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A polygenic predictor of treatment-resistant
depression using whole exome sequencing
and genome-wide genotyping
Chiara Fabbri1, Siegfried Kasper2, Alexander Kautzky2, Joseph Zohar3, Daniel Souery4, Stuart Montgomery5,

Diego Albani6, Gianluigi Forloni6, Panagiotis Ferentinos7, Dan Rujescu8, Julien Mendlewicz9, Rudolf Uher10,

Cathryn M. Lewis 1 and Alessandro Serretti 11

Abstract
Treatment-resistant depression (TRD) occurs in ~30% of patients with major depressive disorder (MDD) but the

genetics of TRD was previously poorly investigated. Whole exome sequencing and genome-wide genotyping were

available in 1209 MDD patients after quality control. Antidepressant response was compared to non-response to one

treatment and non-response to two or more treatments (TRD). Differences in the risk of carrying damaging variants

were tested. A score expressing the burden of variants in genes and pathways was calculated weighting each variant

for its functional (Eigen) score and frequency. Gene-based and pathway-based scores were used to develop predictive

models of TRD and non-response using gradient boosting in 70% of the sample (training) which were tested in the

remaining 30% (testing), evaluating also the addition of clinical predictors. Independent replication was tested in

STAR*D and GENDEP using exome array-based data. TRD and non-responders did not show higher risk to carry

damaging variants compared to responders. Genes/pathways associated with TRD included those modulating cell

survival and proliferation, neurodegeneration, and immune response. Genetic models showed significant prediction of

TRD vs. response and they were improved by the addition of clinical predictors, but they were not significantly better

than clinical predictors alone. Replication results were driven by clinical factors, except for a model developed in

subjects treated with serotonergic antidepressants, which showed a clear improvement in prediction at the extremes

of the genetic score distribution in STAR*D. These results suggested relevant biological mechanisms implicated in TRD

and a new methodological approach to the prediction of TRD.

Introduction
Major depressive disorder (MDD) is the second leading

cause of disability in middle-aged adults on a global scale1.
Despite the availability of a number of different pharmaco-
logical treatments, treatment-resistant depression (TRD) is
estimated to occur in ~30% of patients2. TRD is usually
defined as lack of response to at least two adequate

treatments and it is associated with social and occupational
impairment, suicidal thoughts, decline of physical health and
increased health care utilization3,4. Annual costs for health
care and lost productivity were estimated to be $5481 and
$4048 higher, respectively, for a patient with TRD versus a
patient with treatment-responsive depression5.
In the future, biomarkers associated with TRD risk may

contribute to improve the clinical management of MDD
by providing an estimate of TRD genetic risk at baseline,
by guiding the prescription of personalized treatments
and the development of new drugs. Genetic variants are
ideal biomarkers to predict treatment response and
TRD: a genetic basis to treatment response has been
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demonstrated and genotyping can be performed in easily
accessible samples with reasonable cost and time6. The
development of models able to predict the genetic risk of
TRD at baseline would provide valuable information to
personalize treatment prescription and hypothetically
reduce the rate of TRD. Possible ways by which this could
be achieved include: (1) identifying genetic predictors of
non-response to specific antidepressant classes; (2) pre-
scribing treatments with increased efficacy but limited
availability because of costs constraints to patients having
genetic risk for TRD. However, most existing pharmaco-
genomic studies were focused on measures of response to
the last treatment without taking into account previous
treatments, leaving the genetics of TRD largely unex-
plored7. Another issue was the investigation of common
variants only, while the possible role of rare variants was
overlooked, despite they were suggested as one of the
factors contributing to missing heritability of common
traits8. To the best of our knowledge, only a small pilot
study (n= 10) performed whole exome sequencing to the
study of treatment response in MDD (but not TRD) and
found that the bone morphogenetic protein (BMP5) gene
may be associated with the therapeutic outcome9.
The present study aimed to contribute in filling the

existing gap in the knowledge of TRD genetics using
whole exome sequencing and genome-wide genotyping to
analyze the role of rare and common variants in the
prediction of this phenotype and contribute to the
development of predictive models potentially useful to
personalize antidepressant prescription.

