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A PÓLYA-SZEGÖ PRINCIPLE FOR GENERAL FRACTIONAL

ORLICZ-SOBOLEV SPACES

PABLO DE NÁPOLI, JULIÁN FERNÁNDEZ BONDER, AND ARIEL SALORT

Abstract. In this article we prove modular and norm Pólya-Szegö inequalities
in general fractional Orlicz-Sobolev spaces by using the polarization technique.
We introduce a general framework which includes the different definitions of
theses spaces in the literature, and we establish some of its basic properties
such as the density of smooth functions.
As a corollary we prove a Rayleigh-Faber-Krahn type inequality for Dirichlet
eigenvalues under nonlocal nonstandard growth operators.

1. Introduction

Symmetrization procedures have became a fundamental tool in the history of
isoperimetric problems, which go back to the works of J. Steiner [23] (1838) and H.
Schwarz [22] (1884). Given a u : Rn → R

+ ∪ {+∞}, its symmetric rearrangement

or Schwarz symmetrization is the function u∗ : Rn → R
+ ∪ {+∞} defined as the

unique one such that for every λ ≥ 0 there exists R ≥ 0 such that

B(0, R) = {x ∈ R
n : u∗(x) > λ},

Ln({x ∈ R
n : u∗(x) > λ}) = Ln({x ∈ R

n : u(x) > λ}).

Therefore, the function u∗ is radial and radially decreasing and whose sub-level
sets have the same measure as those of u. From this it is easily deduced that if
u ∈ Lp(Rn), then u∗ ∈ Lp(Rn) and both functions have the same Lp norm. The
case of Sobolev functions is more subtle, and the celebrated inequality named after
G. Pólya and G. Szegö [18] (1951) states that if u ∈W 1,p(Rn) is nonnegative, then
u∗ ∈ W 1,p(Rn) and it is satisfied that

∫

Rn

|∇u∗|p ≤

∫

Rn

|∇u|p.

This inequality is crucial in the proof of the Rayleigh-Faber-Krahn inequality, which
asserts that balls minimize the first eigenvalue of the Dirichlet p−Laplacian among
sets with given volume, that is,

λ1(B) ≤ λ1(Ω), λ1(Ω) := min
u∈W 1,p

0
(Ω)

{
∫

Ω

|∇u|p dx : ‖u‖Lp(Ω) = 1

}

where B is a ball having the same measure as Ω. We refer the reader to the survey
[24] for more information on the symmetric rearrangement.
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Other applications of the Pólya-Szegö principle arise in establishing sharp geo-
metric and functional inequalities, such as the sharp Sobolev inequality, Hardy-
Littlewood-Sobolev inequality, Moser-Trudinger inequality, etc. See for instance
[10, 16, 17, 24], etc.

The Pólya-Szegö principle was extended to fractional Sobolev spaces in [2], where
the authors prove that [u∗]W s,p(Rn) ≤ [u]W s,p(Rn) for any u ∈W s,p(Rn) with p > 1
and s ∈ (0, 1). Thus, in [5] the Rayleigh-Faber-Krahn inequality was generalized
for p−fractional eigenvalues.

We remark that in the fractional case, this approach is not always very successful
for obtaining sharp geometric and functional inequalities since the reduction to a
one dimensional problem does not always give any evident advantage. As far as we
are aware the only paper that treats a sharp fractional Sobolev inequality is [16]
where, as a corollary of a more general Hardy-Littlewood-Sobolev inequality the
case of the embedding of W s,2(Rn) into L2∗s (Rn) is fully analyzed.

Yet another interesting paper is [10] where, using this fractional version of the
Pólya-Szegö principle, the authors deduce a sharp Sobolev inequality with Lorentz
norms from the sharp fractional Hardy inequality.

It is worth mentioning that recently some rearrangement-free methods have been
developed to deal with problems where a Pólya-Szegö principle is not available.
This is the case, for instance, of functional inequalities in the Heisenberg group.
See [13, 14, 15]. It is an interesting open problem wether these methods can be
used to obtain sharp geometric inequalities in the context of Orlicz-Sobolev spaces.
We leave these questions to further investigations.

The main goal of this paper is to extend that principle to the more general setting
of fractional Orlicz-Sobolev spaces, thus allowing growth laws different than powers.
However, several definitions of fractional Orlicz-Sobolev have been proposed in the
literature in [4] [9] and [11]. It turns out that essentially the same proof of the
Pólya-Szegö principle works for all of them. For this reason, we propose here a
more general framework that encompasses these different definitions (see section
2.3 below for details).

To be more precise, consider the class of Young functions G : R → R, such
that g = G′, which, basically consists in even, convex and increasing functions. In
addition, we assume G to satisfy the growth condition

(P0) 1 < p− ≤
tg(t)

G(t)
≤ p+ ∀t > 0,

for some constants p±. Given two function M,N : R+ → R+ such that

(P1) M and N are nondecreasing and M(r), N(r) > 0 for r > 0,

(P2) M(r) ≥ min{1, r} and N is continuous,

(P3)

∫ 1

0

rn−1+p−

N(r)M(r)p− dr <∞,

∫ ∞

1

rn−1

N(r)M(r)p− dr <∞,

and any Young function G satisfying (P0), we consider the general fractional Orlicz-
Sobolev spaces defined as

WM,N,G(Rn) :=
{

u ∈ LG(Rn) such that ΦM,N,G(u) <∞
}
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where the usual Orlicz space LG is defined as

LG(Rn) := {u : Rn → R measurable, such that ΦG(u) <∞}

and the modulars ΦG and ΦM,N,G are determined as

ΦG(u) :=

∫

Rn

G(u(x)) dx,

ΦM,N,G(u) :=

∫

R2n

G

(

u(x)− u(y)

M(|x− y|)

)

dx dy

N(|x− y|)
.

In this context we prove a Pólya-Szegö principle for modulars, namely,

Theorem 1.1. Consider an Young function G satisfying (P0) and two increas-

ing function M and N satisfying (P1)–(P3). If u ∈ WM,N,G(Rn), then u∗ ∈
WM,N,G(Rn) and

ΦM,N,G(u
∗) ≤ ΦM,N,G(u).

Moreover, this inequality also holds for the Luxemburg’s norm in WM,N,G(Rn).

