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Objective: Utilizing polygenic risk prediction, we aim to identify the phenome-wide 

comorbidity patterns characteristic of PCOS to improve accurate diagnosis and preventive 

treatment.

Design, Patients, and Methods: Leveraging the electronic health records (EHRs) of 124 852 

individuals, we developed a PCOS risk prediction algorithm by combining polygenic risk scores 

(PRS) with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). We 

evaluated its predictive capability across different ancestries and perform a PRS-based phenome-

wide association study (PheWAS) to assess the phenomic expression of the heightened risk of 

PCOS.

Results: The integrated polygenic prediction improved the average performance (pseudo-R2) 

for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-fold), 0.211 (57.0-fold) over the null model 

across European, African, and multi-ancestry participants respectively. The subsequent PRS-

powered PheWAS identified a high level of shared biology between PCOS and a range of 

metabolic and endocrine outcomes, especially with obesity and diabetes: “morbid obesity”, 

“type 2 diabetes”, “hypercholesterolemia”, “disorders of lipid metabolism”, “hypertension”, 

and “sleep apnea” reaching phenome-wide significance.

Conclusions: Our study has expanded the methodological utility of PRS in patient stratification 

and risk prediction, especially in a multifactorial condition like PCOS, across different genetic 

origins. By utilizing the individual genome–phenome data available from the EHR, our approach 

also demonstrates that polygenic prediction by PRS can provide valuable opportunities to 

discover the pleiotropic phenomic network associated with PCOS pathogenesis.

Abbreviations: AA, African ancestry; ANOVA, analysis of variance; BMI, body mass index; EA, 

European ancestry; EHR, electronic health records; eMERGE, electronic Medical Records and 

Genomics Network; GWAS, genome-wide association study; IBD, identity-by-descent; ICD-

CM, International Classification of Diseases, Clinical Modification; LD, linkage disequilibrium; 

MA, multi-ancestry; MAF, minor allele frequency; NIH, National Institutes of Health; PCA, 

principal component analysis; PheWAS, phenome-wide association study; PCOS, polycystic 

ovary syndrome; PPRS, polygenic and phenotypic risk score; PRS, polygenic risk score; RAF, risk 

allele frequency; ROC, receiving operating characteristic; SNV, single nucleotide variant. (J Clin 

Endocrinol Metab 105: 1–19, 2020)

Key Words:  phenome-wide association study, genomic prediction, polygenic risk score, 

polycystic ovary syndrome

P
olycystic ovary syndrome (PCOS) is the most 

common reproductive metabolic disorder, affecting 

5% to 15% of reproductive age women worldwide (1). 

The estimated cost of diagnosing and treating American 

women with PCOS is $5.46 billion annually as of 2017 

(2,3). In addition to being a major cause of female infer-

tility, the disease is a well-known risk factor for endo-

crine complications, such as type 2 diabetes, impaired 

glucose tolerance, and metabolic syndrome before age 

40 (4). Monozygotic twin studies of PCOS have sug-

gested that PCOS is highly heritable (h2 =  ~70%) (5) 

and the genetic architecture is polygenic with complex 

genetic inheritance pattern (6,7). Despite its clinical im-

portance and high heritability, the underlying genetic 

etiology of PCOS remains incompletely understood. 

Genome-wide association studies (GWASs) suggest an-

drogen biosynthesis (8–11), gonadotropin secretion (8) 

and action (9,10), ovarian aging (12), and metabolic 

regulation (11,12) are involved in PCOS pathogenesis. 

Meta-analysis of European ancestry (EA) GWASs brings 

the total number of PCOS GWASs loci to 19 in these 

pathways.

The phenotypic manifestations of PCOS are hetero-

geneous and exhibit considerable variation across race 

and ethnicity, further complicating the clinical diagnosis. 

Currently, it is estimated that up to 75% of women with 

PCOS remain undiagnosed. in part due to varying diag-

nostic criteria from the National Institutes of Health 

(NIH), Rotterdam, or Androgen Excess Society (13–17), 

which use different combinations of hyperandrogenism, 

ovulatory dysfunction, and/or polycystic ovarian morph-

ology. Despite shared genetic risk across the criteria (11), 

the disagreement regarding PCOS phenotypic criteria 

presents a significant challenge for both clinical practice 

and research (18,19). The commonalities and differences 

between the phenotypic characteristics of PCOS may 

be better understood with an integrative observation of 

phenome-wide pleiotropies and comorbidities.
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Polygenic risk scores (PRSs) built from well-powered 

GWASs have demonstrated operationalizing potential 

as biological risk predictors for patient stratification 

and risk prediction (20–23). PRS represents the cumu-

lative effect of common genetic variation summed per 

individual into a single risk score, providing an intuitive 

way to translate GWAS findings into clinically relevant 

information such as a patient’s risk of disease (24,25). 

From a precision medicine perspective, PRSs hold sig-

nificant promise especially for a multifactorial condi-

tion with complicated clinical manifestations, such as 

PCOS. However, several practical challenges remain 

in the equitable translation of PRSs into clinical prac-

tice (26,27). For instance, most GWASs have been per-

formed in samples of primarily EA, resulting in PRS 

statistics that systematically perform worse in popula-

tions of different ancestry, including African ancestry 

(AA) populations. This underperformance is due to a 

combination of population-specific genetic effects that 

are undetected in a Eurocentric GWAS, and differences 

in the patterns of linkage disequilibrium (LD) between 

populations of differing biogeographic ancestry (28–

31). Thus, the evaluation of PRSs from existing GWASs 

in both European and non-EA samples is a critical step 

in setting priorities for equitable precision medicine 

initiatives.

The widespread deployment of Electronic Health 

Records (EHRs) and the availability of these multidi-

mensional records enables evaluation of PRSs in a re-

search context that mimics a clinical hospital setting. 

Using these data, the predictive capability of PRSs can 

be assessed regarding many possible diagnoses that 

can accumulate during an individual’s lifespan (ie, the 

phenome). The eMERGE (electronic MEdical Records 

and GEnomics) network is a nationwide consortium of 

multiple medical institutions that link DNA biobanks 

to EHRs (32), which is an important resource for 

determining the clinical utility of genomic findings, and 

enabling exploration of the range of phenotypes associ-

ated with genetic variation (33,34).

The aim of this study is to systematically examine the 

utility of PRSs derived from a GWAS meta-analysis by 

the International PCOS Consortium (11) for risk pre-

diction across multiple ancestries and to further char-

acterize the other EHR phenotypes that are clinically 

associated with PCOS genetic risk in both women and 

men. This meta-GWAS is the largest to date for PCOS 

in EA participants, with PCOS diagnosed according to 

NIH or Rotterdam criteria, or by self-report. Using its 

summary statistics, we first developed the integrative 

polygenic and phenotypic risk score (PPRS) for PCOS 

by combining the patient DNA genotype information 

and PCOS phenotypic elements from the EHR. Then 

we tested the predictive utility of the algorithm within 

EA samples and further evaluated its performance in 

AA and combined multi-ancestry (MA) participants 

which included EA, AA, and other ancestries. In add-

ition, we performed a phenome-wide association study 

(PheWAS) of the PPRS for PCOS to identify the range of 

phenotypic indicators associated with PCOS and evalu-

ated the predictive characteristics of the PPRS to iden-

tify underlying PCOS pathophysiological pathways.

