequence {g}}.

Theorem 2.6. Let I be any interval and {fk} a sequence of continuous real valued

functions defined on I. If hypothesis K(N) is satisfied for some positive integer N then

there is a subsequence {gj} of{fk} and a sequence of pairwise disjoint intervals {/n}n+=°o

<=/ such that 1= Un="b ¿n't each of JQ, Jx,. ■ ■, JN-X is empty or a single point and

{J„}n = N each has nonempty interior if I has nonempty interior; and{gj} is a monotone

sequence of functions on each Jnfor j sufficiently large, depending on n.

Proof. We assume that / has nonempty interior for otherwise the proof is trivial.

Only the case where / is bounded will be treated in detail. If / is unbounded then

Theorem 2.5 is still correct if the word "bounded" is omitted from the first sentence

and the condition p.(Jn) = 2~np.(I) is omitted from the conclusion. The proof of

this involves no new ideas except that JnX and dn>2 may not be bounded. A similar

modification in the proof of Theorem 2.6 for bounded intervals / then yields the

result for unbounded intervals.

Let / be a bounded interval with nonempty interior. We will prove the theorem

by induction on A7 and we observe that for A= 1 the theorem follows from Theorem

2.5. We assume the theorem is true for 1 ;£N^M and will show that this implies

it is true for N=M+\.

Let J1¡x, JXt2 be disjoint intervals contained in / with p-(Jx,i) = p-(Ji,2) = 2~1p.(I)

and Jltl u Jlw2 = I. Let {f0,k} = {fk}- It follows from Theorem 2.3 with p, = M+2,

r — 2, rc{/ot} and Cx, C2,..., CM+2 appropriately chosen classes of pairs of
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functions from Y that either there is a subsequence {hXJ} of {f0¡k} such that if tjkj

then hXji(x)^hXiJ(x) for any x in Jxx or else there is an integer s, 1 ̂ sts M, and a

subsequence {hXJ} of {f0.k} such that if ;V_/ then hXJ(x) = hXJ(x) for exactly s

distinct values of x in Jx-X or else there is a subsequence {//1>y} of {/0>Jc} such that if

i-£j then n1?i(x) = nu(x) for at least M+1 distinct values of x in /ltl.

In the first case it follows from Corollary 2.2 that there exists a strictly monotone

subsequence of {hXJ} on Jx<x.

In the second case it follows that hypothesis K(M+l-s) is satisfied by the

sequence {hXJ} on JX2 so there is a subsequence {gx,,} of {hx¡,} and a sequence of

pairwise disjoint intervals {Jn}n = ocJi,2 such that Jx,2 = {Jn = 0Jn\ each of

/0,/j,.. .,JM-s is empty or a single point and {/n}^=°°M-s+i each has nonempty

interior; and {gx,,} is a monotone sequence of functions on each Jn forj sufficiently

large, depending on n. Now {gXJ} satisfies hypothesis K(s) on Jxx so there exists a

subsequence {gj} of {gXJ} and a sequence of pairwise disjoint intervals {I^n^o^Ji.i

such that /i,i = Un="o A; each of/0,..., /s_i is empty or a single point and {/„},¡=°°s

each has nonempty interior; and {g¡} is a monotone sequence of functions on each

/„ for j sufficiently large, depending on n. This would complete the proof in the

second case.

In the third case it follows from Theorem 2.1 that there exists a subsequence of

{hXi,} which is a monotone sequence on Jx2.

Since we are finished if case 2 occurs we assume case 1 or case 3 occurred and

let JM + i be the one of JXA, Jx,2 on which there exists a monotone subsequence of

{hXJ} which we denote by {fx,k}.

After JM+n and {fn,k} have been chosen with ¡x(JM+n) = 2-n(n(I) and {fn,k} a

subsequence of {fn-x,k} which is monotone on JM+n then we consider the interval

/— Ufc = i Jm+ic and let Jn+x,x,Jn+i,2 be disjoint intervals contained in/— {Jk = xJM+k

with p.(Jn+i,i) = p(Jn+i,2) = 2-<n + »p.(I) and /.tii'uJr.+ ¿aW/-Ut-i'/|c+». It

follows from Theorem 2.3 with p,= M+2, r = 2, Y<={fnk} and Cx, C2,..., CM+2

appropriately chosen classes of pairs of functions from Y that either there is a

subsequence {hn+XJ} of {fn,k} such that if i+j then nn+1>i(x)#nn+liy(x) for any

*e^n+i,i or else there is an integer s, l^s^M, and a subsequence {nn+1,,} of

{/n.*} such that if /'^/ then nn+1>j(x) = nn+1>i(x) for exactly s distinct values of