Our proof relies on the symmetrization via polarization approach introduced in
[6], and on the construction in [25]. This technique requires the density of smooth
functions with compact support in our space. We also give a detailed proof of that
property in Section 2.4.

As a direct application of our main result we prove a Faber-Krahn type inequality
for Dirichlet G−eigenvalues and Poincaré’s constants.

The space WM,N,G(Rn) is the natural one to define the the general fractional
g−Laplacian operator (−∆g)

M,N as the gradient of the functional ΦM,N,G, which
is well-defined between WM,N,G(Rn) and its dual space. See (2.9) for an explicit
formula.

In order to define eigenvalues of this operator we will need to assume an addi-
tional growth condition on M and N , namely,

(P4) lim
r→0

N(2r)M(2r)p
−

rn
= 0,

which allow us to prove in Theorem 4.2 that the embedding WM,N,G(Rn) ⊂
LG
loc(R

n) is compact (a generalization of the Rellich–Kondrachov theorem to our
setting).

Therefore, as in [21], we can be considered the Dirichlet eigenvalue problem
{

(−∆g)
M,Nu = λg(u) in Ω

u = 0 in R
n \Ω.

(1.1)

Observe that in contrast with p−Laplacian type eigenproblems, due to the possible
lack of homogeneity, eigenfunctions depend strongly on the energy level: for any

µ > 0 there exists λµ > 0 and an eigenfunction uµ ∈ WM,N,G
0 (Ω) normalized such

that ΦG(uµ) = µ, that is,

λµ(Ω)

∫

Ω

g(uµ)uµ dx = 〈(−∆g)
M,Nuµ, uµ〉,

where 〈 , 〉 denotes the duality product and

WM,N,G
0 (Ω) :=

{

u ∈ WM,N,G(Rn) : u = 0 a.e. in R
n \ Ω

}

.
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Consequently, the first eigenvalue of (1.1) can be defined as the less value over
all possible values of µ, that is,

λM,N,G
1 (Ω) = inf{λµ(Ω) : µ > 0}.

We also define

αµ(Ω) = inf{ΦM,N,G(u) : u ∈WM,N,G
0 (Ω) and ΦG(u) = µ},

and the best Poincaré constant over all possible values of µ is denoted as

αM,N,G
1 (Ω) = inf{αµ(Ω) : µ > 0}.

It is worth of mention that although (P4) is needed to define λM,N,G
1 (Ω), we can

prescind from it to define αM,N,G
1 (Ω).

As in [21], the quantities λM,N,G
1 (Ω) and αM,N,G

1 (Ω) can be proved to be well

defined. Moreover, since the spectrum of (1.1) is closed, λM,N,G
1 (Ω) is an eigenvalue

of (1.1) as well.
However, a remarkable difference with the p−growth case lays on the fact that

λM,N,G
1 (Ω) may differ from αM,N,G

1 (Ω). In fact, it holds that

p−

p+
αM,N,G
1 (Ω) ≤ λM,N,G

1 (Ω) ≤
p+

p−
αM,N,G
1 (Ω).

In this context, in Corollaries 5.1 and 5.3 we provide for a Faber-Krahn type in-
equality for these constants. Namely, for every Ω ⊂ R

n open and bounded we have
that

αM,N,G
1 (B) ≤ αM,N,G

1 (Ω)

where B is a ball with Ln(B) = Ln(Ω). Furthermore, if in addition G′ also satisfies
condition (P0), then

λM,N,G
1 (B) ≤ λM,N,G

1 (Ω)

for any B ball with Ln(B) = Ln(Ω).

This paper is organized as follows. In section 2 we collect the basic definitions
and properties of our fractional Orlicz-Sobolev spaces. Section 3 is devoted to
prove our main result. In section 4, we prove our generalization of the the Rellich–
Kondrachov compactness theorem to our setting. Finally in Section 5 we give some
applications to the behavior of the Poincaré constant and the first eigenvalue of
(−∆g)

M,N under symmetrization.

2. Preliminaries on Fractional Orlicz-Sobolev spaces

In this section we make a brief overview on the classical Orlicz-Sobolev spaces, as
well as we introduce the general fractional order Orlicz-Sobolev spaces, their main
properties and the associated general fractional g−laplacian operator.

2.1. Young functions. By a Young function G : R → R we understand a function
fulfilling the following properties:

G is even, continuous, convex, increasing for t > 0 and G(0) = 0;(G0)

lim
x→0

G(x)

x
= 0 and lim

x→∞

G(x)

x
= ∞.(G1)
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Denoting g(t) = G′(t), if we assume that they are related through the following
growth assumption

1 < p− ≤
tg(t)

G(t)
≤ p+ ∀t > 0,(G2)

then, by [12, Theorem 4.1] G satisfies the ∆2 condition, i.e.,

there exists C > 2 such that G(2t) ≤ CG(t), for any t > 0;(∆2)

Without loss of generality it can be assumed the normalization condition G(1) =
1. This normalization will be assumed throughout the paper and will not be men-
tioned explicitly.

An immediate consequence of (G2) is the following polynomial growth, both on
G and g.

Lemma 2.1. Assume G is an Young function satisfying (G2) and normalized as

G(1) = 1. Then we have the following polynomial growth

tp
−

≤ G(t) ≤ tp
+

for t > 1(2.1)

tp
+

≤ G(t) ≤ tp
−

for 0 < t < 1(2.2)

p−tp
−−1 ≤ g(t) ≤ p+tp

+−1 for t > 1(2.3)

p−tp
+−1 ≤ g(t) ≤ p+tp

−−1 for 0 < t < 1.(2.4)

Moreover, the following holds.

Lemma 2.2. Let G be an Young function satisfying (G2). Then, for 0 < t < 1 it

holds that

(2.5)
p−

p+
g(a)tp

+−1 ≤ g(at) ≤
p+

p−
g(a)tp

−−1.

The proofs of Lemmas 2.1 and 2.2 are elementary. The interested reader can
find a proof in [8].

The complementary function of an Young function G is defined as

G∗(a) := sup{at−G(t) : t > 0}.

From this definition the following Young-type inequality holds

(2.6) at ≤ G(t) +G∗(a) for every a, t ≥ 0.

