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Abstract

In shared control teleoperation, the robot assists the user in accomplishing the desired task, making teleoperation easier

and more seamless. Rather than simply executing the user’s input, which is hindered by the inadequacies of the interface,

the robot attempts to predict the user’s intent, and assists in accomplishing it. In this work, we are interested in the scientific

underpinnings of assistance: we propose an intuitive formalism that captures assistance as policy blending, illustrate how

some of the existing techniques for shared control instantiate it, and provide a principled analysis of its main components:

prediction of user intent and its arbitration with the user input. We define the prediction problem, with foundations in

inverse reinforcement learning, discuss simplifying assumptions that make it tractable, and test these on data from users

teleoperating a robotic manipulator. We define the arbitration problem from a control-theoretic perspective, and turn our

attention to what users consider good arbitration. We conduct a user study that analyzes the effect of different factors on

the performance of assistance, indicating that arbitration should be contextual: it should depend on the robot’s confidence

in itself and in the user, and even the particulars of the user. Based on the study, we discuss challenges and opportunities

that a robot sharing the control with the user might face: adaptation to the context and the user, legibility of behavior, and

the closed loop between prediction and user behavior.

Keywords

teleoperation, shared control, sliding autonomy, intent prediction, arbitration, human-robot collaboration

1. Introduction

We focus on the problem of teleoperating dexterous robotic

manipulators to perform everyday manipulation tasks (Fig-

ure 1). In direct teleoperation, the user realizes their intent,

for example grasping the bottle in Figure 1, by controlling

the robot via an interface. Direct teleoperation is limited by

the inadequacies and noise of the interface, making tasks,

especially complex manipulation tasks, often tedious and

sometimes impossible to achieve.

In shared control, the robot assists the user in accom-

plishing the task by attempting to predict their intent and

augment their input. Here, the robot faces two challenges

when assisting: 1) predicting what the user wants, and 2)

deciding how to use this prediction to assist.

We contribute a principled analysis of these two chal-

lenges. We first introduce policy blending as one useful

interpretation of shared control: a formalism for the robot’s

assistance as an arbitration of two policies, namely, the

user’s input and the robot’s prediction of the user’s intent.

At any instant, given the input, U , and the prediction, P,

the robot combines them using a state-dependent arbitra-

tion function α ∈ [0, 1] (Figure 1, middle). Policy blending

with accurate prediction has a strong corrective effect on the

user input (Figure 1, bottom). Of course, the burden is on

the robot to predict accurately and arbitrate appropriately.

Prediction. Prior work in this area usually assumes that

the robot knows the user’s intent (Rosenberg, 1993; Aigner

and McCarragher, 1997; Debus et al., 2000; Crandall and

Goodrich, 2002; Marayong et al., 2002, 2003; Kofman et

al., 2005; Kim et al., 2011; You and Hauser, 2011). Other

work assumes that the user is following one of a set of

predefined paths or behaviors, and trains a classifier for pre-

diction (Demiris and Hayes, 2002; Li and Okamura, 2003;

Fagg et al., 2004; Aarno et al., 2005; Yu et al., 2005).

In many real-world scenarios, however, environments and

goals change significantly, restricting the utility of fixed

paths. For example, in the situation from Figure 1, the user

must adapt to various locations of the goal object and its

surrounding clutter.
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Fig. 1. (Top) The user provides an input U . The robot predicts their intent, and assists them in achieving the task. (Middle) Policy

blending arbitrates user input and robot prediction of user intent. (Bottom) Policy blending increases the range of feasible user inputs

(here, α = 0.5).

In our work, we stray away from predefined paths, and

instead formulate the prediction problem based on inverse

reinforcement learning (Abbeel and Ng, 2004; Ratliff et al.,

2006; Ziebart et al., 2008). We take advantage of the fact

that:

because there is a user in the loop, prediction

does not need to be perfect.

This leads to the possibility of introducing several approx-

imations that keep the prediction accurate, while making

it tractable and even real-time (Section 3.1). We discuss

how these approximations perform on real teleoperation

data (Section 4.2), and point out directions for improving

prediction performance (Section 6).

In some situations, the user might be able to specify the

intended goal (including the exact grasp) using other inter-

faces, like a GUI (Leeper et al., 2012) or speech. However,

prediction via motion can be natural, fast, and seamless,

enabling a user to, for example, easily change their mind

and switch to another grasp or object, and can complement

other interfaces.

Arbitration. Despite the diversity of methods proposed for

assistance, from the robot completing the grasp when close

to the goal (Kofman et al., 2005), to virtual fixtures for fol-

lowing paths (Aarno et al., 2005), to potential fields towards

the goal (Aigner and McCarragher, 1997), a great number

of such methods can be interpreted as doing some form of

arbitration (with some function α from Figure 1) between

user input and robot prediction (details in Table 1). This

common lens for assistance enables us to analyze some

of the factors that affect its performance, and recommend

future work areas that have the potential to improve shared

control systems.

We formulate arbitration in a control-theoretical frame-

work, analyzing the cases in which it can lead to inescapable

situations, that get the robot stuck motionless (Section 3.2).

Mathematically, arbitration can be any function, with the

exception of these few adversarial cases. But to find out

what makes an arbitration function good, we turned to real

users and studied how they interacted with the assistance

(Section 4.1).

Prior work (detailed in Section 2) compared more man-

ual vs more autonomous assistance modes (Marayong et al.,

2002; Kim et al., 2011; You and Hauser, 2011) with surpris-

ingly conflicting results in terms of what users prefer: while

some studies find autonomy to be better, others advocate no

assistance at all. We found that these seemingly contradic-

tory results could potentially be explained by investigating

how the arbitration type interacts with other factors (e.g. the

type of task). Rather than using autonomy as a factor, we

look at aggressiveness: arbitration should be moderated by

the robot’s confidence in the prediction, leading to a spec-

trum from very timid to very aggressive assistance, from

small augmentation of user input even when confident to

large augmentation even when unsure. Rather than analyz-

ing the effect of aggressiveness (or autonomy) alone on the

performance of assistance, we conducted a user study that

analyzes how aggressiveness interacts with other factors,

like prediction correctness and task difficulty, in order to

help explain the seemingly contradictory findings above.

Our study suggests that

Arbitration should indeed be contextual: it should

depend on the robot’s confidence in itself and in

the user, as well as on the particulars of the user.
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Table 1. Prior work.