Patients and methods
Sample

The Group for the Study of Resistant Depression
(GSRD) sample was recruited within a multicenter, cross-
sectional study including adult in- and outpatients with
MDD (DSM IV-TR criteria), as confirmed using the
Mini International Neuropsychiatric Interview (MINI).
Depressive symptom severity was assessed using the
Montgomery and Åsberg Depression Rating Scale
(MADRS) at study inclusion and at the onset of the cur-
rent MDD episode. Information on previous and current
antidepressant and other pharmacological treatments
during the current MDD episode was collected as well as
clinical-demographic characteristics. Antidepressant
treatment was naturalistic according to best-clinical
practice principles (Supplementary Table 1). The study
protocol was approved by the local ethnic committees and
the participant signed the written informed consent.
Further details can be found elsewhere10.

Phenotype, training, and testing samples

TRD was defined according to the most common defi-
nition of lack of response to at least two adequate

antidepressant treatments during the current depressive
episode11, while non-response was referred to one ade-
quate treatment only. Adequate treatment was defined as
an antidepressant treatment of minimum duration of
4 weeks at least at the minimum therapeutic dose
according to drug labeling. Response was defined as a
MADRS score <22 and a score decrease of at least 50%
compared to the onset of the current MDD episode.
Responders could have had not more than one failed
antidepressant treatment during the current depressive
episode. After quality control, the sample was split in a
training (70%) and testing set (30%) which were balanced
in terms of phenotypic distribution (TRD, non-response
and response) using the partition function of groupdata2
R package, and they did not differ for gender, age, baseline
depression severity, or centre of recruitment.

Whole exome sequencing and genome-wide genotyping

Whole exome sequencing was performed using the
Illumina HiSeq platform with 100 bp read length.
Genome-wide genotyping was performed using the Illu-
mina Infinium PsychArray 24 BeadChip (Illumina, Inc.,
San Diego) and these data were imputed as described in
Supplementary Methods. Rare variants were extracted
from exome sequence data and were defined as those
having minor allele frequency (MAF) <1/√(2n), where n is
the sample size12, which corresponded to 0.02 in GSRD.
Information about DNA extraction, quality control of

exome sequence data and genome-wide data are reported
as Supplementary Methods. We compared the con-
cordance of genotypes of SNPs available in both exome
sequence and array data, splitting them in genotyped and
imputed and by MAF. These comparisons were also
relevant to determine the putative reliability of rare
imputed variants in the replication samples. Subjects with
discrepancies between genome-wide and exome sequence
data were excluded (non-major homozygote genotype
concordance ≤90% for rare variants and ≤95% for com-
mon variants).

Statistical analysis

Variant annotation and distribution of functional variants

We tested if predicted detrimental/damaging variants
obtained through exome sequencing were differently
distributed between TRD patients, non-responders, and
responders. Variant annotation was performed using
variant effect predictor (Vep) release 90, using the –pick
flag that chooses one block of annotation per variant,
based on an ordered set of criteria13. Annotations from
SIFT, PolyPhen, and functional consequence scores from
the sequence ontology (SO) project were used to estimate
the relative pathogenicity of variants14–16. The use of
scores which combine different variant annotations was
also pursued and it is described in the next paragraph.
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The risk of carrying SIFT deleterious variants (scores
< 0.05), PolyPhen damaging or probably damaging var-
iants (scores > 0.45) and variants with SO functional score
≥ 0.90 and ≥0.70 in specific genes was compared across
TRD patients, non-responders, and responders using
regression models adjusted for three population principal
components and center of recruitment. Bonferroni cor-
rection was applied to account for multiple testing (the
number of included genes was between 14,353 and 18,600
depending from the considered annotation). Additional
details are reported as Supplementary Methods.

Exome risk scores

These analyses aimed to estimate a weighted measure
reflecting the burden of rare genetic variants exome-wide
and in a gene-based and pathway-based way. Secondly, we
combined these measures with analogous estimations for
common variants.
For rare variants, a score was calculated for each indi-

vidual as

Xn

i¼1

vall ´ws ´wf

where n is the number of genetic variants within the
considered unit (whole exome, gene or pathway), vall is
the number of alternative alleles, ws is the corresponding
functional score and wf is the frequency weight for that
variant. In this way, the score is not dependent from the
presence of individual variants which could not be
observed in some of the tested samples. A similar
approach was previously applied to the study of schizo-
phrenia risk using exome sequence data17, but it was
modified in this study by using different functional
weighting (composite scores reflecting multiple annota-
tions) and different frequency weighting (to allow the
inclusion of rare but also common variants). Different
sources for determining ws were tested and compared
(Eigen scores18, CADD scores19, and SO functional
scores15, see Supplementary Methods). The frequency
weight was determined using a beta distribution based
on the frequency of the alternative allele alt_all (wf=

