
 Open access Journal Article DOI:10.1007/S10107-012-0533-Z

A polyhedral approach to the single row facility layout problem — Source link

André Renato Sales Amaral, Adam N. Letchford

Institutions: Universidade Federal do Espírito Santo, Lancaster University

Published on: 01 Oct 2013 - Mathematical Programming (Springer Berlin Heidelberg)

Topics: Heuristic

Related papers:

 On the exact solution of a facility layout problem

 A semidefinite optimization approach for the single-row layout problem with unequal dimensions

 A new lower bound for the single row facility layout problem

Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and
Cutting Planes

 An Exact Approach to the One-Dimensional Facility Layout Problem

Share this paper:

View more about this paper here: https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-
5f98e11ln1

https://typeset.io/
https://www.doi.org/10.1007/S10107-012-0533-Z
https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-5f98e11ln1
https://typeset.io/authors/andre-renato-sales-amaral-51wmdvgf3f
https://typeset.io/authors/adam-n-letchford-sru5dfkqw7
https://typeset.io/institutions/universidade-federal-do-espirito-santo-1tjzkoyh
https://typeset.io/institutions/lancaster-university-ssfvgmrp
https://typeset.io/journals/mathematical-programming-27iihk2z
https://typeset.io/topics/heuristic-1j4coxuz
https://typeset.io/papers/on-the-exact-solution-of-a-facility-layout-problem-2r9r2imdkc
https://typeset.io/papers/a-semidefinite-optimization-approach-for-the-single-row-4bpj3jiktg
https://typeset.io/papers/a-new-lower-bound-for-the-single-row-facility-layout-problem-1a1lz3irti
https://typeset.io/papers/computing-globally-optimal-solutions-for-single-row-layout-49to7n6zez
https://typeset.io/papers/an-exact-approach-to-the-one-dimensional-facility-layout-4a77wairuo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-5f98e11ln1
https://twitter.com/intent/tweet?text=A%20polyhedral%20approach%20to%20the%20single%20row%20facility%20layout%20problem&url=https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-5f98e11ln1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-5f98e11ln1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-5f98e11ln1
https://typeset.io/papers/a-polyhedral-approach-to-the-single-row-facility-layout-5f98e11ln1

A Polyhedral Approach to the

Single Row Facility Layout Problem

André R.S. Amaral∗ Adam N. Letchford†

January 2011

Abstract

The Single Row Facility Layout Problem (SRFLP) is the NP -hard
problem of arranging facilities on a line, while minimizing a weighted
sum of the distances between facility pairs. In this paper, a detailed
polyhedral study of the SRFLP is performed, and several huge classes
of valid and facet-inducing inequalities are derived. Some separation
heuristics are presented, along with a primal heuristic based on multi-
dimensional scaling. Finally, a branch-and-cut algorithm is described
and some encouraging computational results are given.

Keywords: facility layout – polyhedral combinatorics – branch-and-cut

1 Introduction

Suppose n facilities are to be arranged on a straight line. Each facility
i ∈ N = {1, . . . , n} has a positive integer length ℓi. For each {i, j} ⊂ N ,
cij denotes the traffic intensity between facilities i and j. The Single-Row
Facility Layout Problem (SRFLP) asks for a layout of the facilities, i.e., a
permutation � of the setN , that minimizes the weighted sum of the distances
between all facility pairs, i.e., the quantity:

min
�∈Π

∑

{i,j}⊂N

cijd
�
ij , (1)

where Π denotes the set of all layouts and d�ij denotes the distance between
the centroids of facilities i and j in the layout �.

Suppose, for example, that n = 3, (ℓ1, ℓ2, ℓ3) = (3, 5, 6) and (c12, c13, c23) =
(4, 8, 9). An optimal layout �∗ is (3, 1, 2). As shown in Figure 1, this corre-
sponds to the distances d�

∗

12 = 4, d�
∗

13 = 4.5 and d�
∗

23 = 8.5. The cost of �∗ is
(4× 4) + (8× 4.5) + (9× 8.5) = 128.5.

∗Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-
001 Lisboa, Portugal. E-mail: andre.r.s.amaral@ist.utl.pt

†Department of Management Science, Lancaster University, Lancaster LA1 4YX,
United Kingdom. E-mail: A.N.Letchford@lancaster.ac.uk

1

-

6

1 23

d�
∗

12
= 4d�

∗

13
= 4.5

d�
∗

23
= 8.5

-� -�

-�

Figure 1: Optimal layout �∗ for an SRFLP instance with n = 3.

The SRFLP has many important practical applications [15, 23, 26].
Moreover, it contains the well-known Minimum Linear Arrangement Prob-
lem (MinLA) as a special case, obtained when ℓi = 1 for all i ∈ N and
cij ∈ {0, 1} for all {i, j} ⊂ N . (See Dı́az et al. [10] for a survey of MinLA
and other graph layout problems.)

MinLA is NP -hard in the strong sense (Garey et al. [12]), and there-
fore so is the SRFLP. In practice, the SRFLP is similar to the well-known
Quadratic Assignment Problem (QAP), in that instances with n ≥ 20 can
pose a serious challenge. For this reason, many authors have concentrated
on heuristics; see, e.g., [11, 15, 16, 28].

To solve the SRFLP exactly, authors have suggested using branch-and-
bound [26, 27], dynamic programming [17, 23], mixed-integer linear pro-
gramming [1, 2, 16, 20], non-linear programming [16], semidefinite program-
ming [4, 5, 6] and 0-1 linear programming [3]. The leading exact algorithms
at present are the ones of Anjos et al. [5, 6], which are based on semidefinite
programming (SDP), and the one of Amaral [3], which is based on linear
programming (LP).

Perhaps surprisingly, no researchers have performed an in-depth polyhe-
dral study of the SRFLP. In this paper, we perform such a study. As well as
deriving valid inequalities and facets for the problem, we present some ef-
fective exact and heuristic separation algorithms, describe a branch-and-cut
algorithm and present extensive computational results.

The structure of the paper is as follows. In Section 2, we define a family
of polytopes associated with the SRFLP and establish some fundamental
properties of them. It turns out that there is a connection between our
polytopes and the well-known cut polytope, which has been studied in depth
(see Deza & Laurent [9]). In Section 3, we derive five huge (exponentially
large) families of valid inequalities, and provide conditions for them to induce
facets. In Section 4, we describe a branch-and-cut algorithm for the SRFLP,
that uses all of the inequalities presented in Section 3. In Section 5, we
present extensive computational results. The results demonstrate that our
branch-and-cut algorithm can solve instances with n ≤ 30 in reasonable
computing times, and provides tight lower and upper bounds at the root

2

node. Finally, concluding remarks are made in Section 6.
Throughout the paper,

(

a
b

)

denotes the usual binomial term a!
b!(a−b)! and,

for any S ⊆ N , ℓ(S) denotes
∑

i∈S ℓi. Moreover, at several points in the
paper we will find the following polynomial identities useful. They can be
easily proved by either binomial expansion or induction.