Method Prediction Arbitration

Rosenberg (1993)

no

Marayong et al. (2003)

Debus et al. (2000)

You and Hauser (2011)

Kim et al. (2011)

Marayong et al. (2002)

Leeper et al. (2012)

predefined behaviors
Demiris and Hayes (2002)

Fagg et al. (2004)

Crandall and Goodrich (2002)

no

Aigner and McCarragher (1997)

Gerdes and Rossetter (2001)

You and Hauser (2011)

Marayong et al. (2002)

predefined behaviorsYu et al. (2005)

no

Kofman et al. (2005)

Shen et al. (2004)

Smith et al. (2008)

predefined behaviorsLi and Okamura (2003)

MPC/minimum-jerk

Anderson et al. (2010)

Loizou and Kumar (2007)

Weber et al. (2009)

predefined behaviors
Aarno et al. (2005)

Yu et al. (2005)

Vasquez et al. (2005) fixed goals (2D) no

Ziebart et al. (2009) fully flexible (2D) no

Challenges and opportunities of shared control. Our for-

malism and analysis build on machine learning, control

theory, and human–robot interaction to provide insight into

shared control. We suggest possible challenges, as well as

opportunities, that could arise from the tight interaction

between the robot and the user: adaptation to the con-

text and the user, predicting and expressing intent, and

capitalizing on the user’s reactions. These challenges and

opportunities are applicable not only to shared control, but

conceivably also to human–robot collaboration in general.
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2. Prior work

In 1963, Goertz proposed manipulators for handling

radioactive material that are able to turn cranks based

on imprecise operator inputs, introducing one of the first

instances of shared control (Goertz, 1963). Since then,

research on this topic has proposed a great variety of meth-

ods for assistance, ranging from the robot having full con-

trol over all or some aspect of the motion (Rosenberg, 1993;

Debus et al., 2000; Demiris and Hayes, 2002; Marayong

et al., 2002, 2003; Fagg et al., 2004; Kim et al., 2011;

You and Hauser, 2011), to taking control (or releasing it)

at some trigger (Li and Okamura, 2003; Shen et al., 2004;

Kofman et al., 2005; Kragic et al., 2005), to never fully tak-

ing control (Aigner and McCarragher, 1997; Crandall and

Goodrich, 2002; Marayong et al., 2002; Aarno et al., 2005;

You and Hauser, 2011). For example, Debus et al. (2000)

proposed that the robot should be in full control of the ori-

entation of a cylinder while the user is inserting it into a

socket. In Kofman et al. (2005), the robot takes over to com-

plete the grasp when close enough to the target. Crandall

and Goodrich (2002) proposed to mix the user input with a

potential field in order to avoid obstacles.

The most widely studied paradigm of shared control is

that in which the robot shifts between pre-defined discrete

levels of autonomy: sliding autonomy (Dias et al., 2008),

adjustable autonomy (Kortenkamp et al., 2000), and sliding

scale autonomy (Bruemmer et al., 2002). They are typ-

ically thought of as the robot performing autonomously,

but giving the control to the user in difficult situations, in

other words ‘incorporate human intervention when needed’

(Kortenkamp et al., 2000; Sellner et al., 2005; Dias et al.,

2008). More generally, however, the robot can continuously

change the level of assistance, much like a more recent def-

inition of sliding scale autonomy (Desai and Yanco, 2005),

or semi-autonomy (Anderson et al., 2010).

Attempts to compare different levels of assistance are

sometimes contradictory. For example, You and Hauser

(2011) found that for a complex motion planning prob-

lem in a simulated environment, users preferred a fully

autonomous mode, where they only clicked on the desired

goal, to more reactive modes of assistance. On the other

hand, Kim et al. (2011) found that users preferred a manual

mode and not the autonomous one for manipulation tasks

like object grasping.

Policy blending provides a common perspective on assis-

tance, leading to an analysis which helps reconcile these

differences. Table 1 shows how various methods proposed

arbitrate user input and robot prediction (or simply robot

policy, in cases where intent is assumed to be known). For

example, potential field methods (e.g. Aigner and McCar-

ragher, 1997; Gerdes and Rossetter, 2001; Crandall and

Goodrich, 2002; Yu et al., 2005) that help the user avoid

obstacles become blends of the user input with a pol-

icy obtained from the repulsive force field, under a con-

stant arbitration function that establishes a trade-off. Virtual

fixture-based methods (e.g. Marayong et al., 2002; Li and

Okamura, 2003; Aarno et al., 2005; Yu et al., 2005) that are

commonly used to guide the user along a predefined path

become blends of the user input with a policy that projects

this input onto the path. The arbitration function dictates

the intensity of the fixture at every step, corresponding to a

normalized ‘stiffness/compliance’ gain. However, the same

framework also allows for the less studied case in which the

robot is able to generate a full policy for completing the task

on its own, rather than an attractive/repulsive force or a con-

straint (e.g. Shen et al., 2004; Kofman et al., 2005). In this

case, the arbitration is usually a switch from autonomous to

manual, although stages that trade off between the two (not

fully taking control but still correcting the user’s input) are

also possible (Aarno et al., 2005; Anderson et al., 2010).

Weber et al. (2009) and Anderson et al. (2010) have both

used a linear blend (as in Figure 1) between the user’s input

and a proposed policy computed via model predictive con-

trol or via a minimum-jerk model of intent, which could

be interpreted as the robot’s predicted policy. Both suggest

a threshold-like function to implement the blend, leading

to a dynamic switch of the control from (mostly) the user

to (mostly) the robot, for vehicle control or for contact-

ing stiff objects. Blending human and robot policies via a

generic function has also been proposed by Enes and Book

(2010). Desai and Yanco (2005) proposed a linear blend in

two dimensions between maximum user speed and maxi-

mum robot speed. Outside the teleoperation domain, a type

of arbitration (averaging) is used for mediating between

two human input channels (Glynn and Henning, 2000), and

blending in general between two human policies is used in

surgery training (Nudehi et al., 2005). Therefore, an intu-

itive formalism (linear policy blending) can act as a com-

mon lens across a wide range of literature, enabling us to

identify prediction and arbitration as two key challenges

that a shared-control robot faces.