It is easy to deduce the identity,

(2.7) G∗(g(t)) = tg(t)−G(t),

for every t > 0, see [9, Lemma 2.9]. Now (2.7) and (G2) yield that

(2.8) (p+)′ ≤
tg∗(t)

G∗(t)
≤ (p−)′,

where g∗(t) = (G∗)′(t). Observe that (2.8) implies that G∗ verifies the ∆2 condition.
See [12, Theorem 4.1].

Remark 2.3. Notice that indeed, [12, Theorem 4.1] entails that (G2) is equivalent
to the fact that G and G∗ both satisfy the ∆2 condition.
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2.2. General Fractional Orlicz-Sobolev spaces. In this subsection we study
some basic properties of the space WM,N,G(Rn) defined in the introduction.

The spaces LG(Rn) and WM,N,G(Rn) are naturally endowed with the so-called
Luxemburg norms

‖u‖G = ‖u‖LG(Rn) := inf
{

λ > 0: ΦG

(u

λ

)

≤ 1
}

and

‖u‖M,N,G = ‖u‖WM,N,G(Rn) := ‖u‖G + [u]M,N,G,

where

[u]M,N,G := inf
{

λ > 0: ΦM,N,G

(u

λ

)

≤ 1
}

.

Let G be an Young function such that G′ = g and M , N satisfying properties
(P1)–(P3). The fractional g−Laplacian is defined as the gradient of the modular
ΦM,N,G : WM,N,G(Rn) → R and denoted by (−∆g)

M,N .
This operator is well defined and continuous between WM,N,G(Rn) and its dual

space (WM,N,G(Rn))′. Moreover, it has the expression

(2.9) 〈(−∆g)
M,Nu, v〉 =

∫

R2n

g (|DMu|)
DMu

|DMu|
DMv dµN

for any u, v ∈ WM,N,G(Rn), where the M−Hölder quotient is defined as

DMu(x, y) =
u(x)− u(y)

M(|x− y|)
.

and the measure

dµN =
dx dy

N(|x− y|)

in defined in R
2n = R

n × R
n.

We start with the following basic properties on the usual W 1,G and LG spaces.

Proposition 2.4 ([1], Chapter 8). Let G be an Young function satisfying (G2).
Then the spaces LG(Rn) and W 1,G(Rn) are reflexive, separable Banach spaces.

Moreover, the dual space of LG(Rn) can be identified with LG∗

(Rn). Finally,

C∞
c (Rn) is dense in LG(Rn) and in W 1,G(Rn).

In order to deduce similar properties for our general fractional Orlicz-Sobolev, fol-
lowing [19], we observe that the mapping

A : WM,N,,G(Rn) → X = LG(Rn)× LG(R2n, µN )

given by A = (u,DMu) is an isometry.
For later purpose, it is convenient to observe that the measure µN is invariant

under the action of the diagonal translation operator:

τzφ(x, y) = φ(x − z, y − z).

Moreover, the M−Hölder quotient DM commutes with τz, i.e.

τzDMu(x, y) = DM (τzu)(x, y),

where, as usual, τzu(x) = u(x− z).

Proposition 2.5. WM,N,G(Rn) is a separable Banach space. If furthermore, G
satisfies (G2), it is reflexive.
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Proof. The proposition will follows if we show that the image of A is closed, hence
WM,N,G(Rn) is isometrically isomorphic to a closed subspace of the reflexive Banach
space X and the result follows.

In order to do so, assume that (uk, DMuk) → (u, φ) in X . Then passing to a
subsequence, we may assume that uk → u and DMuk → φ a. e.

Hence DMuk → DMu a.e., whence φ = DMu. �

We prove that the general fractional Orlicz Sobolev space contains W 1,G(Ω) as
a subspace.

Lemma 2.6. Let u ∈W 1,G(Rn). Then, for 0 < s < 1 it holds that

ΦM,N,G(u) ≤ C (ΦG(|∇u|) + ΦG(u))

where C depends on G, M , N and n.

Proof. Let us first assume that u ∈ C2
c (R

n).
We split the integral

∫

R2n

G

(

|u(x)− u(y)|

M(|x− y|)

)

dx dy

N(|x− y|)

=

(

∫

B1

∫

Rn

+

∫

Bc
1

∫

Rn

)

G

(

|u(x+ h)− u(x)|

M(|h|)

)

dx dh

N(|h|)

:= I1 + I2.

Let us bound I1. Given u ∈ C2
c (R

n), observe that for any fixed x ∈ R
n and

h ∈ R
n we can write

u(x+ h)− u(x) =

∫ 1

0

d

dt
u(x+ th) dt =

∫ 1

0

∇u(x+ th) · h dt.

Dividing by M(|h|) and using the monotonicity and convexity of G we get

G

(

|u(x+ h)− u(x)|

M(|h|)

)

≤ G

(
∫ 1

0

|∇u(x+ th)|
|h|

M(|h|)
dt

)

≤

∫ 1

0

G

(

|∇u(x+ th)|
|h|

M(|h|)

)

dt.

(2.10)

Expression (2.10) together with (G2), (P2) and (P3) allow us to bound I1 as follows

I1 ≤

∫

B1

∫

Rn

∫ 1

0

G

(

|∇u(x+ th)|
|h|

M(|h|)

)

dt dx
dh

N(|h|)

≤

∫

B1

|h|p
−

N(|h|)M(|h|)p−

∫

Rn

∫ 1

0

G (|∇u(x+ th)|) dt dx dh

≤ nωn

∫ 1

0

rp
−+n−1

N(r)M(r)p− dr

∫

Rn

G (|∇u(x)|) dx.
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The integral I2 can be bounded using again (G2), (P2) and (P3). Indeed,

I2 ≤

∫

Bc
1

1

N(|h|)M(|h|)p−

∫

Rn

G(|u(x+ h)− u(x)|) dx dh

≤ C

∫

Bc
1

1

N(|h|)M(|h|)p−

∫

Rn

G(|u(x + h)|) +G(|u(x)|) dx dh

≤ 2nωnC

∫ ∞

1

rn−1 dr

N(r)M(r)p−

∫

Rn

G(|u(x)|) dx.

In order to prove the Lemma for any u ∈ W 1,G(Rn), we take a sequence
{uk}k∈N ⊂ C2

c (R
n) such that uk → u in W 1,G(Rn). Without loss of generality,

we may assume that uk → u a.e. in R
n. Observe that this implies that

G

(

|uk(x)− uk(y)|

M(|x− y|)

)

→ G

(

|u(x)− u(y)|

M(|x− y|)

)

a.e. in R
n × R

n.

