
Digital Object Identifier (DOI) 10.1007/s10107-005-0581-8

Math. Program., Ser. B 103, 225–249 (2005)

Mohit Tawarmalani · Nikolaos V. Sahinidis

A polyhedral branch-and-cut approach to global optimization�

Received: June 19, 2004 / Accepted: November 19, 2004
Published online: May 3, 2005 – © Springer-Verlag 2005

Abstract. A variety of nonlinear, including semidefinite, relaxations have been developed in recent years for
nonconvex optimization problems. Their potential can be realized only if they can be solved with sufficient
speed and reliability. Unfortunately, state-of-the-art nonlinear programming codes are significantly slower and
numerically unstable compared to linear programming software.

In this paper, we facilitate the reliable use of nonlinear convex relaxations in global optimization via
a polyhedral branch-and-cut approach. Our algorithm exploits convexity, either identified automatically or
supplied through a suitable modeling language construct, in order to generate polyhedral cutting planes and
relaxations for multivariate nonconvex problems. We prove that, if the convexity of a univariate or multivariate
function is apparent by decomposing it into convex subexpressions, our relaxation constructor automatically
exploits this convexity in a manner that is much superior to developing polyhedral outer approximators for the
original function. The convexity of functional expressions that are composed to form nonconvex expressions
is also automatically exploited.

Root-node relaxations are computed for 87 problems from globallib and minlplib, and detailed
computational results are presented for globally solving 26 of these problems with BARON 7.2, which imple-
ments the proposed techniques. The use of cutting planes for these problems reduces root-node relaxation gaps
by up to 100% and expedites the solution process, often by several orders of magnitude.

Key words. Mixed-integer nonlinear programming – Outer approximation – Convexification – Factorable
programming – Convexity identification

1. Introduction

Current implementations of local search methods for nonlinear programming problems
are often efficient in practice and thus highly desirable for finding good feasible solu-
tions of nonlinear programs. Yet, the same implementations often suffer from serious
numerical issues making them inadmissible for solving convex relaxations in the context
of global optimization algorithms.

The idea to construct and solve entirely polyhedral-based relaxations in the context
of branch-and-bound for global optimization was first proposed and analyzed by Taw-
armalani and Sahinidis in [21], where polyhedral outer approximations of univariate
convex functions and bivariate functions were incorporated. Such a relaxation of con-
vex functions often leads to a larger relaxation gap compared to the convex nonlinear
relaxation from which it is derived. On the other hand, it considerably reduces the cost

M. Tawarmalani: Krannert School of Management, Purdue University, West Lafayette, IN 47907-1310, USA.
e-mail: mtawarma@mgmt.purdue.edu

N. V. Sahinidis: Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801, USA. e-mail: nikos@uiuc.edu

� The research was supported in part by ExxonMobil Upstream Research Company, the National Science
Foundation under awards DMII 0115166 and CTS 0124751, and the Joint NSF/NIGMS Initiative to Support
Research in the Area of Mathematical Biology under NIH award GM072023.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

226 M. Tawarmalani, N. V. Sahinidis

for obtaining lower bounds. Furthermore, a polyhedral relaxation can take advantage
of highly efficient and reliable state-of-the-art linear programming solvers in order to
increase the reliability of the overall approach to global optimization.

In this paper, we go beyond the ideas of [21] in that we address directly the problem
of generating polyhedral relaxations of multivariate convex functions. The advance from
the univariate to the multivariate case presents significant challenges at the algorithmic
level. In particular, whereas sandwich algorithms for constructing outer approxima-
tions of univariate functions have long been developed and analyzed, and are known to
converge quadratically [17, 21], the asymptotically optimal strategies for outer approxi-
mation of multivariate convex functions is a subject of very recent and on-going research
[10, 3] and has thus far not resulted in any implementations.

In Section 2 of this paper, we prove that the outer approximation of a decomposed
equivalent is tighter than the direct outer approximation of the original multivariate prob-
lem. As a consequence, we derive a two-step outer approximation methodology that can
be used to improve the outer approximations of several classical convex programming
techniques [12, 9, 6]. An important feature of this methodology is that it does not require
the explicit identification of convexity in the original problem. Furthermore, it exploits
convexity of elementary functional expressions that are composed to form nonconvex
expressions. In Section 3, we explore these counterintuitive properties and propose ways
to construct polyhedral relaxations in global optimization. We also show that the con-
vexification strategy of Section 2 results in the automatic exploitation of convexity in a
way that subsumes known convexity identification rules.

In Section 4, we present an implementation of a branch-and-cut global optimization
solver that relies on the generation of cutting planes that are supporting hyperplanes of
convex relaxations. While branch-and-cut solvers have been presented in the past for
specific classes of global optimization problems (cf. [1, 22]) and Lagrangian relaxations
[16], our implementation represents the first general-purpose primal branch-and-cut
solver for global optimization of nonlinear and mixed-integer nonlinear programs. The
implementation is further enhanced through a modeling language construct that permits
the modeler to supply convexity information to the solver. Examples are provided in
Section 5 to illustrate the proposed polyhedral relaxations. Preliminary computational
results demonstrating the significant potential of these relaxations are presented in Sec-
tion 6.

2. Polyhedral outer approximations via recursive functional compositions

Let f : R
k �→ R

m and g : R
m �→ R

n be vectors of functions such that f (x) =
(f1(x), . . . , fm(x)) and g(u) = (g1(u), . . . , gn(u)), where x = (x1, . . . , xk) ∈ R

k

and u = (u1, . . . , um) ∈ R
m. Let fi(x) be convex for i = 1, . . . , m and gj (u) be

convex for j = 1, . . . , n. Let I = {1, . . . , m} and IL = {i ∈ I | fi(x) is affine}.
Assume that gj (u), for all j , is non-decreasing in the range of fi(x) for each i ∈ I\IL.
Define h = g ◦ f as the composition of g and f , i.e., h(x) = g(f (x)). Then, h(x) is
(h1(x), . . . , hn(x)), where hl = gl ◦ f for l = 1, . . . , n. It can be proved easily that
each hl is convex. We include a proof for completeness.

Proposition 1. For each l = 1, . . . , n, the function hl is convex.

Polyhedral branch-and-cut for global optimization 227

Proof. Consider the following convex set:

S = {(γl, φ1, . . . , φm, x) | γl ≥ gl(φ1, . . . , φm);
φi ≥ fi(x), ∀i ∈ I\IL; φi = fi(x), ∀i ∈ IL}.

We argue that the epigraph of h(x) is the projection of S onto the space of γl and x vari-
ables.A point (γl, x) which belongs to the epigraph of h(x) also lies in the projection of S

since (γl, f1(x), . . . , fm(x), x) ∈ S. Now, consider any point (γl, φ1, . . . , φm, x) ∈ S.
Note that γl ≥ gl(φ1, . . . , φm). Since gl is non-decreasing in the range of each fi

with i ∈ I\IL and φi equals fi(x) for each i ∈ IL, it follows that gl(φ1, . . . , φm) ≥
gl(f1(x), . . . , fm(x)). Therefore, γl ≥ gl(f1(x), . . . , fm(x)), or in other words (γl, x)

in the epigraph of hl . Since S is convex and projection preserves convexity, hl is convex.��

The main purpose of this section is to show that outer-approximating f (x) and g(u)

separately leads to a tighter approximation of h(x) than the one obtained by outer-approx-
imating h(x) directly. In the following, f and g will be assumed to be differentiable
unless stated otherwise. The case of non-differentiable functions will be addressed in
Subsection 2.1. For a vector of differentiable functions, [f1(x), . . . , fm(x)], x ∈ R

k , we
denote by ∇f (x̄) the Jacobian matrix of f (·) at x̄. When m = 1, we do not distinguish
between the vector and the function.