dbeta(alt_all,1,25), according to the previous literature12,
see the corresponding curve in Supplementary Fig. 1).
Rare variants were extracted from exome sequence data
as those with MAF <1/√(2n), where n is the sample
size12, which corresponded to 0.02 in GSRD. Common
intragenic variants were extracted from genome-wide
genotyping data and clumped based on their functional
scores ws and linkage disequilibrium (LD) using Plink
v.1.9 (Supplementary Methods). A smoother beta dis-
tribution was used to weight these variants based on
frequency (wf= dbeta(alt_all,0.5,0.5)12, see curve in
Supplementary Fig. 1).

The obtained scores were tested for different distribu-
tion among the phenotypic groups considering rare var-
iants only and the sum of the scores for rare and common
variants. These tests were performed using regression
models adjusted for three population principal compo-
nents and centre of recruitment.

Predictive modeling

Gene-based and pathway-based scores (adjusted for the
described confounders, more details in Supplementary
Methods) were entered into a predictor selection process
in the training sample using a five-fold cross-validation
repeated 100 times for pathways and 20 times for genes,
500 and 100 rounds in total, respectively. In each round,
one-fifth of the training dataset was left out, and in the
remaining four-fifths of the training dataset a correlation-
adjusted T (CAT) score was estimated (i.e. a multivariate
generalization of the standard univariate T-test statistic
that takes the correlation among variables explicitly into
account20,21) and the local false discovery rate (LFDR) (i.e.
the probability of a variable to be non-informative with
regard to phenotype prediction given its CAT score) for
each potential predictor. We selected predictors that had
a LFDR smaller than 0.8 in >50% of the rounds22. This
process reduces dimensionality and select variables with
higher probability of being informative, reducing the risk
of overfitting. These predictors were used to develop
predictive models in the training sample using a gradient
boosting machine (GBM) algorithm with a five-fold cross-
validation repeated 100 and 20 times when predictors
were pathway and gene scores, respectively. Cross-
validation in this phase was used to provide better esti-
mates of predictor contribution and empirically estimate
model parameters (number of trees and interaction depth;
shrinkage was set to 0.1 and minimum number of
observations in each terminal node was set to 10). GBM
produces a prediction model in the form of an ensemble
of weak prediction models based on decision trees and it
was demonstrated to be a suitable algorithm to learn from
weak predictors, when there is not a large amount of
available data for training and predictors may interact
among each other23,24. Models using gene-based scores as
predictors included both rare and common variants,
because the inclusion of rare variants only would have
created scores very skewed towards zero which could not
be realistically adjusted for confounders, while models
using gene-set scores were tested for rare variants only
and rare combined with common variants.
The performance of the developed models in predicting

TRD or non-response in the testing sample was estimated
using the area under the curve (AUC) of receiver oper-
ating characteristic (ROC) curves. Predictive models were
developed in the whole training sample and in the sub-
samples treated with serotonergic antidepressants (5-HT
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ADs) and noradrenergic or noradrenergic–serotonergic
antidepressants (NA ADs) according to the pharmacology
domain reported in the NbN classification (Neuroscience-
based Nomenclature)25. Different genetic profiles were
indeed previously found for antidepressants belonging to
these pharmacology domains22. Only the current treat-
ment was considered and subjects treated with combi-
nations of 5-HT ADs and NA ADs were not included in
this analysis (Supplementary Table 1). The addition of a
clinical risk score to the genetic predictors was evaluated.
The clinical risk score was calculated as a weighted sum
of the variables independently associated with TRD or
non-response in the training sample in a regression
model after Bonferroni correction (Supplementary
Table 2). Each variable included in the clinical score was
weighted for its effect size (z score) and divided by the
number of variables available in each subject
ð
Pn

predictor¼1predictor ´ z=nÞ in order to avoid the
exclusion of subjects with one or two missing values.
We compared the ROC curves including genetic pre-
dictors with those including clinical or clinical-genetic
predictors using the DeLong’s method.
The risk of TRD or non-response may increase parti-