Therefore, by Fatou’s Lemma, we obtain that

ΦM,N,G(u) ≤ lim inf
k→∞

ΦM,N,G(uk)

≤ lim
k→∞

C (ΦG(|∇uk|) + ΦG(uk)) = C (ΦG(|∇u|) + ΦG(u)) .

The proof is now complete. �

We finish this section stating a Poincaré type inequality for functions inWM,N,G
0 (Ω)

from where we conclude that [ · ]M,N,G is an equivalent norm to ‖ · ‖M,N,G in

WM,N,G
0 (Ω).
The proof is completely analogous to [8, Theorem 2.12] and it is omitted.

Theorem 2.7. Let Ω ⊂ R
n be open and bounded. Then, there exists a constant C

depending on M,N and the diameter of Ω such that

ΦG(u) ≤ ΦM,N,G(Cu),

for every u ∈ WM,N,G
0 (Ω).

As a corollary we infer the following Poincaré’s inequality for fractional Luxem-
burg type norms. The proof is identical to that of [8, Corollary 2.13].

Corollary 2.8. Let Ω ⊂ R
N be open and bounded. Then

‖u‖G ≤ C[u]M,N,G

for every 0 < s < 1 and u ∈ WM,N,G
0 (Ω), where C depends on the diameter of Ω,

n, p+ and p−.

2.3. Examples.

• When M(r) = rs, 0 < s < 1 and N(r) = rn, n ≥ 1 we obtain the fractional
Orlicz-Sobolev spaces defined in [9]. Indeed, (P1) and (P2) easily hold and
(P3) is fulfilled since

∫ 1

0

rn−1+p−

N(r)M(r)p− dr =
1

p−(1− s)
,

∫ ∞

1

rn−1

N(r)M(r)p− dr =
1

sp−
.
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• When M(r) = r and N(r) = rn−1, n ≥ 1 we obtain the Orlicz-Slobodetskii
spaces defined in [11]. Indeed, (P1) and (P2) easily hold and (P3) reads as
∫ 1

0

rn−1+p−

N(r)M(r)p− dr = 1,

∫ ∞

1

rn−1

N(r)M(r)p− dr =
1

p− − 1
.

• When M(r) = rs(1 + | log r|)β , β > 0, and N(r) = rn we obtain the family
of weighted Besov Spaces considered in [3]. Indeed, (P1) and (P2) easily
hold and (P3) is fulfilled since

∫ 1

0

rn−1+p−

N(r)M(r)p− dr ≤

∫ 1

0

rp
−(1−s)−1 dr =

1

p−(1− s)
∫ ∞

1

rn−1

N(r)M(r)p− dr ≤

∫ ∞

1

r−1−sp−

dr =
1

sp−

• When M(r) = rsG−1(rn) and N(r) = 1, n ≥ 1 we obtain the Orlicz-
Slobodetskii spaces defined in [4]. Indeed, (P1) and (P2) easily hold and
(P3) reads as

∫ 1

0

rn−1+p−

N(r)M(r)p− dr ≤

∫ 1

0

rp
−(1−s)−1 dr =

1

p−(1− s)
,

∫ ∞

1

rn−1

N(r)M(r)p− dr ≤

∫ ∞

1

r
n
(

1− p−

p+

)

−1−sp−

dr <∞

if and only if
n

s
<

(p−)2

p+ − p−
,

where we have used that G−1(r) ≥ min{r1/p
+

, r1/p
−

}.

2.4. The density theorem. In this subsection we show that test functions are
dense in WM,N,G(Rn). Even though we use the standard method of truncation and
regularization, we remark that there are some subtle technicalities in the argument
which lead us to write them down in detail. Indeed, a detailed proof seems to be
missed in the previous works on the subject in the literature.

Proposition 2.9. Let G be an Young function satisfying (G2) and M and N
fulfilling (P1)–(P3). Then C∞

c (Rn) is dense in WM,N,G(Rn).

As usual, we denote by ρ ∈ C∞
c (Rn) the standard mollifier with supp(ρ) = B1(0)

and ρε(x) = ε−nρ(xε ) is the approximation of the identity. It follows that {ρε}ε>0

is a family of positive functions satisfying

ρε ∈ C∞
c (Rn), supp(ρε) = Bε(0),

∫

Rn

ρε dx = 1.

Given u ∈ LG(Rn) we define the regularized functions uε ∈ LG(Rn) ∩C∞(Rn) as

(2.11) uε(x) = u ∗ ρε(x).

Moreover, given φ ∈ LG(R2n, dµN ), we define

(2.12) φε(x, y) :=

∫

Rn

φ(x − z, y − z)ρε(z) dz,

and observe that if u ∈ WM,N,G(Rn), then DMuε(x, y) = (DMu)ε(x, y). Also, if
φ, ψ ∈ LG(R2n, dµN ), then (φ + ψ)ε = φε + ψε.
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In this context we prove the following useful estimate on regularized functions.

Lemma 2.10. Let φ ∈ LG(R2n, dµN ) and {φε}ε>0 be the family defined in (2.12).
Then

∫

R2n

G(|φε|) dµN ≤

∫

R2n

G(|φ|) dµN

for all ε > 0.

Proof. By Jensen’s inequality

G (|φε(x, y)|) = G

(
∣

∣

∣

∣

∫

Rn

φ(x − z, y − z)ρε(z) dz

∣

∣

∣

∣

)

≤

∫

Rn

G (|φ(x − z, y − z)|) ρε(z) dz.

Integrating the last inequality over the whole R
2n with respect to the measure

µN we get
∫

R2n

G (|φε(x, y)|) dµN (x, y) ≤

∫

R2n

{
∫

Rn

G (|φ(x − z, y − z)|) ρε(z) dz

}

dµN (x, y)

=

∫

Rn

{
∫

R2n

G (|φ(x − z, y − z)|) dµN (x, y)

}

ρε(z) dz

=

∫

R2n

G (|φ(x, y)|) dµN (x, y),

where we have used the invariance of the measure dµN with respect to the action
of τz and the fact that

∫

Rn ρ dz = 1. �

As an immediate corollary, we obtain:

Corollary 2.11. Let u ∈ WM,N,G(Rn). Then

ΦM,N,G(uε) ≤ ΦM,N,G(u).