Materials and Methods

PCOS polygenic risk score development
We obtained the full summary statistics of the largest meta-

GWAS of PCOS through the International PCOS consortium 
and developed a PRS for PCOS (11,35) (all supplementary 
material and figures are located in digital research materials 
repositories). The GWAS was conducted in 5209 cases and 
32 055 controls of EA women who were diagnosed according 
to either NIH or Rotterdam criteria. All variant positions were 
converted to NCBI Genome Reference Consortium Human 
Build 37 (GrCh37) positions and we excluded any entries 
with missing ORs or risk allele frequency (RAF) information. 
The RAF of each variant was calculated using PLINK (36), 
and we excluded the entries which RAF deviates more than 
15% than our eMERGE data in order to ensure additional 
quality control (QC). PRSice software (37) was used to filter 
any correlated single nucleotide variants (SNVs) in pairwise 
LD (r2 > 0.2) and constructed a PRS for PCOS by summing 
the best-guess imputed genotype data of PCOS risk variants 
in each individual weighted by the reported effect sizes. We 
used 8 different subsets of PCOS susceptibility SNVs to build 
the model based on P-value cut-off and compared their pre-
dictive accuracy in the following validation step: 5 × 10–8, 
5 × 10–7, 5 × 10–6, 5 × 10–5, 5 × 10–4, 5 × 10–3, 5 × 10–2, and 1 
(all SNVs).

PRS/PPRS evaluation and PheWAS 

discovery cohort
Our cohort included genotypes and clinical diagnosis rec-

ords of 99 185 individuals collected from 12 EHR-linked 
biobanks nationwide through the eMERGE consortium (33). 
After identity-by-descent (IBD) analysis, we removed 8019 re-
lated individuals that were not in canonical IBD position or 
genetically identical individuals near the origins (Z0 > 0.83 
and Z1  <  0.1). The cohort was composed of multiple self-
reported and 3rd party observed ancestries and we defined 
them into 3 main genetic ancestral groups using the intersec-
tion of self-reported ancestries and principal component ana-
lysis (PCA) based k-mean clusters: European (71.7%), African 
(15.0%), and Asian (1.0%). We excluded any self-reported or 
genetically Hispanic participants for ancestry-stratified ana-
lysis for better homogeneity. Throughout this study, the first 4 
principal components (PCs) were used to correct population 
structure, explaining over 17% of the variances among dif-
ferent genetic origins.

The phenome data of the participants were collected 
from the EHR including diagnostic records and basic demo-
graphic information. The data collection was performed 
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under local institutional review board approval with in-
formed consent from the patients. Diagnostic informa-
tion was structured in the format of the International 
Classification of Diseases, Clinical Modification (ICD-CM) 
codes, in both the 9th and the 10th editions, and aggre-
gated into a hierarchy of 1711 phenotype codes (phecodes) 
for a standardized categorical analysis of diseases (Phecode 
map version 1.2) (38,39). For example, ulcerative colitis 
(ICD-9 556.0), left-sided ulcerative colitis (ICD-9 556.5), 
and unspecified ulcerative colitis (ICD-9 556.9) are collated 
into a single phecode (555.2) for “ulcerative colitis”(40). 
We excluded 23 individuals under the age of 14, the clinic-
ally plausible age for PCOS diagnosis, which is defined as 
2 years after the first menstruation. A demographic infor-
mation of the 91 144 participants after filtering criteria is 
presented in Table 1.

Genotype data and quality control
The participants provided saliva  or blood samples for 

genotyping, which were genotyped on 78 genotype Illumina 
or Affymetrix array batches from 12 medical sites. We used 
the Michigan Imputation Server (41) with the minimac3 
missing genotype variant imputation algorithm to impute 
missing genotypes in our sample based on the Haplotype 
Reference Consortium (HRC1.1) which includes ~65 000 in-
dividuals of diverse ancestry (42). The imputation resulted 
in a genome-wide set of ~40 million SNVs. We filtered the 
poorly imputed genetic variants with the r-squared imput-
ation quality threshold (mean variant r-square) less than 0.3, 
minor allele frequency (MAF) less than 0.05 and genotype call 
rate lower than 95%, which resulted in 5 760 270 autosomal 
polymorphic variants for subsequent analysis. The detailed 
data collection and QC report for the eMERGE network is 
reported elsewhere (33).

Validation of polygenic risk score

Predictive ability of each prediction model with 

different  PRSs. We performed logistic regression analysis 
to demonstrate the prediction ability of the PRS for PCOS 
diagnosis in the female population of 3 different genetic  
ancestry cohorts: European (n = 33 869), African (n = 8198), 
and the entire mixed cohort (n = 49 365). Each cohort was 
randomly divided into 75% training and 25% testing set to 
separately calculate the regression statistics and out-of-sample 
prediction error. Using a generalized linear model, the resid-
uals of PRS after covariate adjustments (first 4 PCs, sites) were 
obtained and scaled to build the logistic regression model in 
the training set. Regression coefficients and P-value of the PRS 
variable and pseudo-R2 of the 8 different PRS models were 
measured.

We applied the regression model built out of the training 
set to measure out-of-sample performance in the testing 
dataset. We predicted the individuals to be “PCOS cases” if 
their fitted scores were higher than the average fitted score 
and calculated the accuracy by comparing with their actual 
diagnosis records of PCOS. The overall accuracy, sensitivity, 
and specificity of each model were measured and structured 
through confusion matrix. The area under the receiving 
operating characteristic (ROC) curve, the AUC, was also 
measured for classifier performance of each model.

Stratification ability of each prediction model with 

different PRSs. To evaluate the phenotypic stratification ability 
of the PRS, we divided the cohort into 10 quantiles based on the 
PRS of each individual and compared the average phenotypic 
values (eg, proportion of PCOS diagnosed patients, body mass 
index [BMI], PRS) among the groups. The proportion of PCOS 
patients in each quantile, average PRS values, and average BMI 
measures of each individual were analyzed. We also performed 
independent t-test to assess if the average PRS score differences 
between PCOS cases and controls were statistically significant.

Performance improvement by the PRS variable. 
To estimate the performance of the PRS variable, we built 
a null regression model without the PRS variable for PCOS 
prediction (PRS model vs PRS null model). The incremental 
pseudo-R2 values according to McFadden (43) were calcu-
lated between the PRS models and the null logistic regression 
with only the first 4 PCs and site variables. The analysis of 
variance (ANOVA) was performed to examine how significant 
PRS variable impacts the PCOS diagnosis prediction model 
compared to the null model.

PRS model:

logit (PCOS diagnosis = 1)

= β0 ∗ PRS+ β 1 ∗ Site+ β 2 ∗ 4PCs+ β 3

PRS null model:

logit (PCOS diagnosis = 1) = β0 ∗ Site+ β 1 ∗ 4PCs+ β 2

Development of prediction algorithms with PRS 

and PCOS component phenotypes (PPRS)
We built an integrative PPRS with PRS and PCOS compo-

nent phenotypes in the EHR to maximize the utility of PRS for 
risk prediction. Additional dichotomous phenotypic variables 
to each individual from their EHR diagnosis records: hir-
sutism (ICD9 code 704.1, ICD10 code L68.0), irregular men-
struation (ICD9 code 626.4, ICD10 code N92.6), and female 
infertility (ICD9 code 627, ICD10 code N97.0) were selected, 
all of which are well-established clinical components of PCOS. 
A total 908 individuals with hirsutism, 4936 individuals with 
irregular menstruation, and 422 individuals with female in-
fertility ICD diagnosis codes were identified in the eMERGE 
consortium database.

Firstly, the logistic regression adjusted for first 4 PCs and 
sites were examined for their effect coefficients and vari-
able P-values. Psuedo-R2 of each model was calculated for 
measuring the improvement over the normal PRS model. 
ANOVA between the integrative model and normal PRS 
model were examined.