Proposition 1 For any subset S ⊆ N we have:

∑

{i,j}⊂S

ℓiℓj =

(

ℓ(S)2 −
∑

i∈S

ℓ2i

)

/2 (2)

∑

{i,j,k}⊂S

ℓiℓjℓk =

(

ℓ(S)3 + 2
∑

i∈S

ℓ3i − 3ℓ(S)
∑

i∈S

ℓ2i

)

/6. (3)

2 Distance Polytopes: Fundamentals

2.1 Definition

For any given positive integer n and vector ℓ ∈ ℤ
n
+, we define the distance

polytope P (n, ℓ) as the convex hull of valid distance vectors. That is:

P (n, ℓ) := conv

{

d ∈ ℝ
(n
2
)

+ : ∃� ∈ Π : dij = d�ij ∀ 1 ≤ i < j ≤ n

}

.

Note that P (n, ℓ) is the convex hull of n!/2 points, since each distance vector
corresponds to two layouts (due to symmetry). Thus, P (n, ℓ) is a bounded
polyhedron, i.e., a polytope. It is however not an integral polytope, since
the distances dij need not be integral (as Figure 1 illustrates).

2.2 Dimension

Next, we show that P (n, ℓ) is not full-dimensional:

Lemma 1 All layouts satisfy the equation

∑

{i,j}⊂N

ℓiℓjdij =
1

6

(

ℓ(N)3 −
∑

i∈N

ℓ3i

)

. (4)

Proof. First, we show that it is satisfied by the identity layout � =
(1, . . . , n). To see this, note that d�ij = (ℓi + ℓj)/2 +

∑j−1
k=i+1 ℓk for all

3

{i, j} ⊂ N , and therefore:

∑

{i,j}⊂N

ℓiℓjd
�
ij =

∑

{i,j}⊂N

ℓiℓj

(

(ℓi + ℓj)/2 +

j−1
∑

k=i+1

ℓk

)

=
1

2

∑

{i,j}⊂N

ℓiℓj(ℓi + ℓj) +
∑

{i,j,k}⊂N

ℓiℓjℓk

=
1

6

(

ℓ(N)3 −
∑

i∈N

ℓ3i

)

.

where the last equation follows from the identity (3). This value is clearly
invariant with respect to permutation. □

The following theorem states that the equation (4) is the only one needed:

Theorem 1 P (n, ℓ) is of dimension
(

n
2

)

− 1, and its affine hull is described
by the implicit equation (4).

Proof. To show that (4) is the only implicit equation (up to scaling by
a constant), we use a standard ‘indirect’ proof. That is, we show that any
implicit equation �Td = � is equivalent to (4). For any two facilities i and
j, let � be any layout such that i and j are in the first two positions, and
let �′ be the layout obtained from � by exchanging facilities i and j. A
comparison of the two layouts shows that

ℓi
∑

k∈N∖{i,j}

�jk = ℓj
∑

k∈N∖{i,j}

�ik (∀{i, j} ⊂ N). (5)

Similarly, for any three facilities i, j and k, let � be any layout in which
the first three positions are occupied by facilities k, i and j, respectively,
and let �′ be the layout obtained from � by exchanging facilities i and j. A
comparison of the two layouts shows that

ℓj�ik + ℓi
∑

p∈N∖{i,j,k}

�jp = ℓi�jk + ℓj
∑

p∈N∖{i,j,k}

�ip (∀{i, j, k} ⊂ N).

Together with (5), this implies

ℓj�ik = ℓi�jk (∀{i, j, k} ⊂ N).

The ratios between all pairs of left hand side coefficients in the equation
�Td = � are now fixed. The equation �Td = � can therefore be converted
into (4) by a suitable scaling. □

4

2.3 Clique inequalities

The following lemma introduces a fundamental class of valid inequalities:

Lemma 2 For all S ⊂ N such that 2 ≤ ∣S∣ < n, the following ‘clique’
inequality is valid for P (n, ℓ):

∑

{i,j}⊂S

ℓiℓjdij ≥
1

6

(

ℓ(N)3 −
∑

i∈N

ℓ3i

)

. (6)

Proof. From the Lemma 1, the inequality (6) is satisfied at equality if
the facilities in S appear consecutively in the layout. If they do not appear
consecutively, the left-hand side of (6) will exceed the right-hand side, since
inserting extra facilities between the existing ones can only increase the
left-hand side. □

We remark that, when ∣S∣ = 2, the clique inequality takes the form ℓiℓjdij ≥
ℓiℓj(ℓi + ℓj)/2, which is equivalent to the lower bound dij ≥ (ℓi + ℓj)/2.

2.4 A connection with the cut cone

Next, we show a connection between P (n, ℓ) and a well-known polyhedron
in combinatorial optimisation: the so-called cut cone (see Deza & Laurent
[9]).

A vector d̄ ∈ {0, 1}(
n

2
) is called a cut vector if there is a set S ⊂ N

such that d̄ij = 1 if and only if i ∈ S and j /∈ S. The cut cone of order n,

which we shall denote by CCn, is the polyhedral cone in ℝ
(n
2
) consisting of

all non-negative linear combinations of cut vectors.

Proposition 2 P (n, ℓ) is contained in CCn.

Proof. Let � ∈ Π be a layout and let d� be the corresponding distance
vector. We will show that d� ∈ CCn. By symmetry, it suffices to prove the
result for the identity layout. For all 1 ≤ i < j ≤ n, we have:

d�ij = (ℓi + ℓj)/2 +

j−1
∑

k=i+1

ℓk

=

j−1
∑

k=i

(ℓk + lk+1)

2
.

Now let d̄(k) for k = 1, . . . , n − 1 be the cut vector obtained by setting
S = {1, . . . , k}. (That is, d̄(k)ij = 1 if and only if i ≤ k < j.) Then

d� =
n−1
∑

k=1

(ℓk + lk+1)

2
d̄(k),

showing that d� is a non-negative linear combination of cut vectors. □

5

This proposition has the following useful corollary:

Corollary 1 If the inequality �Td ≤ 0 is valid for CCn, then it is valid for
P (n, ℓ).

We will use this result in Subsections 3.2 and 3.3.
Note that the proof of Proposition 2 actually tells us a little more: if d is

an extreme point of P (n, ℓ), then it is a non-negative linear combination of
precisely n − 1 distinct cut vectors. We will exploit this fact in Subsection
3.4.

2.5 Zero-lifting

Next, we define an operation that we call zero-lifting:

Definition 1 Let n′ > n ≥ 2, ℓ ∈ ℤ
n
+ and ℓ′ ∈ ℤ

n′

+ be given, and define
N ′ = {1, . . . , n′}. Suppose that the inequality �Td ≥ � is valid for P (n, ℓ).
Moreover, suppose that there exists a set S = {s(1), . . . , s(n)} ⊂ N ′ such
that ℓ′

s(i) = ℓi for all i ∈ N . Then the inequality

∑

{s(i),s(j)}⊂S

�ijds(i),s(j) ≥ � (7)

is said to be obtained from the inequality �Td ≥ � by ‘zero-lifting’.