We set:

R
2n
∗ = {(x, y) ∈ R

2n : x 6= y}.

By the change of variable h = x − y and using polar coordinates, we see that
(P1) implies that µN (K) < ∞ for every compact set K ⊂ R

2n
∗ . This means that

µN is a Radon measure on R
2n
∗ . Note that in general this is not true for compact

subsets of R2n.

Lemma 2.12. LG(R2n, µN ) ∩ L∞(R2n) is dense in LG(R2n, µN).

Proof. Given k > 0 and φ ∈ LG(R2n, µN ), we define

φk(x, y) :=











k if φ(x, y) ≥ k

φ(x, y) if − k < φ(x, y) < k

−k if φ(x, y) ≤ −k.

Observe that |φk| ≤ min{|φ|, k}, hence, φk ∈ LG(R2n, µN )∩L∞(R2n). Also, φk → φ
a.e. as k → ∞. Finally, observe that

G(|φ − φk|) ≤ G(2|φ|) ∈ L1(R2n, µN ).
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So, we can apply the Lebesgue Dominated Convergence Theorem to conclude that
∫

R2n

G(|φ− φk|) dµN → 0 as k → ∞,

and the proof is completed. �

Lemma 2.13. Cc(R
2n
∗ ) is dense in LG(R2n, µN).

Proof. Consider φ ∈ LG(R2n, µN ). We may assume that φ ∈ L∞(R2n) and that
∫

R2n

G(|φ|) dµN ≤ 1.

Given ε > 0, we can choose δ > 0 such that
∫

R2n−Kδ

G(|φ|) dµN <
ε

2

where

Kδ = {(x, y) ∈ R
2n : |x− y| ≥ δ, |x| ≤ 1/δ, |y| ≤ 1/δ}.

Using then Lusin’s theorem ([20, theorem 2.23 of chapter II]), which we may since
µN is a Radon measure in R

2n
∗ , we can construct a function ψ ∈ Cc(R

2n
∗ ) such that

µN ({(x, y) ∈ Kδ : φ(x, y) 6= ψ(x, y)}) < ε
2G(2‖φ‖∞) and ‖ψ‖∞ ≤ ‖φ‖∞. Then

∫

Kδ

G(|φ− ψ|) dµN ≤ G(2‖φ‖∞)µN ({(x, y) ∈ Kδ : φ(x, y) 6= ψ(x, y)}) ≤
ε

2
.

Hence
∫

R2n
∗

G(|φ− ψ|) dµN < ε

which implies the desired result. �

With this preliminaries we can now conclude the following result:

Proposition 2.14. Let φ ∈ LG(R2n, dµN ) and {φε}ε>0 defined in (2.12). Then

‖φ− φε‖LG(R2n,dµN ) → 0 as ε→ 0.

Proof. Let φ ∈ LG(R2n, dµN ) and δ > 0. Then, using Lemma 2.13, there exists
ψ ∈ Cc(R

2n
∗ ) such that ‖φ− ψ‖LG(R2n,dµN ) < δ.

Let {φε}ε>0 and {ψε}ε>0 be the regularized functions given by (2.12). Observe
that since ψ ∈ Cc(R

2n
∗ ), it follows that the support of φε is compact and bounded

uniformly in ε > 0. Moreover, ψε → ψ uniformly. These immediately imply that

‖ψ − ψε‖LG(R2n,dµN ) → 0,

as ε→ 0.
Therefore, using Lemma 2.10,

‖φ− φε‖LG(R2n,dµN )

≤ ‖φ− ψ‖LG(R2n,dµN ) + ‖ψ − ψε‖LG(R2n,dµN ) + ‖ψε − φε‖LG(R2n,dµN )

≤ 2δ + ‖ψ − ψε‖LG(R2n,dµN )

and the result follows. �

From this result we get:
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Corollary 2.15. Let u ∈WM,N,G(Rn) and let {uε}ε>0 be the regularized functions

defined in (2.11). Then

‖u− uε‖M,N,G → 0, as ε→ 0.

We also need estimates on modulars of truncated functions. We use the following
notations: Let η ∈ C∞

c (Rn) such that η = 1 in B1(0), supp(η) = B2(0), 0 ≤ η ≤ 1
in R

n and ‖∇η‖∞ ≤ 2. Given k ∈ N we define ηk(x) = η(xk ). Observe that
{ηk}k∈N ∈ C∞

c (Rn) and

0 ≤ ηk ≤ 1, ηk = 1 in Bk(0), supp(ηk) = B2k(0), |∇ηk| ≤
2

k
.

Given u ∈ LG(Rn) we define the truncated functions uk, k ∈ N as

(2.13) uk = ηku.

In the next lemma we analyze the behavior of the modular of truncated functions.

Lemma 2.16. Let u ∈ WM,N,G(Rn) and {uk}k∈N be the functions defined in

(2.13). Then

ΦM,N,G(uk) ≤ C(ΦM,N,G(u) + ΦG(u))

where C > 0 is independent of u.

Proof. From (G2) and since ηk ≤ 1 we have

G

(

|uk(x)− uk(y)|

M(|x− y|)

)

≤ C

(

G

(

|u(x)− u(y)|

M(|x− y|)

)

+G

(

|u(x)||ηk(x)− ηk(y)|

M(|x− y|)

))

.

Then we get

∫

R2n

G

(

|uk(x) − uk(y)|

M(|x− y|)

)

dµN (x, y) ≤

CΦM,N,G(u) + C

∫

R2n

G

(

|u(x)||ηk(x)− ηk(y)|

M(|x− y|)

)

dµN (x, y).

The integral above can be splited as follows.

(

∫

Rn

∫

|x−y|≥1

+

∫

Rn

∫

|x−y|<1

)

G

(

|u(x)||ηk(x)− ηk(y)|

M(|x− y|)

)

dµN (x, y) := I1 + I2.

The monotonicity of G and (2.2) allow us to bound I1 as follows

I1 ≤

∫

Rn

∫

|x−y|≥1

G(2|u(x)|)

M(|x− y|)N(|x− y|)
dx dy

=

∫

Bc
1

dh

M(|h|)N(|h|)

∫

Rn

G(2|u(x)|) dx

≤ CΦG(u).
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We deal now with I2. Using that |∇ηk| ≤
2
k , (P2) and (P3), we get

∫

Rn

∫

|x−y|<1

G

(

|u(x)||ηk(x) − ηk(y)|

M(|x− y|)

)

dµN (x, y) ≤

∫

Rn

∫

|x−y|≤1

G

(

2

k

|u(x)||x − y|

M(|x− y|)

)

dµN (x, y)

≤ C

∫

B1

|h|p
−

M(h)p−N(h)
dhΦG(u)

= CΦG(u).