xejn+xx; or else there is a subsequence {hn+Xij} of {/n,fc} such that if i+j then

nn+i,iW = «n+i,iW f°r at least M+1 distinct values of x in Jn+\.\-

In the first case, it follows from Corollary 2.2 that there exists a strictly monotone

subsequence of {hn+x,j} on Jn+i,i-

In the second case it follows that hypothesis K(M+1— s) is satisfied by the

sequence {hn+x,¡} on Jn+X,2 so there is a subsequence {gn+i,,} of {nn+lii} and a

sequence of pairwise disjoint intervals {An}+=M0c/n+1 2 such that /n+i,2 = U^=c*o An;

each of A0, KX,...,KM_S is empty or a single point and {An}+=œM_s+1 each has

nonempty interior and {gn+i,j} is a monotone sequence of functions on each Kn

forj sufficiently large, depending on n. Now {gn+x¡j} satisfies hypothesis K(s) on
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•Jn+1,1 so there exists a subsequence {g¡} of {gn+i.¡} and a sequence of pairwise

disjoint intervals {IB}n+=°ocAti,i such that Jn+x,x = Un=xo Ln; each of L0, Lx,...,

Ls_! is empty or a single point and {Ln}£=s each has nonempty interior; and {gj}

is a monotone sequence of functions on each Ln for j sufficiently large, depending

on n. This would complete the proof in the second case.

In the third case it follows from Theorem 2.1 that there exists a subsequence of

{hn+ij} which is a monotone sequence on Jn+X,2.

Since we are finished if case 2 occurred we assume case 1 or case 3 occurred and

let JM+n+x be the one of Jn+XA, Jn+X¡2 on which there exists a monotone sub-

sequence of {An+1>J} which we denote by {fn+x,k}.

Assuming case 2 never occurs at any stage of the induction then we let x0 be

the unique limit point of the set of midpoints of the intervals {JM+n}% = i- Let

{hk}={fkfk} and choose {g¡} to be a subsequence of {hk} having the property that

{g}(xo)} is monotone provided x0 e I. If x0 eJM+n for some n= 1, 2,... or if x0 ^ /

we choosed0=A= ■ • ■ =Jm= 0 ', otherwise chooseJ0 = {x0},/l =J2= ■ ■ ■ =JM= 0-

This completes the proof.

Corollary 2.7. Let I be any interval and {fk} a sequence of continuous real

valued functions defined on I. If hypothesis K(A) is satisfied for some positive integer

N or if hypothesis H(A) is satisfied for some nonnegative integer N then there is a

subsequence {g,) of{fk} and an extended real valued function f such that lim, _ + œ g¡(x)

=f(x) for all x e I.

Corollary 2.8. Let I be any interval and {fk} a sequence of continuous real

valued functions defined on I such that {\fk(x)\} is bounded for each xe I. If hypothesis

K(A) is satisfied for some positive integer N or if hypothesis H(A) is satisfied for

some nonnegative integer N then there is a subsequence {g,} of{fk} and a real valued

function f such that limy^ + M g¡(x)=f(x)for all xe I.

The conclusions of Theorem 2.6, Corollary 2.7 and Corollary 2.8 are valid for

any interval / which can be written as a countable union of intervals on each of

which the hypothesis of these theorems is satisfied. For example, the generalization

of Theorem 2.6 would be

Theorem 2.9. Let I be any interval such that 1= (Jm ™i Im where I¡ n Im= 0 for

j¥=m and let {fk} be a sequence of continuous real valued functions defined on I. If

hypothesis K(Nn) is satisfied by {fk} on Infor some positive integer Nn then there is a

subsequence {g,) of{fk} and a sequence of pairwise disjoint intervals {J„}n = o c / such

that 1= (Jn = a Jn and {gj} is a monotone sequence of functions on each Jn for j suf-

ficiently large, depending on n.