We will call a valid inequality for P (n, ℓ) zero-liftable if all inequalities
obtained from it by zero-lifting are valid for all suitable polytopes P (n′, ℓ′).
The following lemma gives a necessary and sufficient condition for a valid
inequality to be zero-liftable:

Lemma 3 A valid inequality �Td ≥ � is zero-liftable if and only if
∑

i∈T,j∈N∖T

�ij ≥ 0 (∀T ⊂ N). (8)

Proof. Assume without loss of generality that S = N . Suppose the
condition (8) does not hold for some T . Then the left-hand side of (7) can
be made less than � by choosing n′ sufficiently large, putting the facilities
in T in the first ∣T ∣ positions, and putting the facilities in N ∖ T in the last
n− ∣T ∣ positions. Thus, the inequality is not zero-liftable.

Now suppose the condition (8) holds. Since the original inequality is
valid for P (n, ℓ), any zero-lifted inequality will be satisfied by all layouts
in which the facilities in N appear consecutively. Moreover, inserting extra
facilities between the facilities in N cannot decrease the slack of the zero-
lifted inequality. Thus, the inequality is zero-liftable. □

Now we give a necessary condition for zero-lifting to preserve the prop-
erty of being facet-inducing:

6

Theorem 2 Suppose that an inequality �Td ≥ � is zero-liftable and induces
a facet of P (n, ℓ). Suppose moreover that all zero-liftings of it induce facets
of P (n′, ℓ′) for all n′ > n and all suitable ℓ′ ∈ ℤ

n′

+ . Then

min
∅∕=T⊂N

∑

i∈T,j∈N∖T

�ij = 0. (9)

Proof. From Lemma 3, the left hand side of (9) is non-negative. If it is
positive, we can subtract a suitable positive multiple of the implicit equation
(4) from the inequality �Td ≥ � so that (9) holds. The resulting inequality
induces the same facet of P (n, ℓ) as the original inequality, and is zero-
liftable by Lemma 3. The zero-liftings of the original inequality are weaker
than the zero-liftings of the new inequality, since they can be obtained from
the zero-liftings of the new inequality by adding a positive multiple of the
clique inequality on S. This contradicts the assumption that all zero-liftings
of the original inequality were facet-inducing. □

We do not know if the condition given in Theorem 2 is sufficient as well
as necessary.

3 Valid Inequalities and Facets

In this section, we present various valid inequalities and show that they
induce facets under mild conditions.

3.1 Clique inequalities

First, we consider the clique inequalities (6):

Theorem 3 The clique inequalities (6) induce facets of P (n, ℓ).

Proof. First, suppose that 3 ≤ ∣S∣ ≤ n−3. Suppose the equation �Td = �
is satisfied by all layouts in which the clique inequality holds at equality.
The exchange argument used to prove Theorem 1 shows that:

ℓj�ik = ℓi�jk (∀{i, j, k} ⊂ S)

lp�qr = lq�pr (∀{p, q, r} ⊂ N ∖ S).

Now let � be any layout such that the facilities in S occupy the first ∣S∣
positions. By exchanging the positions of pairs of adjacent facilities in S,
we have:

ℓi
∑

q∈N∖S

�jq = ℓj
∑

q∈N∖S

�iq (∀{i, j} ⊂ S). (10)

By exchanging pairs of facilities in N ∖ S instead, we have:

lq
∑

i∈S

�ip = lp
∑

i∈S

�iq (∀{p, q} ⊂ N ∖ S). (11)

7

Next, for any p ∈ N ∖ S, let � be any layout such that p occupies the first
position and the facilities in S occupy the next ∣S∣ positions. By exchanging
the positions of pairs of adjacent facilities in S, we have:

ℓj�ip+ℓi
∑

q∈N∖(S∪{p})

�jq = ℓi�jp+ℓj
∑

q∈N∖(S∪{p})

�iq (∀{i, j} ⊂ S, ∀p ∈ N∖S).

Together with (10) this implies:

ℓi�jp = ℓj�ip (∀{i, j} ⊂ S, p ∈ N ∖ S). (12)

Putting (11) and (12) together, we have:

ℓilp�ip = ℓjlq�jq (∀{i, j} ⊂ S, {p, q} ⊂ N ∖ S).

By adding a suitable multiple of the implicit equation (4) to the equation
�Td = �, we can assume that:

�ip = 0 (∀i ∈ S, p ∈ N ∖ S).

The left-hand side of the equation �Td = � is now a non-negative linear
combination of the left-hand side of the clique inequality on S and the left-
hand side of the clique inequality on N ∖ S. But it is obvious that the
left-hand side of the clique inequality on N ∖ S can vary when the clique
inequality on S holds at equality. Thus, the weight of the former in the
linear combination must be zero.

The cases in which S ∈ {2, n− 2, n− 1} are similar, but easier. □

An immediate consequence of Theorem 3 is:

Corollary 2 The lower bounds dij ≥ (ℓi + ℓj)/2 induce facets of P (n, ℓ).

Note that the clique inequalities meet the condition (9) given in Theorem
2.

3.2 Hypermetric inequalities

In Subsection 2.4, we showed that valid inequalities for the cut cone CCn

lead to valid inequalities for P (n, ℓ). In this subsection, we consider the
well-known hypermetric inequalities for CCn. They take the form:

∑

{i,j}⊂N

bibjdij ≤ 0 (∀b ∈ ℤ
n : �(b) = 1), (13)

where �(b) denotes
∑

i∈N bi. See [9] for a survey of the literature on hy-
permetric inequalities. We recall that the hypermetric inequalities with

8

b ∈ {0,±1}n are called pure. The pure hypermetric inequalities include the
following well-known triangle inequalities as a special case:

dij − dik − djk ≤ 0 (∀{i, j} ⊂ N, k ∈ N ∖ {i, j}). (14)

Corollary 1 implies that the hypermetric inequalities are valid for P (n, ℓ).
The following proposition states that only the pure ones are of interest:

Proposition 3 A hypermetric inequality (13) induces a non-empty face of
P (n, ℓ) if and only if it is pure.

Proof. Suppose that we are given a vector b ∈ {0,±1}n that defines a pure
hypermetric inequality. By symmetry, we can assume that there exists an
odd integer 1 ≤ p ≤ n such that:

∙ bi = 1 if 1 ≤ i ≤ p and i is odd

∙ bi = −1 if 1 < i < p and i is even

∙ bi = 0 if p < i ≤ n.

The identity layout then satisfies the pure hypermetric inequality at equality.
Therefore, the inequality induces a non-empty face of P (n, ℓ).

We will show later (Proposition 5 in Subsection 3.4) that non-pure hyper-
metric inequalities can be strengthened by decreasing their right-hand side.
Therefore, non-pure hypermetric inequalities do not define a non-empty face
of P (n, ℓ). □

For our next result, we will find it helpful to define S = {i ∈ N : bi = 1}
and T = {i ∈ N : bi = −1}. Note that, in the case of a pure hypermetric
inequality, we have ∣T ∣ = ∣S∣ − 1.

Theorem 4 Pure hypermetric inequalities induce facets of P (n, ℓ) if and
only if ∣S∣+ ∣T ∣ ≤ n− 2.