Analyzing assistance based on how arbitration is done,

together with other factors like prediction correctness and

task difficulty, provides one way of explaining seem-

ingly contradictory previous findings: our data suggest that

aggressive assistance is preferable on hard tasks, like the

ones from You and Hauser (2011), where autonomy is sig-

nificantly more efficient; opinions are split on easier tasks,

like the ones from Kim et al. (2011), where the autonomous

and manual modes were comparable in terms of time to

completion.

The same table shows how prior methods handle predic-

tion of the user’s intent: the equivalent of plan recognition in

the area of intelligent user interfaces (Waern, 1996). Aside

from work that classifies which one of a predefined set of

paths, behaviors, or behavior types the user is currently

engaging (Demiris and Hayes, 2002; Fagg et al., 2004;

Hauser, 2012), most work assumes the robot has access to

the user’s intent, for example that it knows what object to

grasp and how. Exceptions are minimum-jerk-based mod-

els, for example Weber et al. (2009). Similarly, Smith et al.

(2008) deals with time delays in ball catching by projecting
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the input forward in time using a minimum-jerk model. Pre-

dicting or recognizing intent has received a lot of attention

outside of the teleoperation domain, dating back to high-

level plan recognition (Schmidt and D’Addamio, 1973).

Predicting intended motion, however, is usually again lim-

ited to classifying behaviors, or is done in low-dimensional

spaces (Zollner et al., 2002; Vasquez et al., 2005; Ziebart

et al., 2009). In the following section, which presents the

building blocks of assistance, we present the general pre-

diction problem, along with simplifying assumptions that

make it tractable.

3. The components of assistance

In what follows, Q denotes the robot’s current configuration,

U denotes the desired next configuration obtained via the

interface that maps the user’s direct input through a device

onto the robot (e.g. through a GUI, joystick, or a whole-

body teleoperation interface, as in Figure 1, or by sending a

velocity command to the robot),1 and P denotes the config-

uration the robot predicts it should be at next. We denote the

user’s starting input as S, and the trajectory of user inputs

until U as ξS→U .

Each new scene has a (possibly continuous) set of acces-

sible goals G, known only at runtime to both robot and user.

The robot does not know which goal the user is trying to

reach, nor does it have predefined trajectories to each of

these goals: the starting and goal configurations can differ

from every other situation the robot has ever encountered.

3.1. Prediction

The robot must predict where the user would like it to move

next, given ξS→U and any other cues, for example each

goal’s reachability, or a high-level description of the overall

task.

We break this problem down into two successive steps

(see Figure 5):

1. Goal prediction where we predict the most likely goal

G∗ given available data.

2. Trajectory prediction where we predict how the user

would want to move towards a predicted goal.

Goal prediction. We formulate goal prediction as:

G∗ = arg max
G∈G

P( G|ξS→U , θ ) (1)

in other words, given ξS→U and any other available cues

θ , the robot predicts the goal G∗ that maximizes posterior

probability.

Several simplifying assumptions help us to solve this

problem. The strongest is amnesic prediction, which

ignores all information except the current input U : G∗ =
arg max

G∈G
P( G|U). There are many ways to estimate P( G|U).

Fig. 2. Even though G1 is the closest goal to U in both cases,

ξS→U indicates that G2 is more likely in the situation on the right.

For example, given a distance metric on goals d, we can

assume that closer goals have higher probability:

G∗ = arg min
G∈G

d( U , G) (2)

Under the Euclidean metric, d( U , G) = ||U − G||, the

method predicts the goal closest in the robot’s configuration

space. Under d( U , G) = ||φ( U) −φ( G) || (with φ denoting

the forward kinematics function), the method predicts the

goal closest in the robot’s workspace.

Although intuitive, amnesic prediction does suffer from

its amnesia. Where the user came from is often a critical cue

for where they want to go. Prediction can also be memory-

based, taking into account the trajectory ξS→U of user inputs

(Figure 2):2

G∗ = arg max
G∈G

P( G|ξS→U ) = arg max
G∈G

P( ξS→U |G) P( G) (3)

In order to compute P( ξS→U |G), we need a model of

how users teleoperate the robot to get to a goal. A pos-

sible assumption is that the user’s input noisily optimizes

a goal-dependent cost function CG (one that depends,

as an example, on the dot product between the user’s

velocity and the direction to the goal). Using the principle

of maximum entropy, we can use CG to induce a proba-

bility distribution over trajectories ξ ∈ � given a goal as

P( ξ |G) ∝ exp
(

−CG( ξ )
)

, in other words the probability of

a trajectory decreases exponentially as its cost increases

(Ziebart et al., 2008). Given this distribution and if the cost

is additive along the trajectory,

P( ξS→U |G) =
exp

(

−CG( ξS→U )
) ∫

ξU→G
exp

(

−CG( ξU→G)
)

∫

ξS→G
exp

(

−CG( ξS→G)
)

(4)

In low-dimensional spaces, (4) can be evaluated exactly

through soft-maximum value iteration (Ziebart et al., 2009).

This is too expensive, however, in the high-dimensional

spaces that manipulation tasks induce.

Fortunately, this prediction is used with a human in the

loop. The direct consequence is that prediction does not

need to be perfect: the robot can wait a while longer and

get more information from the user before starting to assist.
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It is this consequence that enables us to find approximations

that perform well in the context of shared autonomy, and are

tractable and even real-time.

We approximate the integral over trajectories using

Laplace’s method. First, we approximate C( ξX→Y ) by its

second-order Taylor series expansion around ξ ∗
X→Y =

arg min
ξX→Y

C( ξX→Y ):

C( ξX→Y ) ≈ C( ξ∗
X→Y ) +∇C( ξ ∗

X→Y )T ( ξX→Y − ξ ∗
X→Y ) +

1

2
( ξX→Y − ξ ∗

X→Y )T ∇2C( ξ ∗
X→Y ) ( ξX→Y − ξ ∗

X→Y ) (5)

Since ∇C( ξ∗
X→Y ) = 0 at the optimum, we get

∫

ξX→Y

exp
(

−C( ξX→Y )
)

≈ exp
(

−C( ξ ∗
X→Y )

)

∫

ξX→Y

exp
(

−
1

2
( ξX→Y − ξ ∗

X→Y )T HX→Y ( ξX→Y − ξ ∗
X→Y )

)

(6)

with HX→Y the Hessian of the cost function around ξ ∗
X→Y .