For a differentiable convex function fi(x), let fi(x) ≥ fi(x̄) + ∇fi(x̄)(x − x̄) be
the subgradient inequality where ∇fi(x̄) is the gradient of fi at x̄. Given a point x̄ and
i ∈ I\IL, by convexity of fi(x), the following inequality is valid for {(φi, x) | φi ≥
fi(x)}:

φi ≥ fi(x
j) + ∇fi(x

j)(x − xj).

If i ∈ IL, by linearity of fi , {(φi, x) | φi = fi(x)} can be rewritten as:

φi = fi(x
j) + ∇fi(x

j)(x − xj).

Also, by convexity of g(f), the following inequality is valid for {(γl, φ) | γl ≥ g(φ)}:

γ ≥ g(f (x̄)) + ∇g(f (x̄))(φ − f (x̄)).

Theorem 1. Consider a set of points xj , j = 1, . . . , r . Let

S1(h) = {(γ, x) | γ ≥ h(xj) + ∇h(xj)(x − xj) j = 1, . . . , r}

and

S2(h) =

(γ, x)

γ ≥ g(f (xj))+∇g(f (xj))(φ − f (xj)) j = 1, . . . , r

φi ≥ fi(x
j)+∇fi(x

j)(x − xj) j = 1, . . . , r; i ∈ I\IL

φi = fi(x
j) + ∇fi(x

j)(x − xj) j = 1, . . . , r; i ∈ IL

.

Then, S2(h) ⊆ S1(h).

228 M. Tawarmalani, N. V. Sahinidis

Proof. Note that g(f) is non-decreasing for each i in I\IL. For (γ 0, x0) ∈ S2(h), there
exists φ0 such that:

γ 0 ≥ g(f (xj)) + ∇g(f (xj))(φ0 − f (xj))

≥ g(f (xj)) + ∇g(f (xj))∇f (xj)(x0 − x̄).

By the chain rule of differentiation:

∇h(xj) = ∇g(f (xj))∇f (xj).

Therefore:

γ 0 ≥ h(xj) + ∇h(xj)(x0 − xj).

��
It should be apparent that, as r tends to ∞ and the points xj at which the supporting

hyperplanes are constructed cover the feasible space densely, then S2(h) and S1(h) tend
to the epigraph of h(x).

A convex function h can be outer approximated by subgradient inequalities through
a single-step procedure yielding the set S1(h). Alternatively, an outer approximating set
S2(h) can be derived via the two-step procedure that constructs subgradient inequalities
for the functions g and f whose composition results in h. The above theorem shows that
the set S2(h) is contained within the set S1(h). In the sequel, we investigate the potential
advantages and disadvantages of the two alternative outer approximating schemes.

Remark 1. Consider h2(x) = g2(f (x), x) and h1 = g1(f (x)) where g2(u, x) =
g1(u) + Ax + b. Clearly, h2(x) = h1(x) + Ax + b. Then, (γ 0, x0) ∈ S2(h

1) if and
only if (γ 0 + Ax0 + b, x0) ∈ S2(h

2). Similarly, (γ 0, x0) ∈ S1(h
1) if and only if

(γ 0 + Ax0 + b, x0) ∈ S1(h
2).

In fact, if f (x) is linear, the two procedures result in the same approximation:

Proposition 2. If f (x) = Ax + b, where A ∈ R
m × R

k , then S1(h) = S2(h).

Proof. Consider (γ 0, x0) ∈ S1(h). Define φ0 = Ax0 + b.

γ 0 ≥ h(xj) + ∇h(xj)(x0 − xj)

= g(Axj + b) + ∇g(Axj + b)(Ax0 + b − Axj − b)

= g(f (xj)) + ∇g(f (xj))(φ0 − f (xj)).

��
Remark 2. For sets S2(h) and S1(h) defined in Theorem 1, it is possible that S2(h) ⊂
S1(h). Indeed, consider

f (x) = 2x3 + 4x2 − 7x + 5 + δ(x | x ≥ 0)

where δ(x | x ≥ 0) equals 1 when x ≥ 0 and is 0 otherwise. Let g(u) = eu. We outer-
approximate γ ≥ h(x) by constructing subgradient inequalities at x = 0 and x = 1.
Clearly

S2(h) = {(γ, x) | φ ≥ 5 − 7x, γ ≥ e5(f − 4), φ ≥ 7x − 3, γ ≥ e4(f − 3)},

Polyhedral branch-and-cut for global optimization 229

whereas

S1(h) = {(γ, x) | γ ≥ e5(1 − 7x), γ ≥ e4(7x − 6)}.

Let hS2(h)(x) denote min{γ | (γ, x) ∈ S2(h)} and hS1(h)(x) denote min{γ | (γ, x) ∈
S1(h)}. It follows easily that hS1(h)(0.25) = −0.75e5 < 0.25e4 = hS2(h)(0.25). Figure
1 provides a pictorial representation of the two outer approximations, clearly demon-
strating that S2(h) ⊂ S1(h).

In fact, the two-step approximation S2(h) is quite often tighter than the single-
step approximation S1(h). A somewhat surprising demonstration of this fact is that the
approximation for x4 in the nonnegative orthant is better if it is treated as a composition
of f (x) = x2 and g(u) = u2, and subgradient inequalities are constructed at two points,
for example x = 1 and x = 4. In this case, the two-step approximation produces a lower
bound of 15 at x = 3 whereas the single-step approximation produces a lower bound of
9. Figure 2 illustrates this difference pictorially.

Notice that, in the examples of Figures 1 and 2, f (x) as well as g(u) are univariate
nonlinear functions.

Proposition 3. If |I\IL| = 1 and g(u) is a linear function, then S1(h) = S2(h).

Proof. Let g(u) = Au + b, (γ 0, x0) ∈ S1(h), I\IL = {i0} and

k = argmax{fi0(xj) + ∇fi0(xj)(x0 − xj) | j = 1, . . . , r}. (1)

0.5 1
0

50

100

150

−50

−100

−150

−200

x

h

h(x) = e2x3+4x2−7x+5

hS2(h)(x)
hS1(h)(x)

Fig. 1. Outer-approximating composite functions

230 M. Tawarmalani, N. V. Sahinidis

2.6 2.8 3 3.2
0

20

40

60

80

100

x

h

h(x) = x4

hS2(h)(x)
hS1(h)(x)

Fig. 2. Outer-approximating x4 at x = 1 and x = 4

Define φ0 = f (xk) + ∇f (xk)(x0 − xk). Then:

γ 0 ≥ h(xk) + ∇h(xk)(x0 − xk)

= Af (xk) + b + A∇f (xk)(x0 − xk)

= Af (xk) + b + A(φ0 − f (xk))

= Aφ0 + b

= Af (xj) + b + A(φ0 − f (xj)).