Proof. For the sake of brevity, we only sketch the proof. First, one shows
that a layout � satisfies the hypermetric inequality at equality if and only
if the facilities in S ‘alternate’ with facilities in T ; that is, if and only if
there exists a numbering s1, . . . , s∣S∣ of the facilities in S and a numbering
t1, . . . , t∣T ∣ of the facilities in T such that �(si) < �(ti) < �(si+1) for i =
1, . . . , ∣S∣.

Next, one shows that, if n = ∣S∣ + ∣T ∣, then every layout satisfying the
hypermetric inequality at equality also satisfies the equations

∑

j∈S∖{i}

dij −
∑

j∈T

dij = ℓ(N ∖ {i})/2 (∀i ∈ S).

9

Then, one shows that, if n = ∣S∣ + ∣T ∣ + 1, then every layout satisfying
the hypermetric inequality at equality also satisfies the equation

∑

j∈S

dij −
∑

j∈T

dij = ℓ(N)/2,

where {i} = N ∖ (S ∪ T).
So suppose that n ≥ ∣S∣+∣T ∣+2 and let the equation �Td = � be satisfied

by all layouts in which the hypermetric inequality holds at equality. Let �
be a layout in which a facility in S occupies the first position, a facility in T
occupies the fourth position, and facilities in N ∖ (S ∪T) occupy the second
and third positions. Just as in previous proofs, exchanges of facilities in the
first three positions imply:

ℓq�ip = ℓp�iq (∀i ∈ S, {p, q} ⊂ N ∖ (S ∪ T)).

Similarly, exchanges of facilities in the second to fourth positions imply:

ℓq�ip = ℓp�iq (∀i ∈ T, {p, q} ⊂ N ∖ (S ∪ T)).

These equations fix the ratios between all pairs of � coefficients apart from
those involving only facilities in S ∪ T . By adding or subtracting a suit-
able multiple of the implicit equation (4), we can assume that all of the �
coefficients are zero apart from those involving facilities in S ∪ T .

Finally, a series of further exchange arguments shows that:

�ij = −�ik (∀{i, j} ⊂ S, k ∈ T)

�ij = −�ik (∀{i, j} ⊂ T, k ∈ S).

Thus, the equation �Td = � is equivalent to the pure hypermetric inequality
(in equation form). □

Corollary 3 The triangle inequalities (14) induce facets of P (n, ℓ) if and
only if n ≥ 5.

Note that the pure hypermetric inequalities also meet the condition (9)
given in Theorem 2.

3.3 Strengthened pure negative-type (SPN) inequalities

It is known [9] that the inequalities (13) remain valid for the cut cone when
�(b) = 0, in which case they are called negative-type inequalities. Negative-
type inequalities do not define facets of the cut cone, and therefore do not
induce facets of P (n, ℓ) either. Interestingly, however, we can obtain facets
of P (n, ℓ) by taking pure negative-type inequalities and adjusting the right-
hand side.

10

As before, we will find it helpful to define S = {i ∈ N : bi = 1} and
T = {i ∈ N : bi = −1}. Then, a pure negative-type inequality can be
written in the form:

∑

i∈S,j∈T

dij −
∑

{i,j}⊂S

dij −
∑

{i,j}⊂T

dij ≥ 0.

Moreover, we have ∣T ∣ = ∣S∣ in the pure case.
We are now ready to present a strengthened version of the pure negative-

type inequalities:

Proposition 4 For all S ⊂ N and all T ⊂ N ∖ S with ∣S∣ = ∣T ∣, the fol-
lowing ‘strengthened pure negative-type’ (SPN) inequality is valid for P (n, ℓ)
and induces a non-empty face:

∑

i∈S,j∈T

dij −
∑

{i,j}⊂S

dij −
∑

{i,j}⊂T

dij ≥ (ℓ(S) + ℓ(T))/2. (15)

Proof. Since the inequalities (15) satisfy the condition (9) given in The-
orem 2, we can assume that S ∪ T = N . Let S and T be given, and let
q = ∣S∣ = ∣T ∣ = n/2. Moreover, let � be a given layout, and let d∗ be the
corresponding distance vector. For a given i ∈ N , let s(i) and t(i) be the
number of facilities in S and T , respectively, that lie to the left of facility i
in the layout �. When i ∈ S, the number of facilities in S and T lying to the
right of facility i is q − s(i)− 1 and q − t(i), respectively. The contribution
of ℓi to the left-hand side of (15), computed with respect to d∗, can then be
shown to equal:

1

2
+ (s(i)− t(i))(s(i)− t(i) + 1).

Similarly, when i ∈ T , the contribution of ℓi to the left-hand side can be
shown to equal:

1

2
+ (s(i)− t(i))(s(i)− t(i)− 1).

Thus, the left-hand side of (15) is equal to:

1

2
(ℓ(S)+ℓ(T))+

∑

i∈S

(s(i)−t(i))(s(i)−t(i)+1)ℓi+
∑

i∈T

(s(i)−t(i))(s(i)−t(i)−1)ℓi.

(16)
Since the s(i) and t(i) are integers, the two summation terms in (16) are
non-negative. This proves validity. Moreover, the two summation terms
are equal to zero when the facilities in S occupy the odd positions and the
facilities in T occupy the even positions (or vice-versa). This shows that the
SPN inequality induces a non-empty face of P (n, ℓ). □

It turns out that all SPN inequalities induce facets.

11

Theorem 5 The SPN inequalities always induce facets of P (n, ℓ).

Proof. For the sake of brevity, we only sketch the proof. First, one
shows that a layout satisfies the SPN inequality at equality if and only if
there exists a numbering s1, . . . , s∣S∣ of the facilities in S and a numbering
t1, . . . , t∣T ∣ of the facilities in T such that, for i = 1, . . . , ∣S∣, facility si is
adjacent to facility ti in the layout. Then, as usual, suppose the equation
�Td = � is satisfied by all layouts in which the SPN inequality holds at
equality. Similar exchange arguments to those used in previous proofs show
the following:

lq�ip = lp�iq (∀i ∈ S, {p, q} ⊂ N ∖ (S ∪ T))

lq�ip = lp�iq (∀i ∈ T, {p, q} ⊂ N ∖ (S ∪ T)).

Just as for the pure hypermetric inequalities, we can then assume that all
of the � coefficients are zero apart from those involving facilities in S ∪ T .

Finally, a series of further exchange arguments shows that:

�ij = −�ik (∀{i, j} ⊂ S, k ∈ T)

�ij = −�ik (∀{i, j} ⊂ T, k ∈ S).

and therefore the equation �Td = � is equivalent to the SPN inequality (in
equation form). □

Note that the SPN inequalities reduce to lower bounds of the form dij ≥
(ℓi + ℓj)/2 when ∣S∣ = ∣T ∣ = 1. Thus, the lower bounds are a special case of
both clique and SPN inequalities.

3.4 Rounded positive semidefinite inequalities

At the end of Subsection 2.4, it was noted that feasible d vectors are a non-
negative linear combination of n − 1 distinct cut vectors. This fact is now
exploited to derive a class of inequalities that includes the pure hypermetric
and SPN inequalities as a special case.