From these estimates the conclusion of the lemma follows. �

Lemma 2.17. Let u ∈ WM,N,G(Rn) and {uk}k∈N be the functions defined in

(2.13). Then

‖uk − u‖M,N,G → 0 as k → ∞.

Proof. Observe that uk → u a.e. and |uk − u| ≤ 2|u| ∈ LG(Rn), then by the
dominated convergence theorem we have that ΦG(u − uk) → 0. For the second
part, since

DMuk(x, y) = u(x)DMηk(x, y) + ηk(y)DMu(x, y) a.e.

we have that

|DMuk(x, y)| ≤ 2
|u(x)||x− y|

M(|x− y|)
χB(x,1)(y) + 2

|u(x)|

M(|x− y|)
χB(x,1)c(y) + |DMu(x, y)|

and from condition (P3), it follows easily that the right hand side of the inequality
above belongs to LG(R2n, dµN ). Therefore, using again the dominated convergence
theorem for Orlicz spaces we get that ΦM,N,G(u− uk) → 0. �

Finally, after all these preparatives, the proof of Proposition 2.9 follows imme-
diately.

Proof of Proposition 2.9. At this point, the proof is a simple combination of Corol-
lary 2.15 and Lemma 2.17. �

3. The Pólya-Szegö principle

In this section we prove our main result. Throughout this section H ⊂ R
n will

denote a closed half-space and x̃ the reflexion respect to ∂H .
Let us begin with the definition of polarization. Polarization is a useful tool for

proving and studying rearrangements.

Definition 3.1. If H ⊂ R
n is a closed half-space, σH : Rn → R

n is the reflexion
with respect to ∂H , and u : Rn → R is a measurable function, the polarization of
u with respect to H is the function uH : Rn → R defined by

uH(x) :=

{

max{u(x), u(x̃)} if x ∈ H

min{u(x), u(x̃)} if x ∈ R
n \H.

(3.1)

Remark 3.2. The following trivial inequalities will be most useful in the sequel.
Namely, for any x, y ∈ H it holds that

(3.2) |x− y| = |x̃− ỹ|, |x̃− y| = |x− ỹ|,
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(3.3) |x− y| ≤ |x− ỹ|.

The following inequality concerning two points rearrangements is useful for our
computations.

Lemma 3.3. [7, Lemma 1] Let G : R+ → R
+ be a strictly increasing convex func-

tion. Then, for all real numbers α, β, γ, δ ∈ R such that γ < α and δ < β, it holds
that

G(λ|α − β|) +G(λ|γ − δ|) ≤ G(λ|α − δ|) +G(λ|γ − β|)

where λ > 0 is a fixed number.

With the help of the following two lemmas we prove that polarized functions
have always modulars less than the original ones.

Lemma 3.4. Let G be a increasing convex function and M be a positive function.

Assume that x, y ∈ H. Then it holds that

G

(

uH(x) − uH(ỹ)

M(|x− ỹ|)

)

+G

(

uH(x̃)− uH(y)

M(|x− ỹ|)

)

≤ G

(

u(x)− u(ỹ)

M(|x− ỹ|)

)

+G

(

u(x̃)− u(y)

M(|x− ỹ|)

)

Proof. Consider x, y ∈ H . When u(x) ≥ u(x̃) and u(y) ≥ u(ỹ) using (3.1) we get

uH(x)− uH(ỹ) = u(x)− u(ỹ), uH(x̃)− uH(y) = u(x̃)− u(y)

and the result follows. When u(x) ≥ u(x̃) and u(y) ≤ u(ỹ) we have that

G

(

uH(x) − uH(ỹ)

M(|x− ỹ|)

)

+G

(

uH(x̃)− uH(y)

M(|x− ỹ|)

)

= G

(

u(x)− u(y)

M(|x− ỹ|)

)

+G

(

u(x̃)− u(ỹ)

M(|x− ỹ|)

)

then applying Lemma 3.3 with λ = M(|x − ỹ|), α = u(x), β = u(y), γ = u(x̃),
δ = u(ỹ) we have that

G

(

u(x)− u(y)

M(|x− ỹ|)

)

+G

(

u(x̃)− u(ỹ)

M(|x− ỹ|)

)

≤ G

(

u(x)− u(ỹ)

M(|x− ỹ|)

)

+G

(

u(x̃)− u(y)

M(|x− ỹ|)

)

and the lemma follows.
The remaining cases follow analogously. �

Lemma 3.5. Let G be a increasing convex function and M be a positive function.

Assume that x, y ∈ H. Then it holds that

G

(

uH(x̃)− uH(ỹ)

M(|x− y|)

)

+G

(

uH(x)− uH(y)

M(|x− y|)

)

≤ G

(

u(x)− u(y)

M(|x− y|)

)

+G

(

u(x̃)− u(ỹ)

M(|x− y|)

)

.

Proof. Consider x, y ∈ H . When u(x) ≥ u(x̃) and u(y) ≥ u(ỹ), from (3.1) we get

uH(x)− uH(y) = u(x)− u(y), uH(x̃)− uH(ỹ) = u(x̃)− u(ỹ)

and the result follows. On the another hand, if we assume that u(x) ≥ u(x̃) and
u(y) ≤ u(ỹ), from (3.1) we have that

uH(x) − uH(y) = u(x)− u(ỹ), uH(x̃)− uH(ỹ) = u(x̃)− u(y).

In this case, the lemma follows applying Lemma 3.3 with λ =M(|x−y|), α = u(x),
β = u(ỹ), γ = u(x̃), δ = u(y).

The remaining cases follow analogously. �

Proposition 3.6. Let G be a increasing convex function andM,N satisfying (P1)–
(P3). Then we have that

ΦM,N,G(uH) ≤ ΦM,N,G(u).
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Proof. We split Rn ×R
n into the four regions H ×H , Hc ×Hc, H ×Hc, Hc ×H .