Evaluating the Gaussian integral leads to

∫

ξX→Y

exp
(

−C( ξX→Y )
)

≈ exp
(

−C( ξ ∗
X→Y )

)

√
2π k

√
|HX→Y |

(7)

and the optimal prediction G∗ becomes

arg max
G

exp
(

−CG( ξS→U ) −CG( ξ ∗
U→G)

)√
|HU→G|

exp
(

−CG( ξ ∗
S→G)

)√
|HS→G|

P( G)

(8)

If the cost function is quadratic, the Hessian is constant and

(8) simplifies to

G∗ = arg max
G∈G

exp
(

−CG( ξS→U ) −CG( ξ ∗
U→G)

)

exp
(

−CG( ξ ∗
S→G)

) P( G) (9)

This prediction method implements an intuitive princi-

ple: if the user appears to be taking (even in the optimistic

case) a trajectory that is a lot costlier than the optimal one

to that goal, the goal is likely not the intended one.

In low-dimensional spaces, it is possible to learn CG from

user teleoperation data via maximum entropy inverse rein-

forcement learning (Ziebart et al., 2008) (or via algorithms

that assume no user noise, e.g. Abbeel and Ng, 2004; Ratliff

et al., 2006). In larger domains such as manipulation, sim-

ple guesses for CG can still be useful for prediction. This

is illustrated in Figure 3, which shows a toy problem with

two possible goals and a user trajectory ξS→U . Even with

a very simple CG, the sum of squared velocity magnitudes,

this method still holds an advantage over the amnesic ver-

sion. When CG is the same for all goals, the cost of ξS→U

is common across goals and does not affect the probabil-

ity, leaving only the starting point S and the current input

U as the crucial components of the trajectory so far. The

comparison between G1 and G2 leads to the correct result,

because the path to G2 through U is much shorter relative

Fig. 3. An example user trajectory leading to two possible goals.

A simple prediction implementing (9) with a cost function based

on length compares the two situations on the right and determines

that the user’s trajectory is a smaller deviation from the optimal

trajectory to G2 than to G1.

to the optimal, ξ ∗
S→G2

, than the path to G1 through U is,

relative to ξ ∗
S→G1

. Whether this very simplified memory-

based prediction is still helpful in an analogous problem

in the real world is one of the questions we answer in our

user study.

A more sophisticated prediction method learns to choose

G∗ by also considering θ , and using the goal probabilities

as features. From labeled data of the form F[ξS→U , θ , G] →
0/1 (features computed relative to G, paired with whether

G was the desired goal) a range of methods will learn to

predict a goal ‘score’ given feature values for a new situa-

tion. See Dragan et al. (2011a) for goal prediction based on

such feature constructs.

Trajectory prediction. Once the robot predicts a goal G∗,

it must also compute how the user wants it to move towards

G from the current state Q. It can do so by computing a

policy or a trajectory based on a cost function. Note that

the cost function the robot must optimize in this stage is

not (necessarily) the same as the cost function the human is

optimizing during teleoperation: the idea behind sharing the

autonomy is that the robot executes what the user actually

wants rather than what the user commands. Approximations

for this function also range from very simple (e.g. the length

of the trajectory, or a trade-off between the length and the

distance from obstacles) to very complex (e.g. functions

learned via inverse optimal control from users physically

moving the robot on a trajectory they would want the robot

to take).

Given such a cost, the robot would use a trajectory opti-

mizer (Todorov and Li, 2005; Ratliff et al., 2009; Toussaint,

2009; Dragan et al., 2011b; Kalakrishnan et al., 2011) to

acquire the intended trajectory (Figure 4). Although trajec-

tory optimizers are known to struggle with high-cost local

minima in the complex spaces induced by manipulation

tasks, this issue can be alleviated to a certain extent by

learning to place the optimizer in good basins of attraction
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Fig. 4. The trajectory optimizer goal set CHOMP smoothly bends

a seed trajectory out of collision.

from prior experience (Jetchev and Toussaint, 2009; Dragan

et al., 2011a; Dey et al., 2012).

3.2. Arbitration

Given U and P, the robot must decide on what to do next.

The arbitration function, α, is in charge of this decision.

In general, when arbitrating between two policies, we

need to guarantee that inescapable local minima do not

occur.

Inescapable local minima do not occur. In our case, these

are states at which the arbitration results in the same state

as at the previous time-step, regardless of the user input.

Theorem 1. Let Q be the current robot configuration.

Denote the prediction velocity as p = P − Q, and the user

input velocity as u = U − Q. Arbitration never leads to

inescapable local minima, unless ∀u 
= 0, p = −ku for

some k ≥ 0, and α = 1/( k + 1) (i.e. the policy is always

chosen to directly oppose the user’s input, and the arbitra-

tion is computed adversarially, or p = 0 and α = 1 for all

user inputs).

Proof. Assume that at time t, a local minimum occurs in the

arbitration, in other words ( 1−α) ( Q+u) +α( Q+p) = Q.

Further assume that this minimum is inescapable, in other

words ( 1 − α′) ( Q + u′) +α′( Q + p′) = Q, ∀u′, where

p′ and α′ are the corresponding prediction and arbitra-

tion if u′ is the next user input ⇔( 1−α′) u′ +α′p′ = 0, ∀u′.

Case 1: ∀u′ 
= 0, the corresponding α′ 
= 0 ⇒
p′ = −( 1 − α/α) u′, ∀u′ 
= 0 ⇒ p′ = −ku′ and

α = 1/( k + 1), with k ≥ 0 (since α ∈ [0, 1]) ∀u′ 
= 0.

Contradiction with the problem statement.

Case 2: ∃u′ 
= 0 such that the corresponding α′ = 0 ⇒
( 1 − 0) u′ + 0p′ = 0 ⇒ u′ = 0. Contradiction with u′ 
= 0.

⇒ ∃u′ such that ( 1 − α′) ( Q + u′) +α′( Q + p′) 
= Q.

Therefore, with an adversarial exception, the user can

always take a next action that escapes a local minimum.

Monotonicity with confidence. Mathematically, α can be

any function, and it can depend on a number of inputs, such

as the distance to the goal or to the closest object, or even

a binary switch operated by the user. But what should this

function be? We propose a simple principle: that arbitration

must be moderated (among others) by how good the pre-

diction is. Furthermore, we believe that arbitration should

increase monotonically with confidence: the higher the con-

fidence, the higher the arbitration value. This is an intuitive

design guideline, linking how much the robot assists with

how much ground it has for assuming it is assisting in the

right way.