PPRS model:

logit(PCOS diagnosis = 1) = β0 ∗ PRS
+ β 1 ∗ Site+ β 2 ∗ 4PCs+ β 3 ∗Hirsutism

+ β 4 ∗ Irregular menstruation
+ β 5 ∗ Female infertility+ β 6

PPRS null model:
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logit(PCOS diagnosis = 1) = β0 ∗ Site + β1 ∗ 4PCs

+ β2 ∗ Hirsutism

+ β3 ∗ Irregular menstruation

+ β4 ∗ Female infertility + β5

Phenome-wide analysis
To investigate the potential pleiotropy of PCOS, PCOS 

components, and other diseases in the EMR phenome, we 
selected the best performing PRS model that presented a val-
idated predictive accuracy and stratification ability across an-
cestries based on the examination results above. PheWAS was 
performed on the mapped 1711 representative EHR pheno-
types with a minimum of 30 case patients from the discovery 
cohort of 91 144 participants after QC criteria. Case group 
for a given phecode is defined by the presence of at least 1 
assignment of the corresponding ICD codes from EHR as de-
fined in the phecode map v1.2. Controls for each phecode are 
defined by the absence of the same ICD codes that defined 
cases and the absence of clinically related phenotypes. Based 
on the assumption that a participant with higher PCOS-PRS 
conveys greater genetic risk, our main sex-stratified PheWAS 
interrogated the comorbid networks of high-risk predictive 
phenotypes for PCOS (PheWAS-1). A total of 49 343 female 
participants and 41 669 male participants were used for the 
analysis. Logistic regression was used adjusting for genotyping 
site and the first 4 PCs of ancestry to correct for population 
stratification in the MA cohort [logit (Clinical Phenotype = 1 | 
PRS, Site, 4PCs) = β0 + β1*PRS + β2*Site + β3*4PCs].

In this study, phenome-wide significance refers to either (1) 
the Bonferroni corrected threshold of P = 2.9 × 10–5 adjusting 
for multiple testing, which is determined by using P = .05 div-
ided by the 1711 phenotypes interrogated, or (2) the false dis-
covery rate significance of 0.05, which is a popular alternative 
threshold to the stringent Bonferroni correction in reporting 
PheWAS. Manhattan PheWAS plots of –log10(P-value) were 
generated for visual inspection of significant clinical traits. All 
the analyses were performed in the R statistical software en-
vironment (ver 2.1.2).

Sensitivity analysis
We performed several comparative PheWAS in an effort to 

interrogate different phenome-wide aspects of the PRS in the 
clinical phenome.

Firstly, to distinguish secondary or symptomatic phenotypes 
derived from the PCOS-diagnosed patients, we removed the 
clinical diagnosis records of the 949 individuals with PCOS 
(phecode 256.4, ICD9 256.4, and ICD10 E28.2) and performed 
the same PheWAS analysis (PheWAS-2). Additionally, to gauge 
the contrasting performance of polygenic prediction over a 
single-variant approach, we performed traditional PheWAS of 
each genome-wide significant susceptibility loci (P < 5 × 10–8) 
for PCOS (RAF  >  0.05). This analysis aims to compare the 
clinical phenotypes associated with the cumulative effects of 
multiple genetic variants on PRS versus a single genetic signal 
generated by an individual PCOS susceptibility locus. Among 
113 genome-wide significant loci (P < 5 × 10–8) for PCOS (see 
(35)), we filtered the entries with MAF > 0.05 and genotype 
call rate >0.90 in our discovery cohort and MAF  >  0.01 in 
summary statistics. In total 85 SNVs were selected and used for 
the subsequent PheWAS analysis (PheWAS-3).

PRS PheWAS replication
To confirm the predictive performance of our PRS algo-

rithm and its effect on clinical phenome, replication analyses 
were performed at Vanderbilt University Medical Center on 
an independent genotyped sample of 33 708 European des-
cent individuals (BioVU). The participants were genotyped 
on the Illumina MEGAEX platform (~2 million markers) 
and we applied filters for individual call rates <98%, batch 
effects (P  <  5 × 10–5), heterozygosity (|Fhet|  >  0.2), and 
sample relatedness (pihat > 0.2). After imputation with the 
1000G reference panel, we excluded any genetic variants 
with missingness >0.02, certainty <0.9, or imputation info 
score <0.95. The genetic ancestry of the samples were re-
stricted to only EA, based on comparison with the 1000G 
European population and a K-means clustering definition. 
The final samples included 33 708 individuals of European 
descent genotyped on 5 550 390 SNVs. Using the same PRS 
generation methodology in discovery samples, we took the 
identical phenome-wide approach to identify the associated 
phenotypic networks with PRS among the replication sam-
ples. Logistic regression was used adjusting for first 4 an-
cestry PCs.

Results

Polygenic risk scores for PCOS are normally 

distributed in European and multi-ancestry 

participants

In total 5 760 270 autosomal SNVs were considered 

for the PCOS-PRS construction, which displays the gen-

etic architecture of effect size (beta) by RAF presented 

in Fig.  1. There was a significant negative correlation 

between RAF and effect size, which is generally antici-

pated in common quantitative traits and supports the 

use of methodology of PRS to explore the extreme of 

the common polygenic liability spectrum. According to 

the central limit theorem, PRSs in a large population 

will show normality when the genetic architecture of the 

target trait is polygenic, that is, produced by the add-

ition of many genetic variants of small effect (44,45).

PRSs were calculated at 8 different P-value cut-offs 

from the PCOS GWAS summary statistics (5 × 10–8, 

5 × 10–7, 5 × 10–6, 5 × 10–5, 5 × 10–4, 5 × 10–3, 5 × 10–2, 1)  

for all the discovery eMERGE participants (n = 91 144). 

Each set of scores was adjusted for participant site and 

the first 4 PCs. All the polygenic scores were evaluated 

for their predictive performance in the female popula-

tions of EA (n = 33 869), AA (n = 8198), and MA co-

horts (n = 49 365). The covariate-adjusted PCOS-PRS 

generally presented a normal distribution across each 

ancestry cohort (see (46)). PRS models with trimodal 

or skewed distributions (PRS P-value cut-off: 5 × 10–7, 

5 × 10–6, 5 × 10–5), which may be a function of poor 

representation of risk variants across populations, 

were not considered for the subsequent phenome-wide 

analysis.
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Validation of PCOS PPRS in European ancestry 

participants

Predictive ability of each prediction model with dif-

ferent PRSs. In the PRS prediction models using the training 

set of the female EA cohort (n = 33 869 with 632 PCOS 

cases), all the coefficient P-values of the PRS variables are 

statistically significant except for 2 PRS models of SNVs 

with P <5 × 10–7 and P <5 × 10–6 that do not show PRS 

normality (see (46)). The average odds ratios (ORs) of the 

significant PRS variable across EA was 1.13 (95% confi-

dence interval [CI 1.04–1.22]) and the average pseudo-R2 

value was 0.044, which indicates 4.4% of the phenotypic 

variances in the training sample could be explained by  

PRS (Table 2).

Figure 1. Effect distribution of PCOS susceptibility variants in samples from the International PCOS consortium by risk allele frequency. (A) The 139 

PCOS genome-wide significant SNVs (P < 5 × 10–8), and (B) the 120 340 PCOS autosomal SNVs with P < 0.05. The dark green line and grey band 

around it are the linear regression fit and its 95% confidence interval, respectively, between risk allele frequency and effect size (beta).
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The regression models built in the training set were 

then used to predict PCOS case status in the testing 

dataset. A model including PRS yielded average predic-

tion accuracy of 0.55, sensitivity of 0.55, specificity of 

0.76 with an average AUC of 0.72 in the EA partici-

pants (Table 3).