By (1): φ0
i0 ≥ fi0(xj) + ∇fi0(xj)(x0 − xj). Since fi(x) is linear for i ∈ IL, it follows

that φ0
i = fi(x

k) + ∇fi(x
k)(x0 − xk) = fi(x

j) + ∇fi(x
j)(x0 − xj). In other words,

(γ 0, x0) ∈ S2(h). ��
Remark 3. If g(u) is a linear function but |I\IL| > 1, S2(h) may be a strict subset of
S1(h) even when x ∈ R. For example, consider f1(x) = x2, f2(x) = − log(x), and
g(u1, u2) = u1 +10u2 so that h = x2 −10 log(x). We use x = 2 and x = 4 to construct
the outer approximations. If hS2(h)(x) denotes the minimum value of x when a two-step
outer approximation is constructed and hS1(h)(x) denotes the minimum value of h for a
single-step approximation, then it is easily seen that hS1(h)(2.9) = 3.1 − 10 log(2) <

10.35 − 10 log(4) = hS2(h)(2.9).

Thus far, we have established that the two-step procedure provides a tighter outer
approximation of h(x) than the single-step outer approximation. On the other hand,
clearly, S2(h) requires more linear inequalities than S1(h). Then, a natural question is
whether the approximation S2(h) can be obtained from h(x) through a single-step pro-
cedure that uses the same or a comparable number of subgradient inequalities as does
S2(h).

Proposition 4. If g(·) is linear and there is only one nonlinear variable in fi(·), then
there exist |I\IL|(r − 1) + 1 points such that the set S1(h) developed using these points
is contained within S2(h), when the latter is developed using r points.

Polyhedral branch-and-cut for global optimization 231

Proof. Let x1 be the only nonlinear variable. Then, the linear part can be removed from
fi(x) and aggregated as part of g(u) where u is augmented to include the variables
x2, . . . , xn. By Remark 1, we are only required to treat the case h(x1) = ∑|I\IL|

i=1 fi(x1)

where each fi is a univariate nonlinear function. Let f
i
(x) represent the piecewise-lin-

ear outer approximation of fi(x1) obtained by constructing subgradient inequalities at
x1

1 , . . . , xr
1. Let h(x1) = ∑|I\IL|

i=1 f
i
(x). Since each f

i
is piecewise-linear with r − 1

breakpoints, hi is also piecewise-linear with at most |I\IL|(r − 1) breakpoints and can
be represented using |I\IL|(r −1)+1 underestimators. A tighter underestimator of h(x)

can then be developed by maintaining the slopes of the underestimating hyperplanes but
shifting them so that they support h. ��

Proposition 4 is established under fairly restrictive conditions. As we show in the
next result, in a more general setting, even polynomially many subgradient inequalities
of h(x) may not suffice to reconstruct the underestimator produced by S2(h).

Proposition 5. Consider a separable function f1(x1) + · · · + fm(xm) where each fi is
strictly convex. Then, the outer approximation S2(h) formed by constructing supporting
hyperplanes at x1, . . . , xr is equivalent to S1(h) formed by constructing supporting
hyperplanes at every x for which there exists j ∈ {1, . . . , r} such that xi = x

j
i .

Proof. It can be easily argued that

∇h(x̄) = [∇f1(x̄1), . . . , ∇fm(x̄m)].

Then (γ 0, x0) ∈ S2(h) if and only if there exists φ0 such that γ 0 ≥ ∑m
i=1 φ0

i , where

φi ≥ fi(x
j
i) + ∇fi(x

j
i)(x0

i − x
j
i). By Fourier-Motzkin elimination, (γ 0, x0) ∈ S2(h) if

and only if, for all ji ∈ {1, . . . , r},

γ 0 ≥
m∑

i=1

(
fi(x

ji

i) + ∇fi(x
ji

i)(x0
i − x

ji

i)
)

.

These are precisely the subgradient inequalities for h(x) at

{x | ∃j such that xi = x
j
i }.

All the subgradient inequalities are distinct due to the strict convexity of each fi . ��

If for all i and for all j �= k we have x
j
i �= xk

i , then Proposition 5 states that an
exponential number of supporting hyperplanes at rn points are needed in S1(h) to be
able to yield the approximation obtained from S2(h) via subgradients at r points. Sep-
arable functions are indeed quite common in nonconvex problems, indicating that the
two-step approximation has the potential of providing much tighter polyhedral outer
approximations than the one-step procedure with a comparable number of subgradient
inequalities.

232 M. Tawarmalani, N. V. Sahinidis

2.1. Outer approximation of non-differentiable functions

Using the chain rule for subdifferentials, the ideas presented above will now be extended
to compositions of non-differentiable functions. For example, if h(x) is a separable func-
tion of the form

f1(x1) + · · · + fm(xm),

it can be easily shown that:

∂h(x̄) = ∂f1(x̄1) × · · · × ∂fm(x̄m),

where ∂f (x) is the subdifferential of f at x.
Consider the non-differentiable function

h(x) = max{f1(x), . . . , fm(x)},
where each fi(·) is a strictly convex differentiable function. Consider a point x̄ in the
domain of h. If I (x̄) = {i|fi(x̄) = h(x̄)}, then the subdifferential of h(x̄) is the set of
convex combinations of the subgradients of fi(x̄), where i ∈ I (x̄). Consider j �∈ I (x̄).
The subgradients of h(x̄) do not depend on the subgradient of fj (·) at x̄. However, the
subgradient inequality h(x) ≥ fj (x̄) + ∇fj (x)(x − x̄) is valid. In fact, this inequality
may not be dominated by the inequalities obtained using the subgradients of h(x̄). For
example, consider h(x) = max{(x − 3)2, 2}. If we underestimate h(·) using the subgra-
dient at x = 0, we obtain h ≥ 9 − 6x. At x = 3, this underestimator is much weaker
than the underestimator h ≥ 2.

We now consider the case of general non-differentiable functions. Under the assump-
tion of differentiability, the chain rule of differentiation was used to prove Theorem 1.
Fortunately, the chain rule can be generalized to the non-differentiable case as follows:

Lemma 1 (Theorem 4.3.1 in [11]). Let h, f and g be such that h = g ◦f , f is a vector
of convex functions f1, . . . , fm and g is convex non-decreasing in fi . For all x ∈ R

n,

∂(g ◦ f)(x) =
{

m∑

i=1

ρisi | (ρ1, . . . , ρm) ∈ ∂g(f (x)), si ∈ ∂fi(x), i = 1, . . . , m

}

.

With the above result, we can provide an analogous result to Theorem 1 for the
non-differentiable case.

Theorem 2. Consider a list of points xj , j = 1, . . . , r (repetitions allowed). Let

S1(h) = {(γ, x) | γ ≥ h(xj) + aj (x − xj) j = 1, . . . , r},
where aj ∈ ∂(g ◦ f)(xj). Then, there exist ρj ∈ ∂g(f (xj)) and s

j
i ∈ ∂fi(x

j) for
i = 1, . . . , m and j = 1, . . . , r such that S2(h) defined as

S2(h) =
{

(γ, x)
γ ≥ g(f (xj)) + ρj (φ − f (xj)) j = 1, . . . , r

φi ≥ fi(x
j) + s

j
i (x − xj) j = 1, . . . , r

}

,

is contained in S1(h).