cularly at the extremes of the genetic score distribution.
Thus, we also tested the significant models including only
subjects with a genetic score ≤30 or ≥70 percentiles; we
used this threshold to balance the risk of instability of
findings due to the limited sample size, particularly in the
subsamples treated with specific drug classes. The total
genetic score was calculated in each subject as a sum of
the gene/pathway scores included in the model of interest,
each of them weighted for its importance in the predictive
model. This approach is a simplification, since it does not
reflect the non-linearity of the developed models and
possible interactions.
We did not perform multiple-testing correction for

these analyses because: (1) these tests were correlated
among each other and not independent (for example,
patients in the tails of the genetic score are a subset); (2)
we looked at the consistency of results of correlated
analyses (i.e. we analyzed patients in the tails or added the
clinical score for further testing models which showed
non-random prediction in the basic test).
The following R cran packages were used for the

described analyses: caret, nnet, sda, crossval, pROC.

Replication

Replication of the significant predictive models was
tested in STAR*D and GENDEP26,27, using the same
approach described for creating gene-based and pathway-
based risk scores (including rare and common variants
according to the definition reported in the section “Exome
risk scores”, more details are in Supplementary Methods).
In replication samples we used a genetic score ≤20 or ≥80

percentiles to identify subjects with extreme genetic
scores since the larger sample size. In both these samples
genome-wide genotyping was available, including stan-
dard genome-wide arrays and an exome array (Illumina
Infinium Exome-24 v1.0 BeadChip)28, but not exome
sequence data. Further information on genotyping
methods and quality control was previously reported29

and it is described also in the Supplementary Methods.
Imputation was carried out using the Michigan imputa-
tion server and the Haplotype Reference Consortium
(HRC, version r1.1 2016) as reference panel30. Different
imputation quality thresholds were used to prune rare and
common variants according to the previous literature
(R2 > 0.30 and R2 > 0.60 for common and rare variants,
respectively31,32). The comparability between the available
rare variants in GENDEP/STAR*D and GSRD was tested
in terms of number and functional annotation. Pheno-
types were defined in a way comparable to the GSRD
sample, only TRD and response were considered because
of their univocal phenotypic definition (part of non-
responders are expected to become TRD) and these
analyses aimed to replicate significant results in GSRD
(which were concentrated to the comparison TRD vs.
response). Further details on phenotype definition are
reported in Supplementary Methods (paragraph “Repli-
cation samples: STAR*D and GENDEP”).

Power estimation

GSRD sample size after quality control (n= 1209)
provides adequate power (≥0.80) in 865 out of
1000 simulations when testing a set of 45 simulated rare
variants (MAF < 0.02) and 100 simulated common var-
iants (which reflects the median number of variants in the
analyzed genes), having effect sizes (β) randomly dis-
tributed between −0.25 and 0.25, at alpha= 2.69e–06
(Bonferroni corrected p-value for number of genes). R
cran libraries KATSP, minqa and CompQuadForm were
used for power estimation33.

Results
The number of subjects available after quality control

was 1209 (details on number of excluded subjects are in
Supplementary Fig. 2). A comprehensive description of
the clinical-demographic characteristics of the samples is
reported in Supplementary Table 1, while a condensed
overview is shown in Table 1. The number of included
variants split by variant type and MAF is reported in
Supplementary Table 3 (exome sequence data). Five
subjects showed low concordance between genotypes
available in both exome and genome-wide data and they
were excluded from the analyses including both rare and
common variants, since exome sequencing repeated on
one of these subjects demonstrated genotype concordance
>99% with the initial sequencing results. The comparison
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between sequenced rare variants and rare variants
imputed from genome-wide data showed a mean con-
cordance of 75% (SD= 5%) considering only non-major
homozygote genotypes. The mean concordance con-
sidering the same comparison but for genotyped rare
variants (array data) was 93% (SD= 2%) (Supplementary
Fig. 3), suggesting that the use of rare variants obtained
from an array may be feasible even though not optimal.
From the genome-wide data, 476,319 intragenic common
variants in low LD and 1180 subjects were included after
quality control.
The variables included in the clinical risk score were

suicidal risk, number of previous depressive episodes,
chronic depression, and two MADRS factors (pessimism
and interest-activity) (Supplementary Table 2).