Stratification ability of each prediction model 

with different  PRSs. The percentage of PCOS-

diagnosed patients increases in higher PRS quantiles, 

and the individuals in the highest PRS group tend to 

have higher average BMI. In the genome-wide PRS 

calculation with SNVs with P  ≤  1, the average BMI 

Table 2. Regression results of the PRS/PPRS models in PCOS prediction

PRS modela PPRS modelb

PRS/PPRS  
P-value cut-off OR 95% CI P R2 OR 95% CI P R2

EA         
 5×10–8 1.14 (1.04–1.25) 4.76×10–3 0.045 1.14 (1.03–1.26) 1.40×10–2 0.232
 5×10–7 1.04 (0.95–1.12) 3.78×10–1 0.043 1.04 (0.94–1.13) 3.89×10–1 0.230
 5×10–6 1.08 (0.99–1.16) 6.41×10–2 0.044 1.08 (0.99–1.17) 7.26×10–2 0.231
 5×10–5 1.10 (1.01–1.19) 2.13×10–2 0.044 1.10 (1.00–1.20) 3.59×10–2 0.231
 5×10–4 1.13 (1.03–1.23) 6.12×10–3 0.044 1.11 (1.01–1.22) 2.85×10–2 0.231
 5×10–3 1.11 (1.01–1.22) 2.70×10–2 0.044 1.08 (0.97–1.19) 1.45×10–1 0.231
 5×10–2 1.16 (1.06–1.27) 2.11×10–3 0.045 1.12 (1.01–1.24) 3.21×10–2 0.231
 1 1.15 (1.05–1.27) 3.13×10–3 0.045 1.11 (1.00–1.23) 4.04×10–2 0.231
MA         
 5×10–8 1.16 (1.07–1.25) 1.15×10–4 0.040 1.15 (1.06–1.24) 1.19×10–3 0.228
 5×10–7 1.08 (1.00–1.16) 4.28×10–2 0.038 1.09 (1.01–1.17) 2.99×10–2 0.227
 5×10–6 1.09 (1.02–1.17) 1.60×10–2 0.038 1.10 (1.02–1.18) 1.19×10–2 0.227
 5×10–5 1.12 (1.04–1.20) 2.35×10–3 0.039 1.12 (1.04–1.20) 3.67×10–3 0.228
 5×10–4 1.12 (1.04–1.21) 1.88×10–3 0.039 1.11 (1.03–1.20) 8.59×10–3 0.228
 5×10–3 1.16 (1.08–1.25) 1.25×10–4 0.040 1.13 (1.04–1.23) 2.54×10–3 0.228
 5×10–2 1.20 (1.11–1.29) 5.03×10–6 0.041 1.16 (1.07–1.26) 3.81×10–4 0.228
 1 1.22 (1.13–1.32) 5.33×10–7 0.041 1.19 (1.09–1.29) 5.91×10–5 0.229
AA         
 5×10–8 1.14 (0.96–1.36) 1.42×10–1 0.031 1.15 (0.95–1.39) 1.62×10–1 0.211
 5×10–7 1.24 (1.05–1.47) 1.22×10–2 0.034 1.30 (1.08–1.56) 4.63×10–3 0.215
 5×10–6 1.25 (1.05–1.48) 9.80×10–3 0.034 1.30 (1.09–1.56) 3.95×10–3 0.216
 5×10–5 1.23 (1.04–1.45) 1.71×10–2 0.034 1.27 (1.05–1.52) 1.08×10–2 0.214
 5×10–4 1.19 (1.00–1.42) 4.38×10–2 0.032 1.17 (0.97–1.40) 9.82×10–2 0.211
 5×10–3 1.18 (0.99–1.41) 6.74×10–2 0.032 1.18 (0.97–1.43) 9.32×10–2 0.211
 5×10–2 1.25 (1.05–1.50) 1.23×10–2 0.034 1.17 (0.97–1.42) 1.07×10–1 0.211
 1 1.30 (1.09–1.56) 3.33×10–3 0.036 1.26 (1.05–1.53) 1.56×10–2 0.214

Average of the credible models (coefficient P < .05)

PRS model Average 
OR

Average R2 PRS null modelc R2 Incremental R2 over PRS null model 

EA 1.13 0.044 0.004 0.041
MA 1.14 0.039 0.004 0.036
AA 1.25 0.034 0.004 0.030

PPRS model Average 
OR

Average R2 PPRS null modeld R2 Incremental R2 over  
PPRS null modele 

Incremental R2 over PRS 
null model 

EA 1.12 0.231 0.193 0.038 (19.6%) 0.228 (61.5-fold)
MA 1.13 0.228 0.201 0.027 (13.2%) 0.224 (58.8-fold)
AA 1.28 0.215 0.193 0.021 (11.0%) 0.211 (57.0-fold)

Abbreviations: OR, odds ratio; CI,  confidence interval; R2, psuedo-R2.
aPRS: PRS + basic covariates (model1 = PCOS ~ PRS + PC1-4 + site). 
bPPRS: PRS + PCOS component phenotypes + basic covariates (PPRS = PCOS ~ PRS + PC1-4 + site + hirsutism + female infertility + irregular menses).
cPRS null model: basic covariates only (null model = PCOS ~PC1-4 + site).
dPPRS null model: PCOS component phenotypes + basic covariates (PPRS null model = PCOS ~ PC1-4 + site + hirsutism + female infertility + irregular 

menses).
eImprovement rate: (incremental change in pseudo-R2 between the model with PRS/PPRS and the null model without PRS/PPRS)/(pseudo-R2 of the 

null model without PRS/PPRS).
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of the individuals in highest PRS quantile is 1.1 kg/m2 

higher than the individuals in the lowest PRS group 

(Cohen’s d = 0.16, t-test P = 1.06 × 10–9) (Fig.  2 and 

Table 4). The finding confirms the positive correlation 

between elevated generic risk for PCOS, actual PCOS 

diagnosis, and higher risk for increased BMI. Adding 

in the count of hyperandrogenism phenotypes (N = 0, 

1, 2, 3)  did not substantially alter the stratification 

(data not shown).

The subsequent t-test reveals that PRSs of case pa-

tients are significantly higher than the controls in all 

the nominally significant PRS models with regression 

P < 0.05, implying that higher genetic risk scores indicate 

higher occurrence of PCOS diagnosis (P = 2.15 × 10–4, 

7.75 × 10–4, 2.43 × 10–4, 2.51 × 10–5, 3.12 × 10–5 in PRS 

model SNVs P <5 × 10–8, 5 × 10–4, 5 × 10–3, 5 × 10–2, 1, 

respectively) (see (47)).

Performance improvement by the PRS variable. All 

the PRS models containing PCOS-PRS provided an im-

proved fit over the null model by increasing the esti-

mated explained sum of squares (pseudo-R2) according 

to McFadden (43). The average increase of pseudo-R2 

by the PRS variable in EA samples is 0.040, which is 

a 10-fold improvement (=0.040/0.004) over the null 

model. The ANOVA P-values of differentiating the PRS 

models from the null model are all under 1 × 10–31, 

which validate the statistical significance of the per-

formance improvement over the null model (Table  2 

and (48)).

Evaluation of PRS in multi-ancestry and African 

ancestry participants

Predictive ability of each prediction model with 

different PRSs. In the training set of the MA cohort 

(n = 49 365 with 949 PCOS cases), the coefficient 

P-values of all PRS variables remain significant with 

positive beta coefficients (Table 2; model1). The average 

OR of PRS is 1.14 (95% CI 1.07–1.21) and the average 

pseudo-R2 value is 0.039, indicating that 3.9% of the 

phenotypic variance in the MA cohort could be ex-

plained by the PRS model. In the training set of AA 

participants (n = 8198 with 172 PCOS cases), the coef-

ficient P-values of PRS variables remain overall signifi-

cant except for 2 PRS models of SNVs with P <5 × 10–8 

and P <5 × 10–3 which may be due to the smaller sample 

size. Even though the regression P-values of the PRS 

variable do not show uniform performance in AA com-

pared with EA, the nominally significant PRS models 

generate a higher effect size in the AA samples than 

in the other ancestry groups. The average OR of PRS 

models in the AA is 1.25 (95% CI 1.08–1.42), higher 

than both the EA (OR  1.13, 95% CI 1.04–1.22) and 

MA (OR 1.14, 95% CI 1.07–1.21). This is possibly due 

to the low RAF of PCOS risk variants in AA compared 

with EA (see (35)).

For the testing dataset, PRS prediction displays an 

average 0.533 of accuracy, 0.529 of sensitivity, 0.736 

of specificity with an average AUC of 0.693 in the MA 

cohort. The out-of-sample performance in AA yielded 

an average AUC of 0.543 and showed an overall lower 

average accuracy (0.496), sensitivity (0.494), and speci-

ficity (0.590) than other ancestry groups (Table 3).