Our starting point is the well-known fact that every cut vector satisfies
the following valid inequalities [9]:

∑

{i,j}⊂N

bibjdij ≤ �(b)2/4 (∀b ∈ ℝ
n).

These are sometimes called positive semidefinite (psd) inequalities, because
they define the feasible region of the well-known semidefinite programming
relaxation of the max-cut problem. Moreover, when b is integral and �(b) is
odd, the right-hand side of the psd inequality is fractional, and can therefore
be rounded down to an integer while maintaining validity (see, e.g., [7, 9]).

The following proposition shows that there exists an analogous class of
rounded psd inequalities for the SRFLP:

12

Proposition 5 The following ‘rounded psd’ inequalities are valid for P (n, ℓ):

∑

{i,j}⊂N

bibjdij ≤
1

2

∑

i∈N

⌊

�(b)2 − b2i
2

⌋

ℓi (∀b ∈ ℤ
n). (17)

Proof. Let � be a given layout, and let d∗ be the corresponding distance
vector. For a given i ∈ N , let B(i) be the sum of the b coefficients over all
facilities to the left of i in the layout. Note that the sum of the b coefficients
over the facilities to the right of i in the layout must be �(b) − B(i) − bi.
The contribution of ℓi to the left-hand side of (17), computed with respect
to d∗, is therefore:

B(i)(�(b)−B(i)− bi) +
1

2
bi(�(b)− bi).

This quantity is maximised when B(i) is equal to ⌊(�(b)− bi)/2⌋, in which
case the contribution of ℓi to the left-hand side becomes

⌊(�(b)− bi)/2⌋⌈(�(b)− bi)/2⌉+
1

2
bi(�(b)− bi).

With a little work, this can be re-written as:

1

2

⌊

�(b)2 − b2i
2

⌋

.

Multiplying this quantity by ℓi, and summing over all i ∈ N , yields the
desired right-hand side. □

Notice that the rounded psd inequalities (17) reduce to pure hypermetric
inequalities when b ∈ {0,±1}n and �(b) = 1, and to SPN inequalities when
b ∈ {0,±1}n and �(b) = 0. They therefore induce facets under certain
conditions. On the other hand, the rounded psd inequalities do not in
general meet the condition (9) of Theorem 2, and therefore they do not
always induce facets. Nevertheless, we have found that they make useful
cutting planes.

3.5 Star inequalities

Before introducing our last class of inequalities, we will need some additional
notation. For any S ⊂ N , we define the following quantity:

SSP (S) = max

{

∑

i∈S

ℓixi :
∑

i∈S

ℓixi ≤ l(S)/2, x ∈ {0, 1}∣S∣

}

.

(We denote it by ‘SSP(S)’, because it is obtained by solving a subset-sum
problem.) We also write (S) := ℓ(S) − 2 SSP(S). For example, if S =

13

{1, 2, 3} and (ℓ1, ℓ2, ℓ3) = (3, 5, 6), we have ℓ(S) = 14, SSP(S) = 6 and
(S) = 2.

The quantity (S) is related to the notion of the gap of an integer se-
quence, defined in Laurent & Poljak [18]. Computing SSP(S), and there-
fore (S), is NP -hard in the weak sense, but can be performed in pseudo-
polynomial time by dynamic programming.

We have the following result:

Proposition 6 For any i ∈ N and any S ⊆ N ∖ {i}, the following ‘star’
inequality is valid for P (n, ℓ):

∑

j∈S

ℓjdij ≥
1

4

(

ℓ(S)2 + (S)2
)

+
1

2
ℓiℓ(S). (18)

Proof. Let SL (respectively, SR) be the set of facilities to the left (right) of
facility i in a layout. One can show (e.g., by induction) that the contribution
of the facilities in SL to the left hand side of (18) is at least ℓ(SL)ℓ(SL∪{i}/2.
An analogous result holds for the facilities in SR. The left-hand side of (18)
is therefore at least

ℓiℓ(S) +
1

2

(

ℓ(SL)
2 + ℓ(SR)

2
)

.

This quantity is minimised when ℓ(SL) =SSP(S) and ℓ(SR) = l(S)−SSP(S)
(or vice-versa), in which case it reduces to the right-hand side of (18). □

Note that, when ∣S∣ = 1, the star inequalities reduce to (facet-inducing)
lower-bounds of the form dij ≥ (ℓi + ℓj)/2. In general, however, the star
inequalities do not induce facets, since they do not meet the condition (9) of
Theorem 2. Nevertheless, they can be shown (with a little work) to induce
faces of dimension at least

(

n−1
2

)

− ∣S∣2/2. In any case, we found them
to be useful in our branch-and-cut algorithm. We leave to future research
the problem of strengthening the star inequalities in order to make them
facet-defining.

Observe that, in the special case of MinLA, the star inequalities reduce
to:

∑

j∈S

dij ≥
⌊

(∣S∣ − 1)2/4
⌋

(i ∈ N,S ⊆ N ∖ {i}). (19)

These validity of these inequalities for MinLA was observed by Liu & Van-
nelli [19].

4 A Branch-and-Cut Algorithm

In this section, we describe a branch-and-cut algorithm that uses the in-
equalities that we described in the previous section. We discuss separation
in Subsection 4.1, branching in Subsection 4.2, the primal heuristic in Sub-
section 4.3, and other minor considerations in Subsection 4.4.

14

4.1 Separation

The separation problem for a given class of valid inequalities is this: given

n, ℓ, and a vector d∗ ∈ ℝ
(n
2
), either find an inequality in that class violated

by d∗, or prove that none exists [13]. Separation algorithms, either exact or
heuristic, are an essential component of branch-and-cut algorithms. We now
briefly describe our separation algorithms for various classes of inequalities.

Clique inequalities

We conjecture that the separation problem for the clique inequalities (6) is
NP -hard. Therefore, we devised a simple greedy heuristic. The heuristic
works by taking a previously-generated clique inequality (which could be a
‘mere’ lower bound of the form dij ≥ (ℓi + ℓj)/2), and iteratively inserting
facilities into the set S in a greedy manner, until either a violated inequality
is found or ∣S∣ = n− 1. This procedure is applied to every clique inequality
in the LP whose slack is small (less than 0.1).

If this heuristic is implemented in a naive way, it takes O(n3) time per
source inequality. With appropriate data structures, however, it can be
implemented so that it takes only O(n2) time per source inequality. We
omit details, for the sake of brevity.

Triangle inequalities

The separation problem for the triangle inequalities (14) can be solved in
O(n3) time by brute-force enumeration. If this is done in a naive way,
however, a huge number of violated inequalities can be generated, which
can lead to memory problems in the LP solver. For this reason, we used the
following routine:

For each pair {i, j} of facilities
Find the facility k ∈ N ∖ {i, j} that minimises d∗ik + d∗jk.
If the inequality (14) is violated, output it.

This routine outputs at most
(

n
2

)

inequalities, which turned out to be much
more manageable.