Distribution of damaging variants

Patients with TRD and non-responders did not show an
increased risk to carry SIFT/PolyPhen damaging variants
compared to responders or variants with SO functional
score ≥0.90 or ≥0.70 (Supplementary Table 4 and Fig. 1).
When considering individual genes (Supplementary
Tables 5 and 6), we did not identify any difference among
phenotypic groups after Bonferroni correction. The top
gene was WDR90 (WD Repeat Domain 90) which showed
variants with SO functional score ≥0.90 in 21 patients
with TRD but only in four non-responders and two
responders (p= 3.44e–05).

Exome-wide, gene, and pathway scores

The distribution of the of exome-wide scores for the
three tested functional weights were substantially over-
lapping. Six patients were excluded from the subsequent
analyses as they scored outside five standard deviations

from the sample mean (Supplementary Fig. 4). Patients
with TRD and non-responders did not show higher
exome-wide scores compared to responders (p > 0.05 for
all three tested functional weights). The correlations
between gene scores calculated using the three tested
functional weights were high (mean correlation coefficient
between 0.89 and 0.95 with SD from 0.04 to 0.06 in pair-
wise comparisons, Supplementary Fig. 5). In consideration
of these high correlation coefficients, the demonstration
that Eigen scores have better discriminatory ability using
disease-associated and putatively benign variants from
published studies compared to CADD scores18, and the
lower functional precision of SO functional scores, only
Eigen-based functional weighting was used in subsequent
analysis.
Gene-based and pathway-based scores were not asso-

ciated with phenotypic groups after Bonferroni correction
(Supplementary Tables 7 and 8). The top genes were NBN
and ZNF418 (p= 4.34e–05 and 5.18e–05, respectively,
whole sample, Supplementary Table 4) and the top
pathways were protein interaction database (PID) CD40
pathway in the subsample treated with serotonergic drugs
and GO (gene ontology) response to cocaine in the
subsample-treated noradrenergic drugs (p= 5.28e–05
and 5.61e–05, respectively, Supplementary Table 8).

Predictive modeling

Pathway-based models for TRD vs. response in the
whole sample including only rare genetic variants showed
non-random prediction in the testing sample (n= 237,
AUC 0.61 [95% CI 0.54–0.69], Table 2 and Fig. 2) and in
patients treated with 5-HT ADs (n= 272 and n= 118 in
the training and testing samples, respectively, AUC 0.62
[95% CI 0.52–0.73], Table 2 and Fig. 2). The list of

Table 1 Main clinical-demographic characteristics of the training sample (n= 847) and testing sample (n= 362).

Variable Training sample (n= 847) Testing sample (n= 362)

Age 51.44 ± 13.94 51.87 ± 14.16

Gender (F/M) 566/281 235/127

Phenotype of interest TRD n= 353

Non-Responders n= 291

Responders= 203

TRD= 151

Non-responders n= 125

Responders= 86

Baseline MADRS score 34.56 ± 7.36 33.85 ± 7.69

Current MADRS score 24.73 ± 11.13 24.78 ± 11.60

Treatment Serotonergic n= 421

Noradrenergic n= 271

Serotonergic–noradrenergic n= 128

Other n= 27

Serotonergic n= 192

Noradrenergic n= 93

Serotonergic–noradrenergic n= 59

Other n= 18

The baseline MADRS score is referred to the beginning of the current depressive episode. Mean ± standard deviation is reported for continuous variables and
distribution for dichotomous ones. For a more comprehensive overview of patients’ characteristics and results of comparisons between the characteristics of the two
subsamples see Supplementary Table 1.
MADRS Montgomery and Åsberg Depression Rating Scale; TRD treatment-resistant depression.
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pathways used as predictors is in Supplementary Table 9.
No significant prediction of TRD vs. response was
observed in patients treated with NA ADs or when
comparing non-responders vs. responders or TRD plus
non-responders vs. responders (Supplementary Table 10).
Prediction was improved by adding the clinical risk score
to genetic predictors in both the whole sample and
patients treated with 5-HT ADs (AUC 0.73 [0.66–0.79]
and AUC 0.65 [0.55–0.76], respectively, Table 2 and
Fig. 2), and this effect was more evident in subjects having
extreme genetic scores for the included pathways (n=
142, AUC 0.75 [0.67–0.83] and n= 71, AUC 0.68
[0.55–0.82], respectively; Table 2 and Fig. 2). However,
there was no significant difference between the AUC
obtained using the clinical risk score and that of the
models including genetic and clinical predictors (p= 0.89
and p= 0.68 for the whole testing sample and for 5-HT
ADs, respectively). The clinical risk score showed similar
or better AUC compared to the models including genetic
predictors alone (p= 0.03 and p= 0.45 for the whole
testing sample and for 5-HT ADs, respectively). A possi-
ble interpretation of this finding can be found in the
observation that patients in the 5-HT ADs group had a
lower clinical risk score compared to the others (p=
9.73e–09).
Pathway-based models including rare and common