Stratification ability of each prediction model with 

different  PRSs. In the MA cohort, the proportion of 

PCOS patients increases from 1.5% in the lowest quan-

tile to 2.6% in the highest quantile in the PRS calculation 

of SNVs with P ≤ 1. The average BMI of the participants 

in the highest PRS quantile is 1.2 kg/m2 higher (Cohen’s 

d = 0.17, t-test P = 1.62 × 10–13) than the participants in 

the lowest PRS group (Fig. 2B and (49)).

Table 3. Average performance of PCOS PRS/PPRS prediction algorithms in the female cohorts of European 
(n = 33 869), multi-ancestry (n = 49 365) and African (n = 8198) participants

Summary—Average

PRS modela Accuracy Sensitivity Specificity Balanced accuracy AUCc

EA (n = 33 869) 0.551 0.547 0.755 0.651 0.715
MA (n = 49 365) 0.533 0.529 0.736 0.632 0.693
AA (n = 8198) 0.496 0.494 0.590 0.542 0.543

PPRS modelb      

EA (n = 33 869) 0.873 0.876 0.717 0.797 0.870
MA (n = 49 365) 0.881 0.886 0.640 0.763 0.823
AA (n = 8198) 0.864 0.872 0.522 0.697 0.706

aPRS model: PRS + basic covariates model (model1 = PCOS ~ PRS + PC1-4 + site + sex).
bPPRS model: PRS + PCOS component phenotypes + basic covariates model (model2  =  PCOS ~ PRS  +  PC1-4  + site + sex + hirsutism + female  

infertility + irregular menses).
cArea under the curve.
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In the AA cohort, the number of PCOS patients does 

not always increase with higher PRS quantile, but the ob-

servation of an excess of PCOS patients in the highest 

PRS quantile is generally consistent across the models 

(Fig.  2c). In the full-inclusive PRS model (SNVs with 

P ≤ 1), the rate of PCOS patients increases from 1.7% in 

the lowest quantile to 3.1% in the highest PRS quantile 

(see (49)). The observed increase in the rate of PCOS pa-

tients is most pronounced in the PRS model with genome-

wide significant variants (SNVs with P < 5 × 10–8), as the 

Figure 2. Stratification performance by quantile of PRS models, including PCs 1–4 and site as covariates, in (A) EA, (B) MA, and (C) AA 

populations. Group 1 includes those with the lowest PRS, and group 10 includes those with the highest. Bar colors indicate the average BMI in the 

quantile (darker indicates higher BMI), while the proportion of PCOS-diagnosed patients in each group is indicated at the top of each bar.
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PCOS case rate doubles from 1.7% in the lowest quantile 

to 3.5% in the highest PRS quantile. We did not identify 

any notable trends in BMI in AA participants, which is 

depicted by the quantile color changes in Fig. 2C.

An independent t-test confirms the significant differ-

ences of average PRSs between PCOS cases and controls 

in MA across the models. The PRS difference between 

PCOS MA cases and controls is 0.165 after scaling 

with a full-inclusive PRS model, SNVs with P  ≤  1 

(Cohen’s d = 0.201, t-test P = 2.62 × 10–6). In AA, only 

the full-inclusive PRS model shows statistically signifi-

cant difference between PCOS cases and controls with 

Table 4. Quantile analysis of PCOS PRS in the female European cohort (n = 33 869) (PRS with SNVs P ≤ 5×10–8  
and P ≤ 1 only)

Groupa PCOS cases PCOS propb(%) Average BMI(kg/m2) Average PRS

PRS with SNVs 
P ≤ 5×10–8

1 45 1.3 27.9 –1.750
2 57 1.7 27.9 –0.950
3 54 1.6 27.6 –0.813
4 60 1.8 28.1 –0.239
5 61 1.8 28.2 –0.068
6 62 1.8 28.0 0.014
7 75 2.2 27.6 0.248
8 65 1.9 28.1 0.810
9 82 2.4 27.9 0.952

10 71 2.1 27.8 1.790
PRS with SNVs 
P ≤ 1

1 50 1.5 27.3 –1.790
2 49 1.5 27.5 –1.020
3 61 1.8 27.8 –0.654
4 48 1.4 27.9 –0.369
5 58 1.7 28.0 –0.113
6 66 2.0 27.8 0.132
7 68 2.0 28.0 0.386
8 65 1.9 28.1 0.672
9 85 2.5 28.4 1.040

10 82 2.4 28.4 1.720

PCOS-PRS is adjusted with covariates and scaled for standardization.
aHigher group number indicates higher PCOS PRS.
bProportion of PCOS case patients in the quantile.

Figure 3. Comparison of odds ratios (ORs) for the PRS and PPRS in (A/D) EA, (B/E) MA, and (C/F) AA cohorts, at different PRS/PPRS inclusion 

thresholds by GWAS P-value. The top row shows OR distributions for the PRS model, which adjusted for basic covariates (PRS model = PCOS ~ 

PRS + PC1–4 + site). The bottom row shows OR distributions for the PPRS model which adjusted for the same basic covariates as well as PCOS EHR 

component phenotypes (PPRS model = PCOS ~ PRS + PC1-4 + site + hirsutism + female infertility + irregular menses).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jc
e
m

/a
rtic

le
-a

b
s
tra

c
t/1

0
5
/6

/d
g
z
3
2
6
/5

6
9
9
6
3
6
 b

y
 E

ra
s
m

u
s
 U

n
iv

e
rs

ite
it R

o
tte

rd
a
m

 u
s
e
r o

n
 0

8
 J

u
n
e
 2

0
2
0



12  Joo et al  PRS and PheWAS of PCOS in 124 852 Individuals from EHRs J Clin Endocrinol Metab, June 2020, 105(6):1–19

a PRS difference of 0.175 (Cohen’s d = 0.191, t-test 

P = 2.90 × 10–2) (see (47)).

Performance improvement by the PRS variable. In 

the joint ancestry participants, all the prediction models 

containing the PRS variable provide a better fit over 

the null model by increasing the average pseudo-R2 to 

0.039, which is an 8.75-fold increase (=0.035/0.004) in 

explanatory power (Table 2). The subsequent ANOVA 

analysis confirms the statistical significance of the im-

proved fits over the null model with all P  < 1 × 10–46 

(48).

In the AA samples, the statistically significant PRS 

models show the average pseudo-R2 of 0.034, which 

has the poorest fit among the ancestries. The models 

show an average pseudo-R2 improvement of 7.5-fold 

increase (=0.030/0.004) from the null model without 

PRS (Table 2). Even with the lowest average incremental 

pseudo-R2 (0.030) among the ancestries, the significant 

difference between the PRS models and the null model 

in Africans are confirmed with all ANOVA P < 5 × 10–3 

(see (48)).

Development of PPRS prediction algorithms with 

PRS and PCOS component phenotypes

The addition of PCOS component EHR phenotypes 

to polygenic risk prediction significantly improved the 

predictive accuracy (Table  2; model2 and Fig.  3). The 

average pseudo-R2 of the PPRS is 0.231 in EA, 0.228 

in MA, and 0.215 in AA samples, which indicates an 

average 14.7% improvement in pseudo-R2 (19.6% in 

EA, 13.2% in AA, 11.0% in MA) over the PPRS null 

model by the inclusion of PCOS component phenotypes. 

Compared to the basic null model, the PPRS prediction 

boosts the average predictive performance (pseudo-R2) 

by approximately 60 times (61.5-fold in EA, 58.8-fold in 

AA, 57.0-fold in MA) by the combinational use of PCOS 

component EHR phenotypes and PRSs. Of note, the PRS 

variable’s P-values in every PPRS model remain consist-

ently valid in the MA samples (P < 5 × 10–3), whereas it 

was not always significant in AA or even EA samples. 