Polyhedral branch-and-cut for global optimization 233

Proof. Lemma 1 implies that, for each aj ∈ ∂(g ◦ f)(xj), there exist s
j
i ∈ ∂fi(x

j) and

ρj ∈ ∂g(f (xj)) such that aj = ∑m
i=1 ρ

j
i s

j
i . Then, consider a point (γ, x) ∈ S2(h).

Clearly,

γ ≥
m∑

i=1

ρ
j
i (φi − fi(x

j)) + g(f (xj))

≥
m∑

i=1

ρ
j
i s

j
i (x − xj) + g(f (xj))

= aj (x − xj) + g(f (xj)).

Therefore (γ, x) ∈ S1(h). ��
Theorem 2 generalizes Theorem 1. However, due to the non-uniqueness of the sub-

gradient, S2 is not defined constructively but is obtained using an existence result for the
corresponding subgradients of g and fi provided by Lemma 1.

3. Exploiting convexity in global optimization

3.1. Automatic exploitation of convexity in factorable programs

Branch-and-bound algorithms for global optimization often construct recursive decom-
positions of factorable functions [14, 21]. In particular, factorable functions can be
decomposed as sums and products of univariate functions. Then, the convexity/con-
cavity properties of the primitive univariate functions can be automatically identified
and exploited in order to develop subgradient inequalities. Thus, global optimization
methods based on factorable decompositions can naturally exploit the benefits of poly-
hedral outer approximations of the type analyzed in the previous section. The question
addressed in this subsection is how such an approach compares to the automatic iden-
tification of convexity for the original factorable functions. With this goal in mind, we
would like to identify the range of functions that can be recognized as convex under the
assumptions in Section 2 that led to the proof of Proposition 1.

Interest in detecting convexity automatically with the hope of exploiting it in optimi-
zation algorithms has been surging recently [5, 13, 7]. At the present time, it is difficult
to conceive of a prover/disprover of convexity that is both efficient and reliable. Yet,
there are many known conditions under which convexity/concavity can be characterized
[2].

In the following, we discuss many of the rules for detecting convexity (or concavity)
presented in [13] and show that these properties are subsumed in the composition rule
of Section 2:

1. If g is univariate convex and f is linear, then g ◦ f is convex. This is a special case
of the multivariate composition rule.

2. If g is univariate convex, f is convex, and g is increasing in the range of f , then
g ◦ f is convex. This is a special case of the multivariate composition rule.

234 M. Tawarmalani, N. V. Sahinidis

3. If g is univariate convex, f is concave, and g is decreasing in the range of f , then
g ◦ f is convex. This follows from the composition rule since −f is convex and
g(−·) is increasing convex.

4. If ai ≥ 0 and fi is convex for i = 1, . . . , n, then
∑n

i=1 aifi(x) + c is convex.
This follows from the composition rule since g(u) = ∑n

i=1 aiui + c is a convex
increasing function.

5. If fi is convex for i = 1, . . . , m, then max{f1(x), . . . , fm(x)} is convex since
g(u) = max{u1, . . . , um} is an non-decreasing convex function.

6. If f (x) is convex, then ef (x) is convex since g(u) = eu is increasing convex.
7. If f (x) > −p and f (x) is concave, then − log(f (x) + p) is convex since g(u) =

− log(−u) is increasing convex.
8. If f (x) is nonnegative and convex, then f (x)2 is convex since g(u) = u2 is an

increasing convex function when u ≥ 0.

Clearly, there are reasons to automatically detect convexity of functions in global
optimization. For instance, convexity detection techniques can concentrate on functions
whose convexity is not apparent from the composition rule of Proposition 2. Deduction
of convexity based on compositions of univariate nonlinear functions is beneficial in that
it can lead to smaller relaxations of similar quality (see Proposition 4). Yet, the above
analysis shows that automatic detection of convexity is not essential for constructing
polyhedral outer approximators of convex functions recognizable using Proposition 2.
In the latter case, it suffices to construct polyhedral outer approximators of the convex
functions of the decomposed equivalent, wherein convexity of the primitive univariate
functions is known a priori.

3.2. Cutting planes for convex relaxations of primitive nonconvex functions

Certain primitive operations, like x/y, are neither convex nor concave. As such, they
cannot be exploited as discussed above. However, we can use nonlinear convex relax-
ations for such functions to develop a polyhedral relaxation for global optimization
purposes. For instance, let us assume that (x, y) ∈ [xL, xU] × [yL, yU], where xL > 0
and yL > 0. Then, it was shown in [24, 23, 18, 19] that x/y can be underestimated by
the following convex function:

x

y
≥ max{f1(x, y), f2(x, y), f3(x, y)} (2)

where

f1(x, y) =
(
x +

√
xLxU

)2

y
(√

xL +
√

xU
)2 ,

f2(x, y) = x/yL + xU(1/y − 1/yL), and

f3(x, y) = x/yU + xL(1/y − 1/yU).

For any given point (x̄, ȳ), a cutting plane that supports the underestimator in (2) can be
easily obtained by choosing the inequality amongst:

Polyhedral branch-and-cut for global optimization 235

x

y
≥

2
(
x̄ +

√
xLxU

)

(√
xL +

√
xU

)2
ȳ

x −
(
x̄ +

√
xLxU

)2

ȳ2
(√

xL +
√

xU
)2 y

+2

(
x̄ +

√
xLxU

) √
xLxU

ȳ
(√

xL +
√

xU
)2 ,

x

y
≥ x̄

yL
− xU

ȳ2 y −
(
ȳ − 2yL

)
xU

ȳyL
, and

x

y
≥ x̄

yU
− xL

ȳ2 y −
(
ȳ − 2yU

)
xL

ȳyU
,

that is most violated. Concave envelopes of x/y over the positive orthant are already
linear [18] and can be included as such in the polyhedral relaxation.

3.3. Improved relaxations of nonconvex terms via exploitation of convexity

Exploiting convexity for functional expressions has further indirect benefits in noncon-
vex optimization. In addition to identifying and approximating convex functions closely,
relaxations of nonconvex terms improve as a result of better approximation of their con-
vex subexpressions. For example, consider a nonconvex function h(x) = f1(x)f2(x),
where f1(x) and f2(x) are nonnegative convex functions. Let f1(x) ∈ [f L

1 (x), f U
1 (x)]

and f2(x) ∈ [f L
2 (x), f U

2 (x)] in the domain of interest. Then, the following underesti-
mator of h(x) is well known [14]:

h(x) ≥ max{f1(x)f L
2 (x) + f2(x)f L

1 (x) − f L
1 (x)f L

2 (x),

f1(x)f U
2 (x) + f2(x)f U

1 (x) − f U
1 (x)f U

2 (x)}. (3)

Assume that the recursive algorithm for constructing relaxations for factorable functions
introduces variables φ1 and φ2 such that φ1 = f1(x), φ2 = f2(x) and relaxes φ1φ2 using
the bilinear envelopes of [14]. Further, assume that the convexity of f1(x) and f2(x) is
identified by the algorithm and that domain reduction schemes [21] are able to identify
that φ1 ∈ [f L

1 (x), f U
1 (x)] and φ2 ∈ [f L

2 (x), f U
2 (x)]. Then, the underestimator (3) is

automatically exploited in the relaxation.
The above discussion has established that, if the convexity/concavity of a function

follows by expressing it as a composition of primitive functions whose convexity/con-
cavity is either exploited automatically (for example x2,

∑
, exp, log) or identified by

the modeler, then such convexity/concavity is implicitly exploited using the subgradient
inequalities, as long as the latter are constructed for all primitive functions in the decom-
position of the original function. As a result, it is not necessary to identify if a function
is non-decreasing.