genetic variants did not show predictive effect in the
testing sample in almost all scenarios (Supplementary
Table 10).
Gene-based models including rare and common var-

iants predicted TRD vs. response in the whole testing
sample and in subjects treated with 5-HT ADs (n= 230,
AUC 0.61 [0.53–0.69]; n= 113, AUC 0.65 [0.55–0.76],
respectively; Table 2). The lists of genes used as predictors
is shown in Supplementary Table 9. The addition of the
clinical risk score improved the prediction while the

subgroups having scores in the extreme percentiles did
not show different results (Table 2). There was no sig-
nificant difference between the AUC of the model
including only clinical predictors and that of the models
including genetic and clinical predictors (p= 0.74 and
p= 0.70 for the whole testing sample and for 5-HT ADs,
respectively). The clinical risk score showed similar or
better AUC compared to the models including genetic
predictors alone (p= 0.02 and p= 0.50 for the whole
testing sample and for 5-HT ADs, respectively).
Predictive models of non-response vs. response showed

marginal significance in the whole sample (n= 211, AUC
0.59 [0.51–0.67]) but better values in the sample treated
with 5-HT ADs (n= 121, AUC 0.64 [0.53–0.74]; Sup-
plementary Table 10). However, given that models
including non-responders were significant in a smaller
number of scenarios compared to those focused on TRD,
we did not further investigate them in the replication
samples.

Replication in STAR*D and GENDEP

Despite the availability of genotypes from an exome
array, a low covering of coding regions was obtained
compared to exome sequence data, limiting the compar-
ability of these data with those available in GSRD (Sup-
plementary Fig. 7). In GENDEP, LCE1B gene was not
covered and we had to re-train the corresponding pre-
dictive model (gene scores in patients treated with 5-HT
ADs) without this gene, with no major change in pre-
dictive performance in the GSRD testing sample (not
shown). The number of included subjects and their main
clinical-demographic characteristics are reported in Sup-
plementary Table 11.
None of the models including only genetic variables

predicted TRD, apart from the rare variant pathway-based
model developed in patients treated with 5-HT ADs. In

Fig. 1 Representation of exome-wide distribution of variants with sequence ontology (SO) functional score ≥0.90, SIFT deleterious

variants, PolyPhen damaging/probably damaging variants. The examined phenotypic groups (x-axis) were treatment-resistant depression (TRD),

non-response, and response. The number of variants in each phenotypic group is reported on the y-axis.
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STAR*D, this genetic model showed significant prediction
of TRD risk in subjects with scores ≤10 or ≥90 percentiles
(we looked at more extreme percentiles because of the
larger sample size; n= 134, AUC 0.73, 95% CI 0.61–0.86,
Table 3). The AUC of this model was not different from
that of the model including clinical and genetic variables
(p= 0.63), but it was better compared to the model
including clinical variables only (AUC of the clinical
predictor: 0.55 [0.49–0.62], p= 0.01). The other models
showing replication (all including genetic and clinical
predictors) are reported in Table 3; the ROC AUC of
these models were not significantly different from those of
the models based on the clinical risk score (all p > 0.05).
An overview of all replication results is provided in Sup-
plementary Table 12.

Discussion
This study found no overall difference in the distribu-

tion of functional and deleterious/damaging variants
between TRD patients, non-responders, and responders
within the whole exome or within individual genes. The
closest gene to the significance threshold was WD Repeat
Domain 90 (WDR90), which product function is still
poorly known but it is thought to participate in micro-
tubule organization within the presynaptic axon term-
inal34. The tested risk scores were not associated with
TRD at gene or gene set level, with NBN (nibrin) and
ZNF418 (Zinc Finger Protein 418) genes, PID CD40 and
GO response to cocaine pathways as top results. NBN is
thought to be involved in DNA double-strand break
repair, DNA damage-induced checkpoint activation and
telomere integrity35. It may be involved in neurodegen-
erative disorders36. Variants in the ZNF418 region had a
non-significant trend of association with MDD in a pre-
vious Psychiatric Genetic Consortium (PGC) mega-
analysis37 and in an exome sequence study38. The PID
CD40 gene set includes 31 genes, it is involved in the
modulation of inflammation and CD40 ligand has been
previously associated with MDD39.
The lack of strong signals coming from individual genes