A similar procedure can be used to detect violated SPN inequalities with
∣S∣ = ∣T ∣ = 2, in O(n4) time.

Rounded psd inequalities

Recall that the rounded psd inequalities (17) include the pure hypermetric
and SPN inequalities as special cases. We therefore devised a separation
heuristic for the rounded psd inequalities. The heuristic simply takes a
previously-generated rounded psd inequality (which could be a ‘mere’ trian-
gle inequality or an SPN inequality with ∣S∣ = ∣T ∣ = 2), and checks whether

15

the associated b vector can be adjusted in order to obtain a violated rounded
psd inequality. The adjustments considered are:

∙ incrementing bi for some i ∈ N ,

∙ decrementing bi for some i ∈ N ,

∙ simultaneously incrementing bi for some i ∈ N and decrementing bj
for some j ∈ N ∖ {i}.

If this heuristic is implemented in a naive way, it takes O(n4) time per
source inequality. With appropriate data structures, however, it can be
implemented so that it takes only O(n2) time per source inequality. As
before, we omit details for the sake of brevity.

Star inequalities

Finally, we consider the star inequalities (18). Since computing the right-
hand side of these inequalities is already NP -hard, it is certain that the
separation problem for them is also NP -hard. Consider, however, the fol-
lowing ‘weak star’ inequalities:

∑

j∈S∖{i}

ℓjdij ≥
1

4
l(S)2 −

1

2

∑

j∈S

l2j (i ∈ N,S ⊆ N ∖ {i}) (20)

It turns out that the separation problem for these weak star inequalities
can be solved exactly in polynomial time. We write the inequalities in the
following alternative form:

∑

j∈S

(

ℓjdij +
ℓ2j
4

)

−
∑

{j,k}⊂S

(

ℓjℓk
2

)

≥ 0 (i ∈ N, S ⊆ N ∖ {i}).

Now, let i be fixed, and let yj , for j ∈ N ∖ {i}, be a 0-1 variable taking
the value 1 if and only if j ∈ S. Clearly, finding the set S ⊂ N ∖ {i} that
maximises the violation of the weak star inequality amounts to minimising:

∑

j∈N∖{i}

(

ℓjd
∗
ij +

ℓ2j
4

)

yj −
∑

{j,k}⊂N∖{i}

(

ℓjℓk
2

)

yjyk.

This is an unconstrained quadratic program in the binary variables yj , with
non-positive quadratic terms. It is well-known (e.g., Picard & Ratliff [24])
that such problems can be solved in O(n3) time via a max-flow computation.

Our separation heuristic for star inequalities is therefore as follows: for
each i ∈ N in turn, run the exact separation algorithm for weak star inequal-
ities. If a violated weak star inequality is found, solve a subset-sum problem
to compute (S), convert the weak star inequality into a star inequality, and
check for violation. All violated inequalities found (if any) are added to the
LP.

16

4.2 Branching rule

At this stage, it is worth pointing out that there is no known formulation of
the SRFLP that involves only the dij variables. If one introduces additional
0-1 variables, and constraints linking them to the dij variables, one can easily
formulate the SRFLP as a mixed 0-1 LP [1, 2, 16, 20]. Here, however, we
have decided to avoid the use of additional variables. This means that we
have to use a specialised branching rule.

After some experimentation, we settled on the following branching rule.
We first sort the facilities in decreasing order of length, and impose that
facility 1 is to the left of facility 2 in the layout. The root node is then
represented by the permutation {1, 2}. A node at depth p in the branch-
and-bound tree is represented by a permutation of {1, . . . , p + 2}. At that
node, we require the first p+ 2 facilities to appear in the given order in the
layout. To ensure this, we add equations to the LP.

For example, suppose a node at depth 1 is represented by the permu-
tation 1 − 2 − 3. This means that facility 1 must be to the left of facility
2, which in turn must be to the left of facility 3. Therefore, the triangle
inequality d12+ d23− d13 ≥ 0 must hold at equality. Thus, at that node, we
add the equation d12 + d23 − d13 = 0 to the LP.

Now suppose that a child node at depth 2 is represented by the permu-
tation 1− 4− 2− 3. This means that facility 1 must be to the left of facility
4, and facility 4 must be to the left of facility 2. To ensure this, we change
an additional two triangle inequalities to equations:

d14 + d24 − d12 = 0

d23 + d24 − d34 = 0.

There is no need to also impose that facility 4 lies between facilities 1 and
3, since this is implied by the other equations at that node.

In general, we impose (p − 1)(p − 2)/2 equations to fix the order of p
facilities.

4.3 Primal heuristic

In this subsection, we describe a primal heuristic for the SRFLP, which takes
an LP solution vector d∗ and produces a feasible layout.

The heuristic is based on the following observations:

∙ For any {i, j} ⊂ N , the value d∗ij can be interpreted as an estimate of
the optimal distance between the centroids of facilities i and j.

∙ In a feasible solution to the SRFLP, the centroids of the facilities are
points in the real line ℝ.

∙ We can assume that d∗ satisfies all triangle inequalities, and therefore
d∗ defines a metric on the set N .

17

This is exactly the kind of situation in which statisticians useMulti-Dimensional
Scaling (MDS). So, we decided to feed d∗ into the classical MDS procedure
of Torgerson [29]. This procedure involves the construction of a certain n×n
matrix, followed by a single eigenvalue computation. It is extremely fast in
practice.

The MDS procedure produces a placement of the centroids in the real
line. This placement need not correspond to a feasible layout, since the
facilities themselves may overlap. To fix this, it suffices simply to use the
ordering of the centroids, rather than their absolute positions.

In our experience, the layouts obtained using MDS are rather good.
Nevertheless, in many cases they can be improved further by applying local
search. We therefore use a simple 2-opt procedure, based on iteratively
swapping pairs of facilities. The bounds obtained turn out to be remarkably
tight, as shown in the next section.

4.4 Other ingredients

We include the following constraints in the initial LP relaxation:

∙ the implicit equation (4),

∙ the lower bounds dij ≥ (ℓi + ℓj)/2 (which are handled implicitly with
the bounded version of the simplex method),

∙ for each i ∈ N , the clique inequality that has S = N ∖ {i}

∙ for each i ∈ N , the star inequality that has S = N ∖ {i} and, if it is
different, the star inequality that has S = {j ∈ N ∖ {i} : cij > 0}.

We remark that the clique inequalities with S = N ∖ {i} can be re-written,
using the implicit equation (4), to take the following simple form:

∑

j∈S

ℓjdij ≤ ℓ(N)ℓ(S)/2.

As a result, the initial LP contains only O(n2) non-zero constraint coeffi-
cients. It can therefore can be solved very quickly by primal simplex.

The separation routines are called in the following order:

1. exact separation for triangle inequalities

2. heuristic separation for clique inequalities

3. heuristic separation for rounded psd inequalities

4. heuristic separation for star inequalities.

5. exact separation for SPN inequalities with ∣S∣ = ∣T ∣ = 2.

18

So, for example, clique separation is called only if no violated triangle in-
equalities can be found. (We leave star and SPN separation to the end
because they are rather time-consuming, taking O(n4) time each.)