More concretely, for nonconvex terms of the form h(x) = g(f1(x), . . . , fm(x)),
where g and fi , i = 1, . . . , m are convex, cutting planes are able to partially exploit
the structure in constructing relaxations. Note that h(x) is, in general, nonconvex since
g is not required to be a non-decreasing function. In the following, we investigate the

236 M. Tawarmalani, N. V. Sahinidis

relaxation of h(x) that results when cutting planes are generated to exploit the convexity
of g and each fi .

For an arbitrary function f : R
n �→ R, we say that a function ϕ minorizes f if

ϕ(x) ≤ f (x) for all x ∈ R
n. Similarly, ϕ majorizes f if ϕ(x) ≥ f (x) for all x ∈ R

n.
For our analysis, we will mainly be interested in functions ϕ that are lower-semicon-
tinuous (l.s.c.), convex, and non-decreasing. We assume that all the functions have an
affine minorizer.

Proposition 6. Consider a function f : R
n �→ R. There exists an l.s.c. function Lf

which is convex, non-decreasing, minorizes f (x), and majorizes every other l.s.c., con-
vex, non-decreasing minorizer of f (x).

Proof. Clearly h(x) = −∞ is an l.s.c. convex non-decreasing function that minorizes
f (x). If g1(x) and g2(x) are two convex non-decreasing functions that minorize f (x),
then max{g1(x), g2(x)} is another such function that majorizes g1(x) and g2(x). ��
Proposition 7. Lf = sups≥0〈s, x〉 − f ∗(s).

Proof. Clearly, Lf is convex (a supremum of linear functions) and minorizes f (x) (By
definition, f ∗(s) ≥ 〈s, x〉 − f (x)). We check that Lf is non-decreasing by noting that
for x′′ ≥ x′:

Lf (x′′) = sup
s≥0

{〈s, x′′ − x′〉 + 〈s, x′〉 − f ∗(s)}

≥ sup
s≥0

{〈s, x′〉 − f ∗(s)}

= Lf (x′).

The proof is by contradiction. Assume that there exists a function h(x) that is l.s.c., con-
vex, and non-decreasing. In addition, assume that h(x) minorizes f (x) and majorizes
Lf (x). Since h(x) ≤ f (x), it follows that h∗(s) ≥ f ∗(s). Then,

h∗∗(x) = sup
s

{〈s, x〉 − h∗(s)}
= sup

s≥0
{〈s, x〉 − h∗(s)}

≤ sup
s≥0

{〈s, x〉 − f ∗(s)}

= Lf (x).

The supremum above was restricted to nonnegative s because, if si < 0, then h∗(s) =
supx{〈s, x〉−h(x)} is infinite as is easily seen by reducingxi to−∞ and noticing thath(x)

is a non-decreasing function. However, since h(x) is l.s.c. and convex, h∗∗(x) = h(x)

and we have a contradiction of the assumption. ��
Theorem 3. {(x, γ) | γ ≥ g∗∗(φ), φ ≥ f (x)} = {(x, γ) | γ ≥ Lg(f (x))}.
Proof. Let

S = {(x, γ) | γ ≥ g∗∗(φ), φ ≥ f (x)}
= {(x, γ) | γ ≥ sup

s
{〈s, φ〉 − g∗(s)}, φ ≥ f (x)}.

Polyhedral branch-and-cut for global optimization 237

We argue first that we can restrict our attention to nonnegative s while taking the su-
premum of 〈s, φ〉 − g∗(s). This follows because, for a given x and an s which has at
least one coordinate si strictly less than zero, φi can be increased without bound, taking
〈s, φ〉 − g∗(s) to −∞. Therefore:

S = {(x, γ) | γ ≥ sup
s≥0

{〈s, φ〉 − g∗(s)}, φ ≥ f (x)}

= {(x, γ) | γ ≥ Lg(φ), φ ≥ f (x)}
= {(x, γ) | γ ≥ Lg(f (x))},

where the first equality follows from Proposition 7 and the second equality follows from
the fact that Lg is non-decreasing. ��

Consider, for example, f (x) = x2 − 1 and g(u) = u2. Then, Lg(u) = max(u, 0)2.
As is evident from Figure 3, Lg(f (x)) = max(x2 − 1, 0)2 is the convex envelope of
(x2 − 1)2.

Clearly, the cutting planes proposed here do not always generate the convex envelope.
Even in the one-dimensional example of Figure 3, if x is restricted to be nonnegative, the
resulting relaxation is not the convex envelope. In fact, the relaxation obtained by using
the proposed cutting planes may not imply the convex envelope even in the absence of
bounds. For example, consider

f (x) =
{

e−x − 1 if x ≤ 0,

−x otherwise,

and g(u) = u2. Then, the convex envelope of g(f (x)) equals x2 for x ≥ 0. How-
ever, Lg(f (x)) = 0 when x ≥ 0. Nevertheless, as the next result demonstrates, the
cutting planes are able to exploit the convex envelope of g(f (x)) when f and g are
one-dimensional coercive convex functions.

Proposition 8. If f (x) : R �→ R and g(u) : R �→ R are coercive convex functions,
then the convex envelope of g(f (x)) is Lg(f (x)).

0

2

4

6

8

–2 –1 1 2x

2

4

6

8

–2 –1 1 2x

Fig. 3. Relaxation of (x2 − 1)2

238 M. Tawarmalani, N. V. Sahinidis

Proof. Since g(u) is coercive, it tends to infinity as u → ∞ and as u → −∞. Let
u∗ = argmin{g(u)}. Such a u∗ exists since coercivity allows us to restrict attention to
a bounded interval. Then, it follows from the monotonicity of the subgradient mapping
of g that g(u) is non-increasing to the left of u∗ and non-decreasing to the right of u∗.
Therefore,

Lg(u) =
{

g(u∗) if u ≤ u∗,
g(u) otherwise.

Since f (x) is coercive and convex, the level set {x | f (x) ≤ u∗} is a bounded interval,
say [a, b]. By continuity and coercivity of f (x), f (a) = u∗ and f (b) = u∗. Clearly,
Lg(f (x)) = g(f (x)) if x ≤ a or x ≥ b. For x ∈ [a, b], Lg(f (x)) = g(u∗) =
g(f (a)) = g(f (b)). Since Lg(f (x)) is convex, it must be the convex envelope of
g(f (x)). ��

3.4. Polyhedral approximations of convex bodies not recognized by the composition
rule

The discussion of Section 3.1 establishes that the main advantage of detecting convexity
automatically would be in producing smaller rather than tighter relaxations. Unfortu-
nately, convexity of many functions including logexp(x) = log(ex1 + · · · + · · · exn) and
x2 + y2 − xy cannot be gleaned using the composition rule of Section 2. For such a
function, a specialized proof that expresses the quadratic form generated by the Hes-
sian as a sum of squares is often needed to prove convexity. If the convexity of such
functions is determined, then the increasing nature is exploited automatically by the
recursive decomposition scheme allowing recognition of the convexity of functions like
logexp(f1(x), . . . , fm(x)), where fi(x) is convex.