Timid vs aggressive. The monotonicity of arbitration leads

to a spectrum defined by the trade-off between not over-

assisting (providing unwanted assistance) and not under-

assisting (failing to provide needed assistance). On the one

hand, the assistance could be very timid, with α taking small

values even when the robot is confident in its prediction.

On the other hand, it could be very aggressive: α could take

large values even when the robot does not trust the predicted

policy.

Evaluating confidence. Earlier, we had proposed that the

arbitration should take into account how good the predic-

tion is, in other words a measure of the confidence in the

prediction, conf , that correlates to prediction correctness.

A simple definition of conf might be as a hinge-loss, where

we assume that the closer the predicted goal gets, the more

likely it becomes that it is the correct goal:

conf = max

(

0, 1 −
d

D

)

with d the distance to the goal and D some threshold past

which the confidence is 0. We select this particular measure

in our study in Section 4 particularly because of its sim-

plicity, enabling us to design experimental conditions with

predictable outcomes.

A more sophisticated definition, however, is the probabil-

ity assigned to the prediction:

conf = P( G∗|ξS→U )

It can also relate to the entropy of the probability distribu-

tion (higher entropy meaning lower confidence),

conf =
∑

G∈G

P( G|ξS→U ) log P( G|ξS→U )

or to the difference between the probability of the predicted

goal and that of the next most probable candidate:

conf = P( G∗|ξS→U ) − max
G∈G\G∗

P( G|ξS→U )

If a cost function is assumed, the match between the

user’s input and this cost should also factor in. If a classifier

is used for prediction, then such a probability is obtained

through calibration (Platt, 1999).
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Fig. 5. Left and center: goal prediction. Right: trajectory prediction.

In certain situations, the robot could also shift its con-

fidence based on the trajectory prediction outcome. For

example, if it has a probabilistic model of the occupancy

grid of the scene, then it could compute a collision probabil-

ity along the trajectory and use this as part of its confidence

computation.

4. A study on assistance

The monotonicity and local minima requirements leave a

large set of potential arbitration functions possible, from

very timid to very aggressive. But sharing control is fun-

damentally a human–robot interaction task, and this inter-

action imposes additional requirements on arbitration: the

robot must arbitrate in an efficient and user-preferred way.

Therefore, we embarked upon a user study that analyzed

the effect of the aggressiveness of arbitration on the perfor-

mance of assistance.

Although previous work has not analyzed aggressive-

ness as a factor, there are studies on more manual vs

more autonomous assistance modes. Some studies find that

users prefer more autonomous assistance (You and Hauser,

2011), which is justified by the fact that autonomy makes

the task easier. Other studies found that users prefer to tele-

operate the robot manually, with no assistance (Kim et al.,

2011), which is justified by users preferring to remain in

control of the robot. We believe this apparent contradiction

happens because of the contextual nature of good arbitra-

tion, in other words because of the interaction of aggressive-

ness or autonomy level with other factors, like prediction

correctness (users might not appreciate assistance if the

robot is wrong) and task difficulty (users might appreciate

assistance if the task is very hard for them).

Although this analysis of arbitration is our primary

goal, we will also test the performance of the simplify-

ing assumptions from Section 3.1 on real data of users

teleoperating the robot through our whole-body interface.

We tasked eight users with teleoperating the robot to

grasp an object from a table, as in Figure 1. There were

always two graspable objects, and we gave the user, for

every trial, the farther of the two as goal (an analogous sit-

uation to the one from Figure 3). We implemented a whole-

body interface that tracks their skeleton (OpenNI, 2010),

and directly maps the extracted user joint values onto the

robot (which is fairly anthropomorphic), yielding an arm

configuration which serves as the user input U (more details

in Dragan and Srinivasa, 2012). The robot makes a predic-

tion of the goal and the policy to it (that minimizes length

in configuration-space), leading to P, and combines the

two via the arbitration function α. We committed to simple

parameters of our formalism in order to explicitly manip-

ulate the factors we were interested in without introducing

confounds.

4.1. Goal 1: Factors that affect assistance

Hypotheses.

Hypothesis 1. Aggressiveness, task difficulty

and prediction correctness affect the perfor-

mance of assistance.

However, particularly for aggressiveness, we expect to

find that the choice of an arbitration mode should depend

on the context:

Hypothesis 2. Aggressive assistance has better

performance on hard tasks if the robot is right,

while the timid assistance has better performance

on easy tasks if the robot is wrong.

We leave it to exploratory analysis to find what happens

with both complications (hard and wrong), or with neither

(easy and right).

Manipulated variables. We manipulated prediction cor-

rectness by using a simple, easy-to-manipulate goal predic-

tion method: the amnesic prediction based on workspace

distance, which always selects the closest object. We set up

wrong conditions at the limit of the robot being wrong yet

rectifiable. We place the intended object further, guarantee-

ing wrong prediction until the user makes his preference

clear by providing an input U closer to the correct goal. We

set up right conditions by explicitly informing the robot of

the user’s intended goal.

We manipulated task difficulty by changing the location

of the two objects and placing the target object in an easily

reachable location (e.g. grasping the bottle in Figure 6(b)
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Fig. 6. Hard tasks from our study, with the goal at the limit of the

reachable area, for both right and wrong prediction. On the left,

the robot correctly predicts the box as the target object (indicated

by the green trajectory). On the right, the robot incorrectly predicts

the bottle as the target object (indicated by the red trajectory).

makes an easy task) vs a location at the limit of the inter-

face’s reachability (e.g. grasping the box in Figure 6(b) is

a hard task, because it is just outside of the reachable area

through the interface that we use, in other words not even

an expert user would be able to achieve the task without any

assistance). This leads to four types of tasks: Easy&Right,

Easy&Wrong, Hard&Right, and Hard&Wrong.

Finally, we manipulated the aggressiveness of the assis-

tance by changing the arbitration function, and used the

distance-based measure of confidence: c = max( 0, 1 −
d/D), with d the distance to the goal and D some threshold

past which the confidence is 0. As the user makes progress

towards the predicted object, the confidence increases. We

had two assistance modes, shown in Figure 7: the timid

mode increases the assistance with the confidence, but

plateaus at a maximum value, never fully taking charge. On

the other hand, the aggressive mode eagerly takes charge

as soon as the confidence exceeds a threshold. We chose

these values such that a) the timid mode provides as little

assistance as possible while still enabling the completion of

the hard task, and b) the aggressive mode provides as much

assistance as possible while still being correctible by the

user when wrong.