The separation routines and the primal heuristic are called at every node
of the branch-and-cut tree. A node is fathomed if its lower bound exceeds
the best upper bound, or if the LP solution represents a feasible layout.
(One can easily check in O(n2) time if this is the case.)

5 Computational Experiments

In this section, we report the results of some computational experiments.

5.1 Cutting planes only

First, we report results obtained using cutting planes only, without any
branching. For these experiments, the LPs were solved with the CPLEX
12.1 callable library on a 2.5 GHz Pentium Dual Core PC, with 2GB of
RAM, under Windows Vista.

We began by testing the cutting-plane algorithm on 9 ‘classical’ instances
from the literature (see Table 1). The ‘S’ instances are due to Simmons [26].
The two ‘H’ instances were derived by Heragu & Kusiak [15], by modifying
the famous instances of the Quadratic Assignment Problem (QAP) due to
Nugent et al. [21].

The results are shown in Table 1. The first two columns show the in-
stance name and the optimal solution value. (The optimal solutions for the
‘S’ instances were computed by Amaral [2], whereas those for the two ‘H’ in-
stances were found by Anjos & Vannelli [5]). The next two columns show the
lower bound when the cutting-plane algorithm terminates, and the upper
bound obtained with our multi-dimensional scaling heuristic. Bounds that
are optimal are shown in bold font. The next two columns show the per-
centage gap between the lower bound and the optimum (gap1), and between
the upper bound and the optimum (gap2). The final two columns show the
number of cutting-plane iterations and the time taken by the cutting-plane
algorithm (in seconds).

Next, we ran the algorithm on 8 other instances of Heragu & Kusiak [15],
which have a so-called ‘clearance requirement’ of 0.01 length units between
each pair of consecutive facilities. We call these ‘C’ instances in Table 2. We
also tested the algorithm on 10 newer instances created by Anjos & Vannelli
[5], which were again based on the Nugent et al. QAP instances. We call
these ‘N’ instances in Table 3. The optimal solutions for the ‘C’ and ‘N’
instances were also presented in [5].

It can be seen that the gap between the lower bound and the optimum
is below 3.5% in all cases, and in most cases it is much smaller. In fact, our

19

Inst. Opt. LB UB %gap1 %gap2 Iter. Time (s)

S5 151.0 151.0 151.0 0.00 0.00 8 0.051
S8 801.0 797.6 801.0 0.43 0.00 20 0.205

S8H 2324.5 2324.5 2324.5 0.00 0.00 17 0.101
S9 2469.5 2469.5 2469.5 0.00 0.00 15 0.126

S9H 4695.5 4664.2 4695.5 0.67 0.00 26 0.242
S10 2781.5 2778.2 2781.5 0.12 0.00 25 0.327
S11 6933.5 6886.8 6933.5 0.67 0.00 34 0.483
H20 15549.0 15174.6 15549.0 2.41 0.00 91 8.752
H30 44965.0 44136.7 45158.0 1.84 0.43 127 58.968

Table 1: Cutting-plane results for 9 ‘classical’ SRFLP instances.

Inst. Opt. LB UB %gap1 %gap2 Iter. Time (s)

C5 1.100 1.100 1.100 0.00 0.00 5 0.031
C6 1.990 1.990 1.990 0.00 0.00 6 0.047
C7 4.730 4.678 4.730 1.09 0.00 10 0.063
C8 6.295 6.245 6.295 0.79 0.00 12 0.078

C12 23.365 22.670 23.395 2.98 0.13 37 0.796
C15 44.600 43.981 44.600 1.39 0.00 52 2.325
C20 119.710 117.239 119.990 2.06 0.23 99 10.125
C30 334.870 326.663 336.080 2.45 0.36 138 69.124

Table 2: Cutting-plane results for 8 SRFLP instances with clearance re-
quirement.

Inst. Opt. LB UB %gap1 %gap2 Iter. Time (s)

N25-1 4618.0 4534.4 4618.0 1.81 0.00 112 32.744
N25-2 37166.5 35869.6 37449.5 3.49 0.76 126 29.094
N25-3 24301.0 23653.0 24466.0 2.67 0.68 141 33.010
N25-4 48291.5 46681.6 48537.5 3.33 0.51 137 34.991
N25-5 15623.0 15107.4 15725.0 3.30 0.65 186 47.206
N30-1 8247.0 8134.6 8267.0 1.36 0.24 143 105.020
N30-2 21582.5 21226.8 21754.5 1.65 0.80 139 77.891
N30-3 45449.0 44239.8 45522.0 2.66 0.16 174 86.019
N30-4 56873.5 56000.4 56904.5 1.54 0.05 167 88.936
N30-5 115268.0 113039.0 115304.0 1.93 0.03 230 116.064

Table 3: Cutting-plane results for 10 newer SRFLP instances.

20

Inst. Nodes Time (s) Inst. Nodes Time (s) Inst. Nodes Time (s)

S5 1 0.061 C5 1 0.047 N25-1 27619 26384
S8 13 0.466 C6 1 0.062 N25-2 1640 2315.4
S8H 1 0.114 C7 19 0.266 N25-3 7207 5141.2
S9 1 0.135 C8 4 0.141 N25-4 2099 2373.9
S9H 50 2.376 C12 63 3.978 N25-5 2860 4689.5
S10 4 0.414 C15 144 9.594 N30-1 61716 122451
S11 4 0.674 C20 865 312.45 N30-2 7397 14213
H20 251 142.13 C30 28158 64183 N30-3 25508 47292
H30 131885 101269 — — — N30-4 2054 3500.3
— — — — — — N30-5 18188 47031

Table 4: Branch-and-cut results for the SRFLP instances.

lower bounds are very similar in quality to the ones obtained using the SDP-
based approach of Anjos et al. [4]. The only approaches in the literature
that give stronger bounds are the ones of [3, 5]; but for those, the running
times are much higher.

It is also interesting to observe that the multi-dimensional scaling heuris-
tic gives remarkably tight upper bounds. Indeed, the average gap between
the upper bound and the optimum is only 0.19%, the maximum gap is only
0.80%, and the heuristic solution is optimal in 14 cases out of 27.

5.2 Branch-and-cut

Now, we move on to the results obtained with the full branch-and-cut al-
gorithm. Table 4 shows, for each instance, the instance name, the number
of branch-and-cut nodes and the total time taken to solve the instance to
proven optimality (in seconds).

As can be seen, the algorithm is capable of solving all of the instances
using reasonable computational resources. The running times are very good
when n ≤ 20, but rather excessive for larger values of n. We remark that
the optimal solution was typically found very early on. The remainder of
the time (over 99%) was spent proving optimality. Moreover, the bottleneck
in all cases was the time taken by the LP solver, rather than the separation
time. This is probably due to the fact that some our inequalities (namely,
the rounded psd and clique inequalities) can be rather dense.

5.3 Experiments with large instances

Finally, we report some results obtained when applying our method to some
much larger instances. For these experiments, we used a slightly more pow-
erful Intel Core 2 Duo 3.33GHz computer with 3Gb RAM. Moreover, since
solving the LP at the root node is already a challenge for the instances
considered, we report results only for the root node.