Using (3.2) we have that
∫∫

Hc×Hc

G (DMuH) dµN =

∫∫

H×H

G

(

uH(x̃)− uH(ỹ)

M(|x− y|)

)

dx dy

N(|x− y|)
∫∫

H×Hc

G (DMuH) dµN =

∫∫

H×H

G

(

uH(x) − uH(ỹ)

M(|x− ỹ|)

)

dx dy

N(|x− ỹ|)
∫∫

Hc×H

G (DMuH) dµN =

∫∫

H×H

G

(

uH(x̃)− uH(y)

M(|x− ỹ|)

)

dx dy

N(|x− ỹ|)
,

and hence, the expression ΦM,N,G(uH) can be written as
∫∫

H×H

[

G

(

uH(x)− uH(y)

M(|x− y|)

)

1

N(|x− y|)
+G

(

uH(x̃)− uH(ỹ)

M(|x− y|)

)

1

N(|x− y|)

+G

(

uH(x̃)− uH(y)

M(|x− ỹ|)

)

1

N(|x− ỹ|)
+G

(

uH(x) − uH(ỹ)

M(|x− ỹ|)

)

1

N(|x− ỹ|)

]

dx dy.

Now, applying Lemma 3.5 to the first two terms terms in the last expression and
Lemma 3.4 to the last two ones, we can bound the above expression as
∫∫

H×H

[

G

(

u(x)− u(y)

M(|x− y|)

)

1

N(|x− y|)
+G

(

u(x̃)− u(ỹ)

M(|x− y|)

)

1

N(|x− y|)

+G

(

u(x̃)− u(y)

M(|x− ỹ|)

)

1

N(|x− ỹ|)
+G

(

u(x)− u(ỹ)

M(|x− ỹ|)

)

1

N(|x− ỹ|)

]

dx dy,

which is precisely ΦM,N,G(u). �

Finally, using the construction provided in [25] together with the previous propo-
sition, we prove our main result.

Theorem 3.7. Let G be a increasing convex function and M,N satisfying (P1)–
(P3). If u ∈ WM,N,G(Rn), then u∗ ∈ WM,N,G(Rn) and

ΦM,N,G(u
∗) ≤ ΦM,N,G(u)

Proof. Given u ∈WM,N,G(Rn), define uk as
{

u0 = u,

uk+1 = (uk)H1···Hk+1
,

where {Hk}k∈N is a dense sequence in the set of closed half-spaces of which 0 is an
interior point.

Observe that by Proposition 2.9, u belongs to the closure of C∞
c (Rn), hence by

[25, Section 4.1] it holds that

uk → u∗ strongly in LG(Rn)

and passing to a subsequence we will have

ukj
→ u∗ a.e.

The continuity of G implies that

G
(

DMukj
(x, y)

)

→ G (DMu
∗(x, y)) a.e. in R

2n.

Moreover, from Proposition 3.6,

ΦM,N,G(ukj
) ≤ ΦM,N,G(u).



16 P. DE NÁPOLI, J. FERNÁNDEZ BONDER, AND A. SALORT

Hence, by Fatou’s lemma, It follows that

ΦM,N,G(u
∗) ≤ ΦM,N,G(u),

as we wanted to show. �

A Pólya-Szegö principle for norms can be easily deduced from the previous result.

Corollary 3.8. Let G be a increasing convex function, M , N satisfying (P1)–(P3)
and u ∈ WM,N,G(Rn). Then

[u∗]M,N,G ≤ [u]M,N,G.

Moreover,

‖u∗‖M,N,G ≤ ‖u‖M,N,G.

Proof. Given u ∈ WM,N,G(Rn), applying Theorem 3.7 to the function u/[u]M,N,G

and according to the definition of [·]M,N,G we obtain that

ΦM,N,G

((

u

[u]M,N,G

)∗)

= ΦM,N,G

(

u∗

[u]M,N,G

)

≤ ΦM,N,G

(

u

[u]M,N,G

)

≤ 1.

Again, the definition of the Luxemburg norm yilds

[u∗]M,N,G ≤ inf

{

λ : ΦM,N,G

(

u∗

λ

)

≤ 1

}

≤ [u]M,N,G.

Since ‖u‖G = ‖u∗‖G, the result follows. �

4. A compactness result

In order to obtain the compactness in the embedding of WM,N,G(Rn) into
LG
loc(R

n) we will assume the following additional condition on M and N

(P4) lim
r→0

N(2r)M(2r)p
−

rn
= 0.

The following technical lemma provides the equi-continuity of modulars.

Lemma 4.1. Let 0 < s < 1 and G be an Orlicz function. Then,

ΦG(τhu− u) ≤ C
N(2|h|)M(2|h|)p

−

|h|n
ΦM,N,G(u),

for every u ∈ WM,N,G(Rn) and every 0 < |h| < 1
2 , where τhu(x) = u(x + h) and

C = C(n, p+).

Proof. Condition (∆2) gives that

G(|u(x+ h)− u(x)|) ≤ C [G(|u(x+ h)− u(y)|) +G(|u(y)− u(x)|)]



A PÓLYA-SZEGÖ PRINCIPLE FOR GENERAL FRACTIONAL ORLICZ-SOBOLEV SPACES17

for all y ∈ B|h|(x). Then

ΦG(τhu− u) =
1

|B|h|(x)|

∫

B|h|(x)

∫

Rn

G(|u(x + h)− u(x)|) dx dy

≤
C

|h|nωn

∫

B|h|(x)

∫

Rn

G(|u(x+ h)− u(y)|) dx dy

+
C

|h|nωn

∫

B|h|(x)

∫

Rn

G(|u(y)− u(x)|) dx dy

=
C

|h|nωn
(I1 + I2).

(4.1)

Given x ∈ R
n and y ∈ B|h|(x) we have that

|x− y| ≤ |h|, |x+ h− y| ≤ |x− y|+ |h| ≤ 2|h|.

Then, the integral I1 can be bounded as

I1 =

∫

B|h|(x)

∫

Rn

G

(

|u(x+ h)− u(y)|

M(|x+ h− y|)
M(|x+ h− y|)

)

N(|x+ h− y|)
dx dy

N(|x+ h− y|)

≤ N(2|h|)

∫

B|h|(x)

∫

Rn

G

(

|u(x+ h)− u(y)|

M(|x+ h− y|)
M(2|h|)

)

dx dy

N(|x+ h− y|)

≤ N(2|h|)M(2|h|)p
−

ΦM,N,G(u).