The ORs of the PRS and PPRS remain similar across the 

ancestries and Delong tests (50) confirmed the statistical 

significance of the difference among the AUC of ROC 

curves between PRS and PPRS models (Fig. 4).

Figure 4. Comparison of receiving operating curves (ROC) of the PPRS and PRS prediction models for PCOS diagnosis. The models with the 

genome-wide significant SNVs (P < 5 × 10–8) were evaluated in females of (A) EA, (B) MA, and (C) AA cohorts, along with the full-inclusive 

prediction models (P ≤ 1) in females of (D) EA, (E) MA, and (F) AA cohorts. The areas under the curve (AUC) are provided in Table 2 and (47). PRS 

model adjusted for basic covariates (PRS model = PCOS ~ PRS + PC1–4 + site), and PPRS model adjusted for the same basic covariates as well as 

PCOS EHR component phenotypes (PPRS model = PCOS ~ PRS + PC1–4 + site + hirsutism + female infertility + irregular menses). Null models only 

included the basic covariates without the PRS variable. Additional Delong test confirmed the statistical significance of the difference among the 

AUC of ROC curves between PRS and PPRS models: (A) Z = –8.29, P < 2.20 × 10–16, (B) Z = –7.41, P = 1.27 × 10–13, (C) Z = –2.85, P = 4.31 × 10–3, 

(D) Z = –8.3291, P < 2.20 × 10–16, (E) Z = –8.18, P = 2.91 × 10–16, (F) Z = –3.7523, P = 1.75 × 10–4.
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The subsequent ANOVA tested that all the pairs be-

tween PPRS and PPRS null models were statistically 

distinct across the cohorts and every PPRS model show 

the improved fit over the PPRS null model (see (48)). 

The average ORs of irregular menstruation (ICD9 code 

626.4, ICD10 code N92.6), female infertility (ICD9 

code 627, ICD10 code N97.0), and hirsutism (ICD9 

code 704.1, ICD10 code L68.0) for PCOS prediction 

were, as expected, strong across the cohorts: 5.51 (95% 

CI 4.22–7.18), 10.9 (95% CI 6.44–18.30), and 17.1 

(95% CI 12.11–24.19), respectively (see (51)).

Clinical phenome analysis

Associated phenotypes with PRS (PheWAS-1).  The 

general scheme of our PheWAS analyses are depicted 

in Fig. 5A. Based on the model examination described 

above, the genome-wide PRS that includes all SNVs with 

P ≤ 1 was selected as the best performing PRS model 

and used for phenome-wide analysis. The phenomes 

of 49 343 female participants and 41 669 male parti-

cipants were analyzed separately to test for association 

with high genetic risk for PCOS.

In the female PheWAS with PRS, 75 EHR pheno-

types were identified with phenome-wide significance 

(Fig. 5B and (52)). “Morbid obesity” (phecode 278.11) 

and obesity-related endocrine phenotypes, including 

“overweight, obesity, and other hyperalimentation” 

(phecode 278), “type 2 diabetes” (phecode 250.2), “es-

sential hypertension” (phecode 401.1), “hypercholes-

terolemia” (phecode 272.11), “hypertension” (phecode 

401), “disorders of lipid metabolism” (phecode 272) are 

the top-ranked. The phenome-wide significant asso-

ciation of “polycystic ovaries” (phecode 256.4) and 

PCOS-PRS are observed with one of the largest effect 

sizes (OR = 1.015) among the result.

As a complex endocrine disorder, the PCOS patho-

physiology seems to be tightly linked to the expres-

sion of endocrine or circulatory system manifestation. 

Among the 75 phenome-wide significant traits with 

PRS, the phenotypes of circulatory system (26.0%) 

and endocrine/metabolic system (21.0%) appeared the 

most frequently (Fig. 5D), while the 4 highest associated 

phenotypes are all endocrine/metabolic features.

Among the remainder of the phenome-wide signifi-

cant phenotypes, associations of musculoskeletal pheno-

types like “osteoarthrosis” (phecode 740 and 740.9) or 

“calcaneal spur; Exostosis NOS” (phecode 726.4) pos-

sibly imply the hormonal changes on the skeletal system 

impacted by PCOS epidemiology. Multiple symptom-

atic genitourinary phenotypes of PCOS were also iden-

tified: “abnormal mammogram” (phecode 611.1) or 

“other signs and symptoms in breast” (phecode 613.7). 

An obesity-related pulmonary disorder of “sleep apnea” 

(phecode 327.3) was also observed (classified as neuro-

logical phenotype in phecode map) with “obstructive 

sleep apnea” (phecode 327.32). We could not identify 

Figure 5. PheWAS scheme and results using PRS. (A) PheWAS 

scheme and sample sizes; (B) PheWAS Manhattan plot of PRS (SNVs 

with P ≤ 1) in the phenomes of 49 343 female participants; (C) 

PheWAS Manhattan plot of PRS (SNVs with P ≤ 1) in the phenomes 

of 41 669 male participants; (D) pie chart summarizing PheWAS 

groups. In Manhattan plots (B) and (B), the x-axis represents the EHR 

phenotype categorical group and the y-axis represents the negative 

log(10) of the PheWAS P-value. Red lines indicate the cut-off for 

phenome-wide significance. For readability, only the most significant 

associations are annotated. Full lists of phenome-wide significant 

results are provided in refs (51,52). The pie chart in (D) shows EHR 

categories for the 72 phenome-wide significant phenotypes identified 

through PheWAS of the genome-wide PRS (SNVs with P ≤ 1).
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any psychological or depression related phenotype that 

is known to have genetic correlation with the hormonal 

changes of PCOS.

The overall low range of OR (1.004–1.010) of the 

PheWAS results should be noted, which is assumedly 

due to the aggregated effects of the low impact SNVs 

for PCOS, especially in the full-inclusive PRS with the 

entire GWAS SNVs. The ORs from the generic PheWAS 

of individual PCOS SNVs are observed to be higher be-

fore merging them into the cumulative PRS, which is 

described later (see (53)).

In the replication analysis on an independent cohort 

of 18 096 EA females (BioVU), 16 out of 75 phenome-

wide signals from the discovery analysis are repli-

cated including “PCOS” (P = 1.93 × 10–2, phecode 

256.4) with the positive OR of 1.174 (Table 5a). Half 

of the replicated phenotypes (8 out of 16) belong to 

the endocrine/metabolic category. In particular, the 

following obesity-related endocrine phenotypes ex-

hibit strong evidence of replication after multiple 

testing correction (P < 6.7 × 10–5, 0.05/75): “morbid 

obesity” (phecode 278.11), “obesity” (phecode 

278.1), “overweight, obesity and other hyperalimen-

tation” (phecode 278). The well-known comorbidity 

between “type 2 diabetes” (phecode 250.2) and PCOS 

is also identified along with other diabetic syndromes 

like “diabetes mellitus” (phecode 250). Other notable 

replicated phenotypes included multiple neurological 

and digestive manifestations, which have well-known 

association with obesity, such as “chronic liver disease 

and cirrhosis” (phecode 571), “bariatric surgery” 

(phecode 539), and “other chronic nonalcoholic liver 

disease” (phecode 571.5). An obesity-related pul-

monary disorder of “sleep apnea” (phecode 327.3) 

is also observed (classified as neurological pheno-

type in phecode map) with “obstructive sleep apnea” 

(phecode 327.32).

In male-specific PheWAS with PRS (SNVs with P ≤ 1) 

model, 3 metabolic phenotypes reached phenome-

wide significance in the discovery analysis, “morbid 

obesity” (phecode 278.11), “type 2 diabetes” (phecode 

250.2), and “diabetes mellitus” (phecode 250), which 

are known risk factors and/or comorbidities for PCOS 

(Fig. 5B, Table 5B, and (52)). However, none of the as-

sociations was replicated in the replication analysis on 

15 611 independent males. The replication sample is 

underpowered and larger sample sizes will be needed 

to distinguish these results from a true null result. As 

a result of the smaller sample size for the replication 

cohort with respect to that of the discovery cohort, sev-

eral lead to the 95% CI spanning 1 in the replication 

cohort, and show less statistically significant associ-

ations. This can largely be attributed to the winner’s 

curse phenomenon (54).