Subject allocation. We chose a within-subjects design,

enabling us to ask users to compare the timid and aggressive

modes on each task. We recruited eight participants (all stu-

dents, four males and four females), all with prior exposure

to robots or video frames, but none with prior exposure to

our system. Each participant executed both modes on each

of the four types of tasks. To avoid ordering effects, we used

a balanced Latin square for the task order, and balanced the

order of the modes within each task.

Dependent measures. We measured the performance of

assistance in two ways: the amount of time each user took

to complete the task under each condition, and each user’s

preference for the timid vs the aggressive mode on each

task type (on a seven point Likert scale where the two ends

Fig. 7. The timid and aggressive modes as a function of confi-

dence in the prediction.

are the two choices). We expect the two measures to be cor-

related: if an assistance mode is faster on a task, then the

users will also prefer it for that task. We also asked the

users additional questions for each condition, about how

helpful the robot was, how much its motion matched the

intended motion, and how highly they would rate the robot

as a teammate.

Covariates. We identified the following factors that might

also have an effect on performance: the users’ initial teleop-

eration skill, their rating of the robot without assistance, and

the learning effect. To control for these, users went though

a training phase, teleoperating the robot without assistance.

The users were asked to perform a pick-up task (different

than the two tasks in our conditions) via direct teleoperation

for a total of three times.

This partially eliminated the learning effect and gave us

a baseline for their timing and ratings. We used these as

covariates, together with the number of tasks completed at

any point: a measure of prior practice.

4.2. Goal 2: Prediction based on real

teleoperation data

Hypothesis.

On tasks in which the target object is not the

closest one to the original human input configu-

ration, replicating the situation from Figure 3, the

memory-based prediction will identify the cor-

rect goal faster, yielding a higher success rate

despite the simplifying assumptions it makes.

Manipulated variables. We used the amnesic prediction

during the study for its transparency, which enabled us to

manipulate prediction correctness. We compared amnesic

vs memory-based prediction on the same data of the users

teleoperating the robot under the different conditions, in

a post-experimental stage. For memory-based prediction,
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Fig. 8. The results from our study (error bars indicate standard

error).

we used workspace sum squared velocity as the cost C,

C =
∑

i ||ξ ( i) −ξ ( i − 1) ||2, leading to the simplification

from (9).

Dependent measures. We took each user trajectory and

applied each of the two prediction methods at every point

along the trajectory. We measured the percentage of time

(success rate) across the trajectory that the prediction iden-

tified the correct target object.

Note that this study uses the data post-experiment, imply-

ing that differences in predictions could have caused dif-

ferences in user behavior that are not captured in this

data. Nonetheless, they represent real user trajectories with

real noise, along which a comparison of predictors pro-

vides valuable information on how well these can tolerate

imperfect, real-world data.

5. Analysis

Our first goal with this study was to identify the effect of

different factors on the performance of assistance, and we

do so in the following sections. Our secondary goal was to

analyze two simplistic prediction methods (an amnesic and

a memory-based one) on teleoperation data under different

assistance modes. We discuss our findings in Section 5.2.

5.1. Arbitration

Teleoperation timing. The average time per task was

approximately 28 s. We performed a factorial repeated-

measures ANOVA with Bonferroni corrections for multiple

comparisons and a significance threshold of p = 0.05,

which resulted in a good fit of the data (R2 = 0.66). All

three factors had significant main effects: hard tasks took

22.9 s longer than easy ones (F( 1, 53) = 18.45, p < .001),

tasks where the policy was wrong took 30.1 s longer than

when right (F( 1, 53) = 31.88, p < .001), and the aggres-

sive mode took 19.4 s longer overall than the timid one

(F( 1, 53) = 13.2, p = .001).

Interpreting these main effects as such, however, would

be misleading, due to disordinal interaction effects. For

example, it is not true that the timid mode is better over-

all, the interaction suggesting that some situations benefit

from the timid mode more while others benefit from the

aggressive one. We found one significant interaction effect

between aggressiveness and correctness (F( 1, 53) = 36.28,

p < .001), and the post-hoc analysis indicated that when

wrong, being timid is significantly better than being aggres-

sive (t( 15) = 7.09, p < .001) (in fact, being aggressive and

wrong is significantly worse than all three other situations).

Surprisingly, the three-way interaction was only

marginally significant (F( 1, 53) = 2.63, p = .11). To test

H2 specifically, we conducted two planned comparisons:

one on Hard&Right, for which we found support for the

aggressive mode (t( 7) = 4.92, p = .002), and one on

Easy&Wrong, for which we found support for the timid

mode (t( 7) = 4.95, p = .002).

Figure 8 compares the means and standard errors of each

task. The timid mode is better on both Easy&Wrong, as

expected, and on Hard&Wrong. The timid mode performed

about the same on Easy&Right, and, as expected, worse on

Hard&Right (the time taken for aggressive is smaller than

for timid for every user).

Overall, the effect sizes are influenced by our manipula-

tion of the factors: we see that the hard task did not make it

as hard for the timid mode as the wrong prediction made it

for the aggressive mode. Because of this, and because of the

limited number of subjects, all we conclude from our data is

that there are strong trends indicating that aggressiveness is

useful when right, especially when the task is difficult, but

harmful to the teleoperation process when wrong.

Efficiency is only part of the story: as the next section

points out, some users are more negatively affected than

others by a wrong robot policy.