A user of the global optimization algorithm and/or an automatic detector of con-
vexity developed in the modeling interface can thus inform the optimization algorithm
of the convexity characteristics of expressions that are not automatically recognized. In
order to exploit this convexity using a polyhedral approach, we are interested in cir-
cumscribing the convex body K formed by the epigraph of the convex function. For
the univariate case, there are well-established sandwich algorithms for achieving this
[17, 21]. The multivariate case has been studied in the literature for a long time but
has not resulted in any implementations. Nonetheless, recent progress in the direction
of approximating compact convex sets has been remarkable. Gruber [10] developed
asymptotic estimates for the approximation properties of the polytope P best

n formed
by constructing supporting hyperplanes at the best n points on the boundary of the
smooth convex body with positive Gaussian curvature. In particular, Gruber proved

that Volume(P best
n) − Volume(K) = O(n

2
d−1). More recently, Böröczky and Reitz-

ner [3] showed that, if random circumscribed polytopes Pn are formed by choosing
points according to a continuous density function dK , then the expected volume of Pn

is EV(Pn) = Volume(K) + O(n
2

d−1). In particular, EV(Pn) is minimized if dK(x) is

proportional to H(x)
1

d+1 , where H(x) is the Gaussian curvature of K at x.

Polyhedral branch-and-cut for global optimization 239

The insights gained by these results can be exploited computationally in a variety of
ways. Computing the cumulative probability distribution generated by using the Gauss-
ian curvature of the convex body is fairly involved. Instead, we propose to choose a
random set of points from a grid on the surface of the epigraph to build an initial convex
outer approximation. Subgradient inequalities at the optimal solution of the relaxation
can be used to iteratively improve the quality of this initial relaxation.

4. Implementing polyhedral branch-and-cut

Our implementation exploits convexity using a three-pronged approach that realizes the
strategies discussed in the previous section. The first approach automatically exploits the
convexity/concavity of the univariate functions that appear in the recursive decomposi-
tion of multivariate convex and nonconvex factorable functions. The second approach
exploits recently developed convex underestimators for simple expressions such as x/y.
The third approach relies on a modeling language construct that allows the modeler to
provide knowledge of univariate or multivariate convex structures to the global optimi-
zation solver for the construction of polyhedral outer approximators.

The ideas are implemented in BARON 7.2, which employs automatic differentia-
tion [8] to generate subgradient inequalities for constraints that fall in one of the above
three categories. An initial set of linear underestimators is first developed based on a
crude outer approximation of user-identified convex functions and the univariate func-
tions in the decomposition of the original program. For each univariate function, after
extensive experimentation, we decided to use four supporting hyperplanes located by
angular trisection [21]. Subsequently, subgradient inequalities are generated iteratively
at the current optimal solution of the LP relaxation if the solution is found to violate a
known valid inequality from any of the three classes discussed above. These inequalities
are used to solve all relaxation and probing subproblems [20]. The cuts generated are
used locally and not passed on to the descendants of the branch-and-cut tree. In this sense,
our implementation, albeit preliminary, resembles the use of separation techniques to
generate cuts in a branch-and-cut algorithm for integer programming.

Finally, in light of the discussion of Subsection 3.4, it seems pertinent at the time of
this writing to enhance the modeling interface of a global optimization solver in a manner
that provides the modeler with the flexibility of explicitly identifying convex expres-
sions. In our current implementation of BARON’s modeling language, this is enabled by
the construct:

CONVEX EQUATIONS <constraint names> ;

5. Illustrative examples

Two examples are presented next to illustrate the use of the above concepts. In both
cases, we detail the improvement in the lower bound with each round of cutting plane
generation as implemented in BARON 7.2.

240 M. Tawarmalani, N. V. Sahinidis

5.1. Example 1

The following example illustrates the automatic exploitation of convexity of factorable
programs and relaxations of x/y. Consider:

(P) min x2 − 100x + y2 − 30y + 1000
x

y

s.t. 0 ≤ x ≤ 1000

1 ≤ y ≤ 1000

It can be easily verified that the objective function for the above problem is nonconvex.
Using (2) and assuming that x ∈ [xL, xU] and y ∈ [yL, yU], a convex relaxation for
this problem is easily constructed as follows:

(R) min x2 − 100x + y2 − 30y + 1000 max {f1(x, y), f2(x, y), f3(x, y)}
s.t. 0 ≤ x ≤ 1000

1 ≤ y ≤ 1000

For P, using a variety of domain reduction techniques, BARON 7.2 establishes that
x ∈ [0, 129.77] and y ∈ [1, 129.77]. An initial lower bounding linear program is then
constructed by underestimating x2 and y2 at four points and using bilinear envelopes
for wy = x. Then, in an iterative fashion, subgradient inequalities for x2, y2, and
max{f1(x, y), f2(x, y), f3(x, y)} are constructed as necessary. The following lower
bounds are generated at the root node in an actual BARON 7.2 run:

Iteration Lower bound Relaxation optimal solution
1 −7500.9 x1 = (65.3, 66.5)

2 −3832.2 x2 = (33.1, 34.1)

3 −2839.5 x3 = (49.2, 19.0)

4 −2325.7 x4 = (41.1, 25.6)

5 −2057.5 x5 = (37.1, 22.3)

6 −2041.1 x6 = (39.1, 23.9)

The objective function of P at x6 equals −2034.1, which is an upper bound on the optimal
value of R. Therefore, R has been approximately solved to optimality. The true optimal
objective function value of R is approximately −2036.60. The optimal solution of P is
approximately (34.317, 31.881) with an objective function value of −1117.67. By con-
structing subgradient inequalities using the convex expressions appearing in R, BARON
7.2 reduces the root-node relaxation gap by 85.5% in 6 rounds of cutting plane gener-
ation. If the convex envelope for x/y described in [18] is used as the underestimating
function for x/y, one can derive cutting planes leading to an improved lower bound
of −2023.2 for P (this underestimator is not currently implemented in BARON 7.2).
Using a relative tolerance of 10−6, BARON 7.2 solves P in 7 nodes when convexity is
exploited to generate cutting planes but takes 47 nodes to solve without cutting planes.