Table 5. (A) Sixteen significant phenotypes of PCOS-PRS (P  ≤  1) female-stratified PheWAS that were 
phenome-wide significant in the discovery cohort replicated in the independent VU cohort (n=18 096). (B) 
Three phenome-wide significant results of PCOS-PRS (SNPs with P ≤ 1) male-stratified PheWAS (n=41 669) 
and replication cohort (n = 15 612). None of them were replicated in the independent replication analysis.

(A) Discovery analysis  

Group OR 95% CI P n_total n_cases OR 95% CI

Endocrine/metabolic 1.010 (1.008–1.013) 9.74×10–18 37 108 6790 1.116 (1.054–1.182)
Endocrine/metabolic 1.008 (1.006–1.009) 4.14×10–17 44 267 13 949 1.087 (1.042–1.134)
Endocrine/metabolic 1.007 (1.005–1.009) 2.20×10–16 47 803 17 485 1.077 (1.037–1.120)
Endocrine/metabolic 1.007 (1.005–1.009) 8.18×10–13 42 874 10 800 1.081 (1.036–1.128)
Neurological 1.008 (1.006–1.010) 4.71×10–12 40 673 6503 1.096 (1.036–1.158)
Endocrine/metabolic 1.007 (1.005–1.009) 5.39×10–12 43 325 11 251 1.079 (1.035–1.125)
Digestive 1.008 (1.005–1.011) 4.17×10–9 40 531 4582 1.093 (1.028–1.163)
Digestive 1.012 (1.008–1.016) 7.59×10–9 47 803 2034 1.202 (1.079–1.339)
Neurological 1.007 (1.005–1.010) 1.16×10–8 39 291 5121 1.098 (1.030–1.170)
Digestive 1.008 (1.005–1.011) 2.13×10–8 40 251 4302 1.112 (1.042–1.187)
Musculoskeletal 1.005 (1.003–1.007) 1.71×10–7 43 335 11 354 0.956 (0.915–0.999)
Endocrine/metabolic 1.015 (1.009–1.020) 3.16×10–7 40 696 942 1.174 (1.026–1.343)
Musculoskeletal 1.004 (1.003–1.006) 6.38×10–7 47 803 15 822 0.957 (0.923–0.993)
Endocrine/metabolic 1.008 (1.005–1.011) 2.25×10–6 35 057 2983 1.136 (1.060–1.219)
Endocrine/metabolic 1.010 (1.005–1.014) 9.20×10–6 33 663 1589 1.221 (1.082–1.377)
Genitourinary 1.004 (1.002–1.006) 1.40×10–5 40 468 14 392 0.947 (0.910–0.986)

(B) Discovery analysis  

Group OR 95% CI P n_total n_cases OR 95% CI

Endocrine/metabolic 1.009 (1.006–1.012) 5.93×10–8 32 456 3489 1.049 (0.978–1.125)
Endocrine/metabolic 1.005 (1.003–1.007) 1.41×10–5 36 835 10 984 1.031 (0.989–1.076)
Endocrine/metabolic 1.005 (1.002–1.007) 2.47×10–5 37 199 11 348 1.029 (0.988–1.073)
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Sensitivity analysis—Case-excluded analysis 

(PheWAS-2). After removing 949 PCOS patients in 

PheWAS investigation, we still identified 68 PRS-

phenotype associations that reached phenome-wide 

significance (see (55)), which is not very different 

from PheWAS-1. The result might be due to the chal-

lenge of current diagnosis practices in identifying 

PCOS cases, which implies the control groups are not 

completely excluding PCOS patients and possibly in-

clude some mixed signals from the unidentified PCOS 

cases. Alternatively, it is possible that genetic risk for 

PCOS remains a robust risk factor for these pheno-

types even in the absence of clinical manifestations 

of PCOS.

The representative signals of diabetes/obesity-related 

endocrine traits that are identified in PheWAS-1 re-

mained significant: “morbid obesity” (phecode 278.11), 

“type 2 diabetes” (phecode 250.2), “obesity” (phecode 

278.1), “overweight, obesity and other hyperalimenta-

tion” (phecode 278), “diabetes mellitus” (phecode 250), 

“hypercholesterolemia” (phecode 272.11), “disorders 

of lipid metabolism” (phecode 272)  and “hyperlipid-

emia” (phecode 272.1) etc.

Four phenotypes no longer remained phenome-wide 

significant in PheWAS-2 compared with PheWAS-1, 

including “menopausal and postmenopausal disorders” 

(phecode 627), “iron deficiency anemias, unspecified 

or not due to blood loss” (phecode 280.1), “sleep dis-

orders” (phecode 327), and “insomnia” (phecode 327.4). 

A new metabolic phenotype of “disorders of fluid, elec-

trolyte, and acid–base balance” (phecode 276)  was 

phenome-wide significant in PheWAS-2 compared with 

PheWAS-1, but the association did not remain signifi-

cant in replication analysis. The phenome-wide signifi-

cant phenotype with the largest effect size in PheWAS-2 

was “localized adiposity” (OR = 1.014, phecode 278.3), 

same as for PheWAS-1. The range of OR is low in PRS-

PheWAS due to the cumulative effect sum of all PCOS 

susceptibility loci including low-effect variants.

Sensitivity analysis—Associations with individual 

PCOS susceptibility loci (PheWAS-3).  In the individual 

PheWAS of 85 PCOS genome-wide significant variants, 

even though no association survives phenome-wide sig-

nificance, likely due to the multiple testing burden, 11 

PCOS variants show notable association to “polycystic 

ovaries” across the ancestry groups (most significant 

variant hg19 chr11:30 226 528, OR = 1.36, phecode 

256.4), ranked as the second most significant phenotype 

(see (53)). Out of top 100 associations in PheWAS-3, 

the largest number of associations were related to the 

circulatory system for “thrombotic microangiopathy” 

(31.0%). Endocrine/metabolic related phenotypes were 

the second most frequent category (21.0%) composed 

of either “PCOS” or “ovarian dysfunction”, and 12% 

of the top associations were digestive traits, largely 

devoted to diverticular diseases. We did not identify 

any associations related to obesity or diabetes, which 

were the most significant phenotypic features found in 

PheWAS-1 and PheWAS-2.

Discussion

A key question in precision medicine is how to identify 

patients at high risk for a given disease for the goal of 

targeting preventive care. In this study, we examined the 

ability of PRS to predict PCOS clinical diagnosis and 

mine comorbid EHR phenotypes with the ultimate goal 

of improving diagnostic accuracy for PCOS. We show 

that a PRS for PCOS can be used (1) to identify pa-

tients at elevated risk of PCOS and (2) to determine the 

comorbid or pleiotropic phenome-wide expression as-

sociated with PCOS in a clinical setting.

The primary accomplishment of this study is a sys-

tematic enhancement of the polygenic risk prediction by 

integration of additional disease component phenotypes 

in the EHR into a PPRS. The onset of hirsutism, men-

strual dysfunction, or female infertility are representa-

tive symptoms of PCOS and essential in determining 

clinical hyperandrogenism (15,56,57). They are not re-

quired for a diagnosis of PCOS per se, but are useful 

in suggesting PCOS in a clinical context. The PPRS 

significantly improves the average explanatory power 

(pseudo-R2) of PCOS prediction by 0.221 (59.1-fold in-

crease) compared with the null model without PRS or 

component phenotypes, and by 0.037 (14.7% increase) 

over the null model with the component phenotypes 

alone (Table 2 and Fig. 4). In contrast to the previous 

studies that attempted to identify PCOS diagnosis with 

risk score calculation (11,58), our algorithm did not 

limit risk predictor in a single dimension, using both 

phenotype and genotype markers with polygenic in-

heritance, and extensively demonstrated the predictive 

performance of PPRS with several machine-learning 

techniques. The findings shown here strengthen the po-

tential clinical utility of PPRS as a disease predictor, 

particularly when combined with component symptom 

information available within the EHR.