User preferences. Figure 8 also shows the users’ prefer-

ences on each task, which indeed correlated to the timing

results (Pearson’s r( 30) = .66, p < .001). The outliers were

users with stronger preferences than the time difference

would indicate. For example, some users strongly preferred

the timid mode on Hard&Wrong tasks, despite the time

difference not being as high as with other users. The oppo-

site happened on Hard&Right tasks, on which some users

strongly preferred the aggressive mode despite a small time

difference, commenting that they appreciated the precision

of the autonomy. On Easy&Right tasks, the opinions were

split and some users preferred the timid mode despite it

taking a slightly longer time, saying that they felt more in

control of the robot. Despite the other measures (helpful-

ness, ranking as a teammate, etc.) strongly correlating to

the preference rating (r( 30) > .85, p < .001), they provided

similar interesting nuances. For example, the users that pre-

ferred the timid mode on Easy&Right tasks because they

liked having control of the robot were willing to admit

that the aggressive mode was more helpful. On the other
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Fig. 9. A comparison of amnesic vs memory-based prediction on data from our study. The two examples (b) and (c) indicate the

predictions for the same trajectory using the two algorithms: green trajectory points indicate that the prediction using the trajectory up

to that point is correct, red points indicate that it is incorrect. The arrows identify the first point at which the prediction becomes correct,

happening much earlier in the trajectory for the memory-based algorithm.

hand, we also encountered users that preferred the aggres-

sive mode, and even users that followed the robot’s motion

while aggressive, not realizing that they were not in con-

trol and finding the motion of the robot to match their own

very well (i.e. the predicted policy P matched what they

intended, resulting in seamless teleoperation).

Overall, although difference in timing is a good indica-

tor of the preference, it does not capture a user’s experi-

ence in its entirety. First, some users exaggerate the differ-

ence in preferences. Second, some users prefer the timid

mode despite it being slightly less efficient. Third, assis-

tance should not just be quick: some users also want it to

be intent-transparent. Our users commented that ‘assistance

is good if you can tell that [the robot] is doing the right

thing’.

5.2. Prediction

Results from the study. A factorial ANOVA on the four

manipulated factors obtained a clean fit of the data, with

R2 = 0.9. In line with our hypothesis, the factor cor-

responding to the prediction was significant (F( 1, 112) =
1020.95, p < .001): memory-based prediction was signif-

icantly better at identifying the correct goal for a longer

amount of time along the trajectory. The assistance being

timid also made it significantly easier for the prediction

method to output the correct answer (F( 1, 112) = 7.62,

p < .01): users are not as precise about the motion in

aggressive mode, making prediction more difficult. Figure

9(a) shows the means and standard errors for the memory-

based prediction vs the amnesic one, for each assistance

type. Figures 9(b) and 9(c) compare the two methods on

one of the trajectories, colored in each case according to

whether the prediction was correct (green spheres) or incor-

rect (red spheres). While the amnesic variant only switches

to the correct prediction at the very end, when the user input

gets closer to the correct goal, the memory-based prediction

is able to identify the goal much earlier.

In our study, the target object was always the farther

one (to manipulate prediction correctness, in other words

create situations in which the robot is wrong until the

user’s input gets closer to the correct goal). However, this

is disadvantageous to the amnesic method: if the target

object were the closer one, this method would usually be

100% accurate. In fact, the amnesic success should be on

average almost 0.5 higher. Nevertheless, even with this

boost, memory-based remains the out-performer. Further-

more, prediction becomes more challenging as the number

of goals increases, changing the results above.

An exploratory experiment. Despite the good perfor-

mance of the memory-based prediction in the environment

configurations from our experiment, we were also interested

in exploring its limitations. We conducted a thought exper-

iment by taking real environments and their trajectories

from the users, and varying the location of the non-target

object. This exposed a few failure modes of the workspace

length-based prediction.

First, if the goals are collinear with the start, and the

user’s trajectory deviates from this line, the method is biased

towards the farther goal. We call this the ‘null space effect’

of using the same C for each goal: given two goals G1 and

G2 such that the optimal trajectory to G2 passes through

G1, the two goals get equal probabilities until G1 along the

optimal path (below, Z is the normalization term):

P( G1|ξ ∗
S→U ) =

1

Z

exp
(

−C( ξ ∗
S→U ) −C( ξ ∗

U→G1
)
)

exp
(

−C( ξ ∗
S→G1

)
) =

1

Z

P( G2|ξ ∗
S→U ) =

1

Z

exp
(

−C( ξ ∗
S→U ) −C( ξ ∗

U→G2
)
)

exp
(

−C( ξ ∗
S→G2

)
) =

1

Z

When a small deviation arises, it decreases P( G1| . . . )

more, and the method predicts G2. Even humans are often

confused in such situations, for example when interacting in

a crowded room. We move towards someone at the back of

the room in order to speak with them but are often inter-

cepted along the way by others who predict that social

motion incorrectly.

Second, given the trajectories in our data set, the method

is in some cases incorrectly biased towards the rightmost

object. An example is shown in Figure 10: the trajectory,

collected in the environment from Figure 9, heads towards
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Fig. 10. The user trajectory colored according to the prediction

for this artificially generated environment, the trajectory optimiz-

ing configuration space length in gray, and the one optimizing

work space length in dark blue.

the artificially added obstacle and confuses the predictor.

This example should be taken with a grain of salt, because

the user would adapt the trajectory to the new environment.

Furthermore, the issue could be addressed with priors that

prefer closer goals in cases where the goals are ‘aligned’.

However, the more fundamental problem is the incorrect

model of human behavior, as shown in Figure 10.

6. Future work directions

Our study suggests future work directions for robots that

share control with their users: adaptation to a user (for both

prediction and arbitration), legibility of behavior, and the

strong coupling of robot prediction and user action.

6.1. Adaptation

Adapting prediction to the user. In our experiments, we

observed different users adopting uniquely different and

often surprising motion strategies. While some users took

the direct path to the goal, others made progress one dimen-

sion at a time, as in Figure 11. Some went above obsta-

cles, while others went around. The existence of these stark

differences in strategy implies that it would be beneficial

for the quality of the intent predictions if predictors could

adjust their model to specific users. Thus, a first research

direction is online learning from the interaction with users

and adaptation to their behavior.

We can formalize this adaptation as an online update

to the cost function C that we assume the user is opti-

mizing (Ratliff et al., 2006), made challenging by the

high-dimensionality of the space.

Adapting prediction to the arbitration type. In our

experiments, we also observed that users teleoperate dif-

ferently for different arbitration types. For example, during

aggressive arbitration and when the robot was correct in

its prediction, some users became more careless in their

motion, with their trajectory deviating significantly from

one that reaches the desired object (Figure 12) and stop-

ping early on to let the robot finish the task. Alternatively,

users can overly compensate for an aggressive mode that

only responds to large deviations. This suggests an addi-

tional burden on the predictor, of adapting to the arbitration

type: the cost function C for a more timid mode is not the

same as the one for a more aggressive mode.