Polyhedral branch-and-cut for global optimization 241

5.2. Example 2

(Q) min 100 log(ex1 + ex2 + ex3) + x2
1 − 40x1

+x2x3 − 10 log(x1) + x2
2 − 20x2 − 50x3

s.t. 1 ≤ x1 ≤ 10

1 ≤ x2 ≤ 10

1 ≤ x3 ≤ 10

A relaxation for Q can be easily constructed using bilinear envelopes for x2x3 over
[xL

2 , xU
2] × [xL

3 , xU
3]. However, BARON 7.2 is not able to exploit the convexity of

log(ex1 + ex2 + ex3) since the latter cannot be derived from the convexity/concavity of
exp(·)/log(·) using the composition rule of Section 2. In the following table, we com-
pare the bound generated by BARON 7.2 while solving the root-node relaxation when
convexity of log(ex1 +ex2 +ex3) is not identified by the user (Lower bound 1) and when
convexity of log(ex1 +ex2 +ex3) has been identified through the CONVEX EQUATIONS
construct (Lower bound 2):

Iteration Lower bound 1 Lower bound 2
1 −586.9 62.5
2 −514.9 78.9
3 −445.8 79.6
4 −436.2 80.2
5 −432.9 80.6

Considering that the optimal solution has an objective function value of approxi-
mately 83.28, the identification of the convexity of log(ex1 + ex2 + ex3) reduces the
root-node relaxation gap by 99.5% in comparison to an automated polyhedral outer
approximation scheme that relies only on convexity/concavity of the primitive opera-
tions. Subsequently, BARON 7.2 is able to prove optimality within a relative tolerance
of 10−6 after exploring 35 nodes as opposed to 1793 nodes when the convexity is not
specified by the modeler.

6. Computational results with automatic convexity exploitation

The goals of this section are twofold. First, to provide computational evidence that
the proposed cutting plane generation techniques are successful in significantly reduc-
ing relaxation gaps, even at the root node, for a wide variety of problems. Second, to
demonstrate that incorporating the polyhedral cutting planes in every node of a branch-
and-cut algorithm results in significant reductions in the computational effort for solving
nonlinear and mixed-integer nonlinear optimization problems to global optimality. To
achieve these goals, we consider a large number of problems from globallib [15]
and minlplib [4]. No convexity information was provided to the solver for the models
used in these computations.

All computations reported below were done on a Dell Precision 530 workstation
with a 1.7 GHz Pentium IV Xeon processor. All problems were solved in minimization
form.

242 M. Tawarmalani, N. V. Sahinidis

6.1. The test set

From globallib and minlplib, we eliminated all those problems that were trivial,
were too large, had functions that BARON cannot currently handle (other than product,
power, logarithmic, and exponential), were bilinear or concave quadratic programs for
which the procedures developed in this paper do not generate any cutting planes, or were
posed over unbounded domains and thus could potentially lead to unreliable lower bound
calculations. A total of 40 problems from globallib and 47 problems from minlp-
lib were selected and are listed in Tables 1 and 2, respectively. In Table 3, we provide
some statistics on the size of these problems in terms of the numbers of constraints (m),
variables (n), discrete variables (nd), nonzero elements in the constraints and objective
(nz), and nonlinear nonzero elements in the constraints and objective (nnz). Most of
the problems are sparse with a significant linear component and a significant nonlinear
component.

6.2. Root-node bound improvements for globallib and minlplib problems

For the problems solved, we first computed the root-node relaxation gap, defined as the
difference between the calculated upper and lower bounds for the problem at the end of

Table 1. Problems from globallib in the test set

(1) alkyl (11) ex4 1 3 (21) ex8 4 7 (31) qp2
(2) arki0001 (12) ex4 1 4 (22) ex8 4 8 (32) sambal
(3) chain100 (13) ex4 1 6 (23) gsg 0001 (33) srcpm
(4) chain25 (14) ex4 1 7 (24) gtm (34) st cqpjk1
(5) chain400 (15) ex5 3 3 (25) hhfair (35) st e03
(6) chain50 (16) ex5 4 4 (26) linear (36) st e04
(7) chakra (17) ex8 1 7 (27) meanvar (37) st e19
(8) etamac (18) ex8 1 8 (28) pindyck (38) st e20
(9) ex4 1 1 (19) ex8 4 1 (29) process (39) st iqpbk1
(10) ex4 1 2 (20) ex8 4 4 (30) qp1 (40) st iqpbk2

Table 2. Problems from minlplib in the test set

(1) batch (11) ex1223 (21) nvs03 (31) nvs21 (41) synthes3
(2) batchdes (12) ex1223b (22) nvs08 (32) nvs23 (42) tls12
(3) cecil 13 (13) ex1224 (23) nvs12 (33) nvs24 (43) tls2
(4) contvar (14) ex3 (24) nvs13 (34) ortez (44) tls4
(5) csched1 (15) ex4 (25) nvs14 (35) procsel (45) tls5
(6) du-opt (16) fac1 (26) nvs15 (36) ravem (46) tls6
(7) du-opt5 (17) fac2 (27) nvs17 (37) spectra2 (47) tls7
(8) eniplac (18) fac3 (28) nvs18 (38) stockcycle
(9) enpro48 (19) gkocis (29) nvs19 (39) synthes1
(10) enpro56 (20) meanvarx (30) nvs20 (40) synthes2

Table 3. Size statistics for test set

problems from globallib problems from minlplib
m n nz nnz m n nd nz nnz

min 1 2 2 1 2 3 2 7 2
max 514 1031 3814 1203 899 841 668 7205 530
average 45 81 276 85 76 99 57 495 59

Polyhedral branch-and-cut for global optimization 243

the root node of the branch-and-cut search. These relaxation gaps were computed for
two relaxation strategies: without and with cutting planes. Up to 10 rounds of cutting
planes were allowed in the cutting plane strategy. Fewer rounds were used when the
relaxation optimal solution did not sufficiently violate the cutting planes generated in
the previous round. In each round, one violated cutting plane was generated for each
nonlinear term in the univariate decomposition of multivariate functions.

Results for problems from globallib are shown in Figures 4 and 5. For all the 40
problems solved, the cutting plane strategy leads to root-node relaxation gap reductions.
These reductions range from 0.05% to 100%, with an average of 48%. In other words,
the cutting planes eliminated almost half of the root-node relaxation gap for these prob-
lems. As Figure 4 indicates, there were seven problems for which the gap was essentially
entirely eliminated thanks to cutting planes.

Figure 5 presents the lower bound improvement, defined as the difference between
the lower bounds of the two strategies (with and without cutting planes) divided by
the absolute value of the lower bound of the strategy without cutting planes. Figure 5
shows that, for five of the problems, the lower bound improved by less than 1%. For the
remaining 35 problems, the lower bound improved significantly. Over the entire set of
problems, there was a maximum lower bound improvement of 2000%, with an average
improvement of 115%.

Similar computations were performed with the 47 problems from minlplib. For
these problems, the cutting plane strategy leads to improvements to the root-node relaxa-
tion gaps that average 20%. As Figure 6 indicates, there is one problem with a significant
deterioration in the quality of the root-node relaxation gap when cutting planes are used.
This is because the relaxation solution gave a starting point for local search that led
to a much worse upper bound. Excluding this problem, all other problems exhibited

0
10
20
30
40
50
60
70
80
90

100

1 11 21 31

Problem

R
oo

t-
no

de
 g

ap
 r

ed
uc

tio
n

(%
)

40

Fig. 4. Root-node gap reductions due to cutting planes for globallib problems

244 M. Tawarmalani, N. V. Sahinidis

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

1 11 21 31

Problem

R
oo

t-
no

de
 lo

w
er

 b
ou

nd

im
pr

ov
em

en
t (

%
)

40

Fig. 5. Root-node lower bound improvements due to cutting planes for globallib problems

-350
-300

-250

-200

-150
-100

-50

0
50

100

1 11 21 31 41

Problem

R
oo

t-
no

de
 g

ap
 r

ed
uc

tio
n

(%
)

47

Fig. 6. Root-node gap reductions due to cutting planes for minlplib problems

root-node gap reductions, with an average reduction of 27%. As Figure 6 indicates,
there are seven problems for which the relaxation gap is essentially entirely eliminated
at the root node thanks to the generation of cutting planes.