To date, research has consistently shown that the 

PRS built from EA GWAS data does not perform as ro-

bustly across non-EA samples. In this study, we assessed 

the performance of a Eurocentrically built PCOS-PRS 

on the samples of EA, AA, and the joint MA cohorts. 

Undeniably, validation statistics varied by ancestry 
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group and the PCOS diagnosis prediction in AA cohort 

shows the poorest performance. However, it is of note 

that more than half of the tested models in AA still show 

statistical significance in terms of regression P-value, 

and those models display a reliable efficiency for PCOS 

detection in effect size and AUC (Table 3). Interestingly, 

the ORs for PRS differ across the ancestry cohorts, 

and somewhat higher in some prediction models in AA 

(average OR of model1 = 1.25, model2 = 1.28) and MA 

samples (average OR of model1 = 1.14, model2 = 1.13) 

than EA samples (average OR of model1  =  1.13, 

model2 = 1.12). The overall ORs of the PRS variable are 

fairly stable throughout all polygenic prediction models 

(OR 1.12–1.28). The observed significance of the PRS 

variable in the MA cohort, more stable than in the EA 

or AA participants alone, is likely due to the increased 

statistical power with larger sample size that counters 

the sample heterogeneity introduced. In addition, we 

found that the accumulation of genetic variants did 

not always increase the predictive capability of the PRS 

in terms of pseudo-R2 and OR (Fig.  3 and Table  2). 

This might be due to the different RAF of PCOS risk 

variants by different PRS P-value cut-offs, and the 

varying LD structure of the ancestry groups. Previous 

research has confirmed that the LD pattern varies be-

tween EA and Chinese women at the PCOS suscepti-

bility loci encoding LH/choriogonadotropin receptor 

(LHCGR) and follicle-stimulating hormone receptor 

(FSHR) genes, but the reproducible signals of the loci 

are consistently associated with PCOS regardless of an-

cestry(10,59). Our sensitivity analysis (PheWAS-3) also 

suggests the varying phenotypic effect of PCOS loci in 

different ancestries, but confirms the strong association 

with PCOS nonetheless. These findings demonstrate the 

primary role of PCOS-PRS in cumulatively explaining 

substantial variation of disease susceptibility across an-

cestries even with differing LD structures, and extend 

the general utility of PPRS in disease prediction.

Furthermore, our PRS-based phenome-wide analysis 

revealed several clinical associations that are tightly linked 

with obesity, confirming the shared metabolic pathways 

between PCOS and obesity in a phenomic aspect. As 

obesity is a common finding which can be found in 50% 

to 65% of PCOS patients (15), and previous Mendelian 

randomization study revealed the causal relationship 

of BMI on PCOS etiology (12), many of our findings 

could be interpreted as phenotypic evidence of comorbid 

obesity. “Morbid obesity” (phecode 278.11), “hyper-

cholesterolemia” (phecode 272.11), “disorders of lipoid 

metabolism” (phecode 272), “hyperlipidemia” (phecode 

272.1), “hypertension” (phecode 401), or “abnormal glu-

cose” (phecode 250.4) are easily understandable with the 

context of heightened metabolic risks for obesity. “Sleep 

apnea” (phecode 327.3) and “chronic liver disease and cir-

rhosis” (phecode 571), “GERD” (phecode 530.11), “dis-

eases of esophagus” (phecode 530 and 530.1) are either 

neurological, pulmonary, or digestive assorted symptoms 

that are commonly found in the patients with obesity.

It is also noteworthy that there were 75 significant 

associations identified in women, while in men there 

were only 3 significantly associated diagnosis (morbid 

obesity, type 2 diabetes, diabetes mellitus) despite a 

similar sample size for males and females in the ana-

lysis. It is possible that the clinical consequences of high 

androgens in males are less likely to cause symptoms for 

which medical treatment is sought, or that these genetic 

variants only elevate androgen levels in a female “en-

vironment” but not a male one. The 3 identified pheno-

types in males additionally suggest that if an individual 

harbors high genetic risk for PCOS, the metabolic mani-

festations are similar regardless of sex.

Consistent with previous studies (11,12), we iden-

tified phenotypic evidence of positive BMI association 

with genetic risk of PCOS. In the stratification analysis 

of the PRS, our observation of the increased BMI in in-

dividuals with high risk of PCOS are evident in both 

EA and MA cohorts (Fig.  2). The comorbid pheno-

types could be driven by pleiotropy in which PCOS-

associated genes also increase BMI, or could be due to 

underdiagnosis of PCOS itself, in which case the as-

sociation with obesity phenotypes may be a result of 

comorbidity with undiagnosed PCOS.

Several limitations to this study need to be acknow-

ledged. First, the sample size of AA participants was 

relatively small, which increases the likelihood of both 

false-negative and false-positive findings. Further in-

vestigation is needed to fully understand the overlap in 

PCOS genetic factors across MA participants and the 

methodological application of Eurocentric PCOS-PRS 

to other genetic ancestries considering LD structure. 

Secondly, the phenotypic components we used for poly-

genic prediction are currently limited to only 3 repre-

sentative phenotypes: hirsutism, irregular menstruation, 

and female infertility. Fueled by our PheWAS finding, 

the work could be extended by incorporating the add-

itional phenotypes that might increase the likelihood of 

an eventual diagnosis. Also, the phecode of PCOS used 

for PheWAS was converted from ICD-9-CM 256.4 and 

ICD-10-CM E28.2, which was used as a proxy for cap-

turing PCOS in the EMR. This phecode may not per-

fectly capture PCOS as they may or may not capture 

hyperandrogenemia. The selection bias in our discovery 

cohort should be acknowledged as well. Two of our 

participating sites (Geisinger and Marshfield) mainly re-

cruited their patients for the study of obesity and type 2 

diabetes, which resulted in a higher proportion of obese 
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patients into their biobank and therefore may inflate the 

prevalence of PCOS in these subgroups. Additionally, we 

also observed 95% confidence intervals for the PheWAS 

sometimes passed through 1 in our replication PheWAS. 

This largely can be attributed to the winner’s curse phe-

nomenon (54), particularly when there are large differ-

ences in sample size between the discovery eMERGE 

cohort and the replication BioVU cohort. More import-

antly, the estimated effect sizes between the discovery 

and replication cohorts are very similar, suggesting val-

idity of the results with differences in statistical signifi-

cance and 95% CI due to sample size-driven power. 

Lastly, due to the low diagnosis rate of PCOS patients 

in current EHR system, it is possible that unidentified 

PCOS cases could reduce power in each analysis.

Our approach has provided a novel methodo-

logical opportunity to stratify patients’ genetic risk 

and to discover the phenomic network associated with 

PCOS pathogenesis. Integrative analysis of the PRS-

PheWAS enables the systematic interrogation of PCOS 

comorbidity patterns across the phenome, which cannot 

be readily identified by a single-variant approach. The 

identified phenomic networks could be used at the stage 

of first screening, prior to the testing of hormones or 

imaging of ovaries, or to help the patient and physician 

decide whether more extensive testing would be useful 

for PCOS diagnosis. As genomics-based precision medi-

cine becomes more widely adopted as part of routine 

care, this approach should improve cost-effectiveness 

for PCOS screening/diagnosis by saving unnecessary 

screening tests or physician involvement in identifying 

possible PCOS cases. Further, it also permits detection 

of PCOS patients prior to diagnosis by a physician, 

allowing earlier interventions thereby reducing costs 

from long-term complications. Finally, from a precision 

medicine perspective, such an approach may provide a 

greater understanding of a patient’s clinical presentation 

and suspected diagnosis based on specific phenotypic or 

genetic variations.
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