21

Inst. nodes edges UB LB1 LB2 LB3 Iter. Time (h)

gd95c 62 144 506 292 443 471.5 448 9.96
gd96c 65 125 519 241 402 463.5 298 4.60

Table 5: Cutting-plane results for 2 MinLA instances.

Inst. ℓ-range c-range LB UB %gap Iter.

1 [7, 23] [0, 100] 139045719 144331884.5 3.66 96
2 [5, 14] [0, 100] 82676930 86065390.0 3.94 102
3 [3, 7] [0, 5] 2155583 2234803.5 3.54 97

Table 6: Cutting-plane results for 3 SRFLP instances with n = 110, with
time limit of 2.5 days.

First, we experimented with two MinLA instances, taken from Petit [22].
In Table 5 we report the following for each instance: the name, the number of
nodes and edges, the best known upper bound (taken from Rodriguez-Tello
et al. [25]), the best known combinatorial lower bound (from Petit [22]), the
lower bound from the cutting-plane algorithm of Caprara et al. [8], the lower
bound from our cutting-plane algorithm, the number of iterations, and the
total time in hours.

It is apparent that our cutting planes close around half of the gap be-
tween the previously best-known lower bounds and the best-known upper
bounds. On the other hand, the running times are relatively large.

Finally, to test the limits of our algorithm, we created three large-scale
SRFLP instances with n = 110. These were created by taking lengths
ℓi randomly from a uniform distribution, and taking costs cij randomly
from another uniform distribution. Table 6 displays the following for each
instance: the instance number, the range of the ℓi distribution, the range of
the cij distribution, the lower bound at the end of the cutting-plane phase,
the upper bound obtained from our primal heuristic, the percentage gap
between the lower and upper bounds, and the number of iterations. A time
limit of 2.5 days was imposed.

We see that the percentage gaps were between 3 and 4 percent. We
remark that similar percentage gaps were obtained in [6] for n = 100, but
only by running their SDP-based algorithm for over a week per instance on
a comparable machine.

22

6 Concluding Remarks

We have performed the first ever polyhedral study of the SRFLP, deriving
several huge classes of valid inequalities, and giving conditions for them to
induce facets. Our cutting planes yield excellent lower and upper bounds
very quickly for instances with n ≤ 30 or so, but computing times can be
quite long for larger instances. The full branch-and-cut algorithm is capable
of solving instances with n ≤ 30 to proven optimality, but suffers from
excessive time and memory requirements for larger values of n.

In our view, these results are rather promising and merit further research.
One obvious line of research would simply be the derivation of additional
facet-inducing inequalities and separation algorithms. A more interesting
possibility would be to apply our methodology to other similar facility lay-
out problems, such as the problems of locating facilities on a circle or on a
rectangular grid. Finally, we believe that a more detailed study of MinLA,
which is an important special case of the SRFLP, would also be very worth-
while.

Acknowledgement: The research of the first author was supported by
CNPq-Brazil Grant 500212/02-3. The research of the second author was
supported by the Engineering and Physical Sciences Research Council under
grant EP/D072662/1. The authors are grateful to an anonymous referee for
helpful comments on an earlier version of the paper.

References

[1] Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur.
J. Opl Res. 173, 508–518 (2006)

[2] Amaral, A.R.S.: An exact approach for the one-dimensional facility
layout problem. Oper. Res. 56, 1026–1033 (2008)

[3] Amaral, A.R.S.: A new lower bound for the single row facility layout
problem. Discr. Appl. Math. 157, 183–190 (2009)

[4] Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization
approach for the single-row layout problem with unequal dimensions.
Discr. Opt. 2, 113–122 (2005)

[5] Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for
single-row layout problems using semidefinite programming and cutting
planes. INFORMS J. Comput. 20, 611–617 (2008)

[6] Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large
single-row facility layout problems. Optim. Meth. Soft. 24, 805–817
(2009)

23

[7] Avis, D., Umemoto, J.: Stronger linear programming relaxations for
max-cut. Math. Program. 97, 451–469 (2003)

[8] Caprara, A., Letchford, A.N., Salazar, J.J.: Decorous lower bounds for
minimum linear arrangement. INFORMS J. Comput., to appear.

[9] Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Springer,
New York (1997)

[10] Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM
Computing Surveys 34, 313–356 (2002)

[11] Djellab, H., Gourgand, M.: A new heuristic procedure for the single-
row facility layout problem. Int. J. Comp. Integrated Manufacturing
14, 270–280 (2001)

[12] Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP -
complete graph problems. Theor. Comp. Sci. 1, 237–267 (1976)

[13] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and
Combinatorial Optimization. Springer, New York (1988)

[14] Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidef-
inite programming and cutting planes. Math. Program. 82, 291–315
(1998)

[15] Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufac-
turing systems. Oper. Res. 36, 258–268 (1988)

[16] Heragu, S.S., Kusiak, A.: Efficient models for the facility layout prob-
lem. Eur. J. Opl Res. 53, 1–13 (1991)

[17] Karp, R.M., Held, M.: Finite-state processes and dynamic program-
ming. SIAM J. Appl. Math. 15, 693–718 (1967)

[18] Laurent, M., Poljak, S.: Gap inequalities for the cut polytope. SIAM
J. Matrix Anal. 17, 530-547 (1996)

[19] W. Liu, A. Vannelli: Generating lower bounds for the linear arrange-
ment problem. Discr. Appl. Math. 59: 137–151 (1995)

[20] Love, R.F., Wong, J.Y.: On solving a one-dimensional allocation prob-
lem with integer programming. INFOR 14, 139–143 (1976)

[21] Nugent, C.E., Vollmann, T.E., Ruml, J.: An experimental comparison
of techniques for the assignment of facilities to locations. Oper. Res.
16, 150–173 (1968)

[22] Petit, J.: Experiments on the minimum linear arrangement problem. J.
Experimental Algorithmics 8, article 2.3 (2003)

24

[23] Picard, J.-C., Queyranne, M.: On the one-dimensional space allocation
problem. Oper. Res. 29, 371–391 (1981)

[24] Picard, J.-C., Ratliff, H.: Minimum cuts and related problems. Net-
works 5, 357-370 (1975)

[25] Rodriguez-Tello, E., Hao, J.-K., Torres-Jimenez, J.: An effective two-
stage simulated annealing algorithm for the minimum linear arrange-
ment problem. Comp. & Oper. Res. 35, 3331–3346 (2008)

[26] Simmons, D.M.: One-dimensional space allocation: an ordering algo-
rithm. Oper. Res. 17, 812–826 (1969)

[27] Simmons, D.M.: A further note on one-dimensional space allocation.
Oper. Res. 19, 249 (1971)

[28] Solimanpur, M., Vrat, P., Shankar, R.: An ant algorithm for the single
row layout problem in flexible manufacturing systems. Comp. & Oper.
Res. 32, 583–598 (2005)

[29] Torgerson, W.S.: Multidimensional scaling I: theory and method. Psy-
chometrika 17, 401–409 (1952)

25