Analogously,

I2 ≤ N(2|h|)M(2|h|)p
−

ΦM,N,G(u).

Finally, inserting the two upper bounds found above in (4.1) we obtain that

ΦG(τhu− u) ≤ C
N(2|h|)M(2|h|)p

−

|h|n
ΦM,N,G(u)

and the lemma follows. �

If we further assume condition (P4) on M and N , by using Lemma 4.1 and the
same arguments that in [9, Theorem 3.1], we can apply a variant of the well-known
Frèchet-Kolmogorov compactness theorem to obtain the following compactness re-
sult.

Theorem 4.2. Let 0 < s < 1, G an Orlicz function and M ,N satiafying con-

ditions (P0)–(P4). Then for every {un}n∈N ⊂ WM,N,G(Rn) a bounded sequence,

i.e., supn∈N
(ΦM,N,G(un) + ΦG(un)) < ∞, there exists u ∈ WM,N,G(Rn) and a

subsequence {unk
}k∈N ⊂ {un}n∈N such that unk

→ u in LG
loc

(Rn).

4.1. Examples. Condition (P4) is fulfilled in the examples introduced in Section
2.3.

• When M(r) = rs, 0 < s < 1 and N(r) = rn, n ≥ 1 we obtain the fractional
Orlicz-Sobolev spaces defined in [9]. In this case

lim
r→0

N(2r)M(2r)p
−

rn
= C lim

r→0
rsp

−

= 0.
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• When M(r) = r and N(r) = rn−1, n ≥ 1 we obtain the Orlicz-Slobodetskii
spaces defined in [11]. In this case

lim
r→0

N(2r)M(2r)p
−

rn
= C lim

r→0
rp

−−1 = 0.

• When M(r) = rs(1 + | log r|)β , β > 0, and N(r) = rn we obtain the family
of weighted Besov Spaces considered in [3]. Indeed, (P1) and (P2) easily
hold and (P3) is fulfilled since

lim
r→0

N(2r)M(2r)p
−

rn
= C lim

r→0
rsp

−

| log(1 + r)|βp
−

= 0.

• When M(r) = rsG−1(rn) and N(r) = 1, n ≥ 1 we obtain the Orlicz-
Slobodetskii spaces defined in [4]. Indeed, (P1) and (P2) easily hold and
(P3) reads as

lim
r→0

N(2r)M(2r)p
−

rn
= C lim

r→0
rsp

−−n(G−1(tn))p
−

≤ C lim
r→0

rsp
−−nr

np−

p+ = 0

if and only if
n

s
<

p−

p+ − p−
,

where we have used that G−1(r) ≤ max{r1/p
+

, r1/p
−

}.

5. Applications to Poincaré’s constants and nonlinear eigenvalue
problems

As a corollary of the Pólya-Szegö principle stated in Theorem 3.7 we obtain

a Faber-Krahn type inequality for the Poincaré inequality in WM,N,G
0 (Ω) if G is

assumed to satisfy the growing condition (G2).

Corollary 5.1. Let G be a Young function satisfying (G2) and M , N satisfying

(P1)–(P3) For every Ω ⊂ R
n open and bounded we have that

αG
1 (B) ≤ αG

1 (Ω)

where B is a ball with Ln(B) = Ln(Ω).

Under some extra convexity assumptions on G, M and N , a Faber-Krahn in-
equality holds for the principal eigenvalue of (−∆g)

M,N . Precisely,

Theorem 5.2. Let G be a Young function and M,N satisfying (P1)–(P3). Assume

moreover that h(t) := tg(t) is convex. If u ∈ WM,N,G(Rn) then we have that

〈(−∆g)
M,Nu∗, u∗〉 ≤ 〈(−∆g)

M,Nu, u〉

Proof. In view of (2.9) we can write

〈(−∆g)
M,NuH , uH〉 =

∫

R2n

g (|DMuH |) |DMuH | dµN

=

∫

R2n

h (|DMuH |) dµN .

Hence, since h is continuous and convex, by Proposition 3.6 we obtain that

〈(−∆g)
M,NuH , uH〉 ≤ 〈(−∆g)

M,Nu, u〉.

Then, proceeding as in Theorem 3.7 the result follows. �
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Corollary 5.3. Let G be an Young function with g = G′ such that h(t) = tg(t)
is convex and M,N satisfying (P1)–(P4). For every Ω ⊂ R

n open and bounded we

have that

λG1 (B) ≤ λG1 (Ω)

where B is a ball with Ln(B) = Ln(Ω).
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3. José Luis Ansorena and Oscar Blasco, Characterization of weighted Besov spaces, Math.

Nachr. 171 (1995), 5–17. MR 1316348
4. Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Srati, Introduction to fractional

Orlicz-Sobolev spaces, arXiv e-prints (2018), arXiv:1807.11753.
5. L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Bound.

16 (2014), no. 3, 419–458. MR 3264796
6. Friedemann Brock and Alexander Yu. Solynin, An approach to symmetrization via polariza-

tion, Trans. Amer. Math. Soc. 352 (2000), no. 4, 1759–1796. MR 1695019
7. Giuseppe Chiti, Rearrangements of functions and convergence in Orlicz spaces, Applicable

Anal. 9 (1979), no. 1, 23–27. MR 536688
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12. M. A. Krasnosel’skĭı and Ja. B. Rutickĭı, Convex functions and Orlicz spaces, Translated from

the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. MR 0126722
13. Nguyen Lam and Guozhen Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at

the critical case and applications, Adv. Math. 231 (2012), no. 6, 3259–3287. MR 2980499
14. , A new approach to sharp Moser-Trudinger and Adams type inequalities: a

rearrangement-free argument, J. Differential Equations 255 (2013), no. 3, 298–325.
MR 3053467

15. Nguyen Lam, Guozhen Lu, and Hanli Tang, Sharp subcritical Moser-Trudinger inequalities

on Heisenberg groups and subelliptic PDEs, Nonlinear Anal. 95 (2014), 77–92. MR 3130507
16. Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann.

of Math. (2) 118 (1983), no. 2, 349–374. MR 717827
17. Joaquim Mart́ın and Mario Milman, Fractional Sobolev inequalities: symmetrization,
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