Proof. The proof is a standard diagonalization argument arrived at by applying

Theorem 2.6 to each In so is not presented.
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It should be pointed out that the sequence of functions fk(x) = k\x\(\ — \x\)k on

—iSx^i has property H(3) and limk^ + mfk(x) = 0 for all x in --Jr^x^. How-

ever, the convergence of any subsequence is not uniform since fk(\j(k+\))

= (kl(k+l))1 + k ̂  e'1 ask-^ +00. This shows that Dini's theorem concluding the

uniform convergence of any monotone sequence of continuous functions converg-

ing pointwise to a continuous function on a compact interval does not generalize

to any subsequence of {/J. This presents a contrast with the results in [2, Theorem

2] and [18, Theorem 5] where uniform convergence of a subsequence is obtained

by assuming both "uniqueness" and "existence" of solutions of A^+l point

boundary value problems.

One might wonder whether the method of proof used in [2, Theorem 2] and

[18, Theorem 5] might provide an easier method for concluding the pointwise

convergence of a subsequence of {/.}. In these proofs it was shown, in particular,

that if N+\ distinct points xx<x2< ■ ■ ■ <xN+x are chosen in / and {g,) is any

subsequence of {/.} such that limy_ + œ g,(Xi)=yl exists as a finite number for

i=\, 2,..., N+\ then {g,) actually converges at all points in /. The following

example with A= 1 satisfies H(l) and shows that the above-mentioned property

is not necessarily true with our hypotheses. In fact, in this example the sequence

{g]) = {fkS converges only at the points xx=0 and x2 = 2. Let

/(x) = (l-Â:-1)(x-l)+l        ifO^x^l,
for k odd,

= -(l-r/Oix-lHl    ifl<x<¡2,

and

fk(x) = -(l+^Xx-O-l    ifOáxál,
for k even.

= (1—ät-1)^—1)—1        ifl<x<i2,

If X!=0, x2 = 2 and {#,} = {/} then lii%_ + œ g/0) = 0 and lim^ + a, gy(2) = 0 but

{g,) does not converge at any other points in 0 Sá x :£ 2. There is of course some other

subsequence of {/} which converges at every point by Theorem 2.6. It is not hard

to see that for {A,} chosen to be the subsequence of {/.} with odd indices we get

convergence to

A(x) = x ifO <] x <i 1,

= 2 —x   if 1 < x i> 2,

and for {h¡} chosen to be the subsequence of {fk} with even indices we get conver-

gence to

A(x) = -x     ifO g x g 1,

= x-2   if 1 < x S 2.

We present one last theorem which would appear to give, by repeated applica-

tion, an alternative method for proving Theorem 2.6. This suggested proof does

not seem to work because one may end up with an uncountable Cantor type set of
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Lebesgue measure zero on which the subsequence {g,} is not yet known to converge.

One can however prove the existence of a subsequence {g¡} of {/.} which converges

almost everywhere to an extended real valued function on / in this manner.

Theorem 2.10. Let I be a bounded interval and {fk} a sequence of continuous real

valued functions defined on I. If hypothesis K(A) is satisfied for some Aä 1 then there

is a subsequence {g,} of{fk} and an intervalJ^I with p(J) = (N+ l)~1p.(I) such that

{g,} is a monotone sequence on J.

Proof. Let Ix, I2,..., IN+1 be pairwise disjoint intervals contained in / with

(i(Ik) = (N+\)-1(i(I) for k=\,2,...,N+\ and I=\J££i Ik. It follows from

Theorem 2.3 and property K(A) that one of the intervals Ix,..., IN+1 may be

chosen to be the interval J on which there is a monotone subsequence {g,} of {fk}.

The result in Theorem 2.10 is the best possible in that in general there need not

be any interval contained in / having measure greater than (A+ 1)~V(F) on which

any subsequence of {fk} is monotone. This can be seen by examining the functions

fk(x) = k~1 sin x with I=[nß, (nß) + Nir].

The theorems in this paper are of course not true in general if hypotheses K(A)

and H(A) are omitted entirely. The example fk(x) = sin kxn for O^x^l has the

property that there is no subsequence {#,} which converges almost everywhere to

any function / Indeed, for this example, if lim,^+00 g,(x)=/(x) a.e. then

limj_ + 00 gj(x)f(x)=f2(x) a.e., so by the Riemann Lebesgue lemma jlf2(x) dx = 0

and/=0 a.e. implying lim;_ + 00 l\g2(x) dx = 0. Direct computation shows that

jo fk(x) dx=\ for all k = 1, 2,.... This gives a contradiction.

The only property of continuous functions which was used in any of the theorems

of this paper was the intermediate value property, so that every theorem remains

valid if the continuous functions {fk} are replaced for example by any sequence of

derivatives {fk}.
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