or pathways was expected as it is in line with a previous
genome-wide association study of copy number variants
(CNVs) that reported no significant enrichment of CNVs
in TRD40. Thus, it is reasonable to hypothesize that if
genetics contributes to TRD, multiple genes/pathways
must be involved with complex interactions. This mirrors
the highly polygenic liability to MDD that is emerging
from other studies41. On the basis of this hypothesis, we
applied predictive modeling to assess TRD risk using
gene- and pathway genetic as well as clinical scores as
predictors. Predictive modeling combining genetic and
clinical predictors has been used by only two previous
studies to predict antidepressant response to the best of
our knowledge22,42, both these studies used SNPs fromT
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Fig. 2 ROC curves of the non-random predictive models in GSRD testing sample and relative importance of the genetic predictors

included in the models. When more than 20 predictors were included, only the first 20 are shown. 5-HT= serotonergic. The AUC values reached

including only subjects with genetic scores ≤30 or ≥70 percentiles. a Genetic predictors only. b Genetic and clinical predictors.
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genome-wide genotyping as genetic predictors. In con-
trast to the present study, they did not perform any
independent replication and the second study did not
distinguish between training and testing sets42.
The present study applied an innovative approach

which combined gene and pathway polymorphisms in
genetic scores weighted by their functional relevance,
using exome sequence and genome-wide data. The pre-
dictive models comparing TRD vs. response showed sig-
nificant prediction in a higher number of scenarios
compared to models including non-responders, confirm-
ing the biological relevance of TRD as a distinct pheno-
type. In this regard, it should be noted that
non-responders are a more heterogeneous group than
TRD patients, because part of them is expected to develop
TRD. In the GSRD testing sample, both gene-based and
pathway-based models showed significant prediction of
TRD vs. response (Table 2). The genes/pathways included
in these models (Supplementary Table 9) are mostly
involved in cell survival, cell growth and replication, cell
migration, neurodegenerative processes, neuroplasticity,
immune system, hormonal regulation (sex and thyroid
hormones) and second messenger cascades. Predictive
performance was often improved by adding clinical risk
factors and in the extreme percentiles of the score dis-
tribution. However, none of the genetic or genetic-clinical
models showed a significantly better ROC AUC compared
to the model including the clinical risk score only. We
hypothesized two possible scenarios which could make
the genetic predictors useful: (1) in patients with no
clinical risk factors; (2) in patients having genetic scores at
the extremes of the distribution. We preliminary tested
the first hypothesis in GSRD whole testing sample: the
pathway-based model showed AUC of 0.67 (0.54–0.81) in
patients with no clinical risk factors (n= 64) vs. AUC=

0.61 (0.54–0.69) in the whole testing sample. The number
of patients was limited (for this reason we did not explore
this hypothesis in other subsamples), but the result sup-
ports the hypothesis that our genetic predictors perform
slightly worse in patients with clinical risk factors, pre-
sumably because they are largely independent from them
(i.e. genetic factors are not able to predict TRD cases
caused by clinical variables having a distinct genetic or
environmental basis). In line with this, there was no
correlation between the cumulative genetic score (for any
model) and the clinical risk score and genetic models were
not able to predict TRD classification according to the
clinical risk score. We hypothesized that the high impact
of clinical risk factors in GSRD (most patients were
complex cases of MDD, recruited in tertiary health care
centres) may have led to a relative down-weighting of
genetic predictors in the clinical-genetic models (Sup-
plementary Fig. 6), explaining the fact that they did not
show better performance in predicting TRD compared to
the models including only the clinical risk score. We
could not explore the contribution of the individual risk
variables included in the risk score, because we used a
cumulative score aimed to avoid the exclusion of subjects
with partially missing data.
The fact that genetic models developed in patients

treated with 5-HT AD had better AUC point estimates
(Table 2) may be explained by the fact that these patients
had significantly lower clinical risk factors compared to
the others (p= 9.73e–09), since treatment prescription
was naturalistic in GSRD. This means that the different
gene/pathways selected in the whole sample compared to
those selected in patients treated with 5-HT ADs may
reflect their different clinical characteristics rather than
differences due to distinctive biological mechanisms
implicated in response to different drug classes. None of

Table 3 best predictive models of treatment-resistant depression (TRD) vs. response in the replication samples.