Adapting the arbitration function. Our study indicated

that the arbitration function should adapt to at least three

factors: the robot’s confidence in itself, the robot’s con-

fidence in the user, and the user type (or their personal

preferences).

6.2. Legibility

At every time-step, the robot makes a goal prediction. This

alone is not sufficient for assisting the user: the robot must

also compute a predicted next action P that the user would

like to take towards the goal. In Section 3, we discussed

trajectory prediction as a way to compute P: what trajectory

would the user want to take toward the goal? We suggested

that the robot would optimize a cost function capturing how

the user intends it to move to achieve a goal.

Our user comments tend to suggest, however, that this

might not be enough, for example ‘assistance is good if you

can tell that it [the robot] is doing the right thing’. In some

cases, the robot’s planned trajectory might have the addi-

tional burden of making its intent clear to the user, in other

words being legible. We believe that if the robot’s motion

disambiguates between the possible goals in the scene,

making it very clear that it predicted the correct intention,

then this would have a positive effect on acceptance.

Optimizing for legibility. Legibility depends on the user’s

inference of the goal based on a snippet of the trajectory

that the robot has executed thus far, ξr. One way to generate

legible motion is to model this inference, and create motion

that enables the right inference from the observer. Assume

the user expects the robot to optimize the cost function Cr.

Instead of directly optimizing Cr, the robot can explicitly

optimize how easy it is for the user to infer its goal, Gr. A

possible model is the one in (4), or its approximation in (9),

enabling the robot to compute P( G|ξr) for any G based on

Cr. Here, we flip the robot and user roles: before, the robot

was attempting to predict the user’s goal; now the robot

is attempting to model how the person would predict its

goal, Gr.

Armed with a model, the robot can now produce leg-

ible trajectories (subject to the accuracy of the model’s

predictions) by optimizing a specific legibility criterion,

as opposed to the function the user expects, Cr. A legible

trajectory is one that enables quick and confident predic-

tions. Criteria for legibility therefore track P( G|ξr) for the
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Fig. 11. A user with an unusual strategy for teleoperating. She moves the robot one joint at a time.

Fig. 12. A user’s trajectory during the aggressive mode. Users can

get careless with their input during aggressive arbitration, which

can affect prediction.

predicted goal G that the robot is aiming for. Figure 13

compares a trajectory with low-cost Cr with a trajectory

with high legibility score in a criterion averaging the prob-

abilities assigned to the robot’s actual goal across the

trajectory.

6.3. User reaction

Sharing control raises opportunities stemming from having

a user in the loop. Key among them is that users directly

react to what the robot does.

Detecting ‘aggressive and wrong’. Being aggressive and

wrong results in large penalties in time and user preference.

Fortunately, it is also a state that can easily be identified and

remedied by the user. Because prediction affects the user’s

behavior, when the robot eagerly starts heading towards the

wrong target, the user rapidly attempts to get back control

by moving against the robot’s policy, as in Figure 14. This,

in turn, decreases the predictor’s confidence, causing the

robot to begin following the user. This state can be detected

early (Figure 15) by comparing the user’s trajectory in the

Fig. 13. Above: A hand trajectory that optimizes Cr (left); a

hand trajectory that is legible (right). Below: similar trajectories

in HERB. The trajectory directly optimizing Cr is more ambigu-

ous, making it harder for the user to infer the robot’s intent early

on, as indicated by the green/red bars alongside the hands.

right and wrong cases, along with the dot product between

the robot’s policy and its actual velocity.

Provoking ‘aggressive and wrong’. While the robot can

capitalize on the user’s reaction to infer that it has made the

wrong prediction, it could also purposefully probe the user

to trigger a reaction, as an information-gathering action in a

game-theoretic setup. In doing so, the robot could become

more confident in its prediction earlier on. How much users

enjoy the experience when the robot acts in this manner,

however, remains an open research question.

7. Limitations

Our work is limited in many ways, from formalism to anal-

ysis. Our formalism is restricted to the shared autonomy

paradigm requiring a user to provide continuous input, and
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Fig. 14. Users have strong reactions when the robot does the

wrong thing. As soon as this user realizes that the robot will grasp

the bottle, he moves his arm towards the right to show the robot

that this is not his intended goal.

Fig. 15. A comparison of the user input trajectories for right vs

wrong. The graphs show the dot product between the robot’s policy

and the robot’s actual velocity.

having a robot modify and play out this input; we do not

focus on different, albeit useful, paradigms in which, for

example, the robot is given high-level commands, or the

user is in charge of setting the arbitration level. The for-

malism is also one possible interpretation of assistance, not

the interpretation; it provides but one interpretation of prior

work, while there can be many others.

Our analysis is done with a limited number of users,

in a typical lab setting that is likely to bias the way they

act and respond to the system, and with a simple system

that enabled us to control for all the factors we wanted to

manipulate. Our user pool was not comprised of the usual

robot operators, for example users trained in disaster relief

or users with disabilities. Our prediction analysis used data

biased by the study setup. Therefore, our results throughout

the paper should be interpreted as useful trends rather than

irrefutable facts.

8. Conclusion

In this work, we presented an analysis of systems that

share control with their users in order to assist them in

completing the task. We proposed a formalism for assis-

tance, namely policy blending, which we hope will provide

a common ground for future methods and comparisons of

such systems. We investigated aggressiveness, prediction

correctness, and task difficulty as factors that affect assis-

tance performance and user preferences, analyzing their

interaction in a user study. Our data suggest that arbitra-

tion should take into account the robot’s confidence in itself

(i.e. in the correctness of the predicted policy) and in the

user (i.e. in how easy the task is for the user). Our study

identified potential challenges of such systems, which form

interesting avenues for future work, such as behavior adap-

tation to the user and intent expression. Furthermore, unlike

for typical intent prediction tasks, the robot’s prediction

directly affects the user’s behavior. This gives the learner the

opportunity to improve its predictions by explicitly incor-

porating the user’s reaction, and even by taking purposeful

information-gathering actions to disambiguate among its

hypotheses.

Notes

1. In the case of velocity inputs, the robot applies its motion
model to obtain the configuration U .

2. Although considering current velocity in amnesic prediction
can help with this, this information is still local. As in Figure
3, incorporating global knowledge from the trajectory can be
beneficial.
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