Sample Genetic predictors Genetic predictors AUC

(95% CI)

Clinical and genetic predictors

AUC (95% CI)

GENDEP, whole sample (n= 321) Pathways, rare variants 0.54 (0.47–0.60) 0.60 (0.54–0.65)

GENDEP, 5-HT antidepressants (n= 188) Genes, rare and common

variants

0.58 (0.49–0.68) 0.62 (0.53–0.72)

STAR*D, whole sample (n= 807) Genes, rare and common

variants

0.51 (0.46–0.55) 0.55 (0.51–0.59)

STAR*D, 5-HT antidepressants, ≤20 or ≥80

percentiles (n= 266)

Pathways, rare variants 0.59 (0.48–0.69) 0.61 (0.51–0.71)

STAR*D, 5-HT antidepressants, ≤10 or ≥90

percentiles (n= 134)

Pathways, rare variants 0.73 (0.61–0.86) 0.72 (0.58–0.86)

For a detailed overview of all results in the replication samples see Supplementary Table 12. In STAR*D, more extreme percentiles of the genetic predictors were
considered compared to other samples because of the larger sample size (for details see the section “Replication in STAR*D and GENDEP”). 5-HT antidepressants=
serotonergic antidepressants, Cl confidence intervals.
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the analyses performed in the group treated with NA ADs
was significant, a probable consequence of the small size
of this group. In this regard, we also underline that
polypharmacy was frequent in this sample, including
combination and augmentation strategies10, thus our
classification according to the antidepressants pharma-
cology represented a simplified approach.
The second scenario in which genetic predictors may be

more relevant is in subjects with genetic risk scores at the
extremes of the distribution. This case is exemplified by
the clear improvement of prediction in subjects with
genetic scores ≤10 or ≥90 percentiles in STAR*D
(Table 3), the largest available sample in our study, which
allowed to test more extreme percentiles compared to
GSRD and GENDEP (at least the top 5% of the distribu-
tion was suggested to be meaningful for increased risk
when using polygenic risk scores43, but we had no power
for this). The corresponding model was the only one
showing replication of genetic predictors only and
superiority over the clinical risk score, while prediction in
other models showing replication in STAR*D or GENDEP
was driven by the clinical score. Unfortunately, the genetic
data available in the replication samples were poorly
comparable with those available in GSRD (only arrays,
with low coverage of coding regions) and there were also
clinical differences between STAR*D, GENDEP, and
GSRD. For example, patients in STAR*D had very long
depressive episodes of relatively mild severity, while in
GENDEP there were no patients with chronic MDD
according to the standard definition (≥2 years) and they
had on average a lower number of previous episodes
(Supplementary Table 11). Unlike the other samples,
MADRS was not available in STAR*D and equivalent
scores were calculated using the QIDS-C16 scale (Sup-
plementary Methods). The definition of the phenotype
was performed slightly differently in each sample, because
of the differences in study design.
Bearing in mind the discussed limitations, our results

contributed to clarify the genetic factors involved in TRD
and it was the first study to assess the contribution of rare
genetic variants through whole exome sequencing, if we
exclude a very small pilot study performed on 10 sub-
jects9. No individual gene or pathway probably plays a
major role in TRD, thus models including multiple genes/
pathways and able to account for their interactions are
probably the best strategy. Theoretically, pathway-based
models are more suitable to take into account the com-
plex genetic component of antidepressant response
compared to gene-based models and they are expected to
be more replicable, as confirmed by our top replication
results. Our study represents a new approach to the
prediction of treatment resistance in MDD and future
improvements in larger samples may lead to clinical
applications, at least in patients with extreme genetic

scores or those with no clinical risk factors. In patients
having genetic risk for TRD, treatment strategies with
demonstrated higher efficacy (e.g. pharmacotherapy
combined with psychotherapy44) but limited availability
for cost constraints could be implemented as first line
treatment, when these patients first seek treatment and
there are still no clinical signs of severe MDD and no
clinical risk factors for TRD, reducing the proportion of
patients at risk who progresses towards resistance.
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