Figure 7 presents improvements to the lower bounds due to the cutting planes for
the 47 problems from minlplib. For six of these problems, the improvements

Polyhedral branch-and-cut for global optimization 245

0.01

0.10
1.00

10.00
100.00

1000.00
10000.00

100000.00

1 11 21 31 41

Problem

R
oo

t-
no

de
 lo

w
er

 b
ou

nd

im
pr

ov
em

en
t (

%
)

47

Fig. 7. Root-node lower bound improvements due to cutting planes for minlplib problems

are below 1% but, for the majority of the problems, the root-node lower bound
improves significantly, often by orders of magnitude. The maximum observed lower
bound improvement is 41357%, while improvements average 1032% over this collec-
tion of problems.

6.3. Solution to global optimality of problems from globallib and minlplib

The previous subsection demonstrated that automatic exploitation of convexity leads to
significant reduction of relaxation gaps for 87 problems fromgloballib andminlp-
lib. We now solve to global optimality many of the problems reported in the previous
subsection. In particular, we restrict attention to 26 of these problems, each of which was
nontrivial (required over 5 CPU s) and partial branch-and-bound/cut tree computations
indicated that it might be solvable to global optimality within a few CPU hours by at least
one of the two strategies considered: without and with cutting planes. All problems are
solved using absolute and relative optimality tolerances of 10−6 and 10−9, respectively.
Termination occurs if either one of these tolerances is met.

Results are presented in Table 4 to compare the two solution strategies. For each
problem, this table shows the numbers of constraints (m), variables (n), and discrete
variables (nd). Then, for each of the two solution strategies, we present the total number
of branch-and-bound/cut iterations (Nt), the maximum number of nodes that had to be
stored in memory (Nm), and the CPU seconds for solution. All runs were restricted to
no more than seven CPU hours (25200 s). Problems that reached this limit were not
solved to global optimality by the corresponding strategy. This happened for nine prob-
lems when no cutting planes were used. On the other hand, the branch-and-cut strategy
successfully solved all problems in this set.

246 M. Tawarmalani, N. V. Sahinidis

The results of Table 4 are analyzed in Table 5 to further quantify the effect of cutting
planes on the algorithm. The first line of Table 5 provides the number, and in parentheses
the percentage, of problems for which polyhedral cutting planes lead to at least a factor
of two improvement of the algorithm in terms of the total number of iterations (Nt),
memory requirements (Nm), and CPU time required for termination. The remainder of
the table provides similar counts for problems for which the algorithm was improved by
at least 30% but no more than an order of magnitude, problems for which there was no
significant performance change after addition of cutting planes, and problems for which
there was some deterioration in performance because of cutting planes.

It can be seen from Table 5 that, for about two thirds of the problems in this test
set, branch-and-bound exhibits at least an order of magnitude improvement because of
cutting planes. Only for six of the problems in this test set branch-and-cut took more
time than branch-and-bound. Looking at the results of Table 4, it is apparent that five of
these problems are amongst the easiest problems in the entire test set in the sense that
both strategies take less than 100 seconds to solve them. The only nontrivial problem
for which the cutting planes lead to an increase in the computational requirements of
branch-and-bound is problem tls4. This problem is mostly linear and the cutting planes,
apparently, reduce the size of the search tree at the expense of larger and more time
consuming LP relaxations.

Table 4. Computational results with BARON 7.2 on problems from globallib and minlplib

Without cuts With cuts
Problem m n nd Nt Nm CPU s Nt Nm CPU s
arki0001 513 1030 261 157 25200 1 1 137
chakra 41 62 164238 84712 25200 1 1 0
du-opt 9 20 13 82520 44734 25200 79 25 157
du-opt5 9 20 12 106299 33954 25200 78 15 92
elf 38 54 24 866 91 31 698 89 95
enpro48 215 154 92 4215 434 165 702 92 84
enpro56 192 128 73 4609 477 182 1354 99 101
ex1233 64 52 12 28122 652 922 2198 310 1246
ex5 4 4 19 27 971 93 33 843 80 46
ex6 2 14 2 4 739 65 7 2713 115 38
ex8 4 1 10 22 926853 58084 17864 13 4 4
ex8 4 4 12 17 2655 154 63 101 12 7
ex8 4 7 40 62 12497 7021 25200 10011 6658 1883
fac1 18 22 6 78055 8842 143 1 1 0
fac2 33 66 12 4653901 101202 25200 27 8 1
fac3 33 66 12 11516667 101172 25200 24 7 0
gsg 0001 112 78 145 22 17 89 10 21
gtm 24 63 3229450 87622 25200 1 1 0
himmel16 21 18 1211 152 27 915 116 81
linear 20 24 1904473 19706 24403 59472 955 2772
parallel 115 205 25 651 65 198 555 72 194
ravem 186 112 53 778 134 30 246 52 18
sambal 10 17 9279 436 119 1 1 0
spectra2 73 70 30 1963 330 54 43 10 6
stockcycle 98 481 432 108260 67671 25200 1573 231 1152
tls4 64 105 89 191760 4357 4106 172015 4807 12295
Average 76 115 63 885825 23936 10583 9760 530 786

Polyhedral branch-and-cut for global optimization 247

Table 5. Effect of polyhedral cutting planes

Effect of adding cuts Iterations Memory CPU time
Better by a factor at least two 18 (69%) 19 (73%) 15 (58%)
Between 30% and 100% better 2 (8%) 1 (4%) 3 (12%)
Difference smaller than 30% 5 (19%) 5 (19%) 2 (8%)
Between 30% and 100% worse 1 (4%) 1 (4%) 6 (23%)
Worse by a factor at least two 0 (0%) 0 (0%) 0 (0%)

As indicated by the last row of Table 4, cutting plane generation reduces CPU times
by an average of 93% for the entire collection. The overall time reduces despite increased
processing time for each node because of significant reduction in the size of the trees due
to the improved lower bounds. The reductions in the number of iterations and memory
requirements due to cutting planes are equally dramatic as CPU time reductions: 99%
and 98%, respectively.

Finally, Table 6 provides the objective function values for the problems solved.
Problems marked with a * have not been reported as solved before in globallib and
minlplib. For problem ex8 4 7, the objective function value of 28.6032 corresponds
to a point that satisfies BARON’s default feasibility tolerance of 10−5. With a feasibility
tolerance of 10−6, this point is no longer reported as feasible by BARON and the solution
obtained is a nearby point with an objective function value of 29.04731 and which is
identical with solutions reported in the literature for this problem. All constraints of this
problem are nonconvex equalities, thus making the problem numerically sensitive to tol-
erances. For problem tls4, the previous best known solution, as reported in minlplib
[4], had a value of 9.3. As Table 6 indicates, this problem’s globally optimal solution
corresponds to an objective function value of 8.3. The global solution corresponds to a
combination of integer variables that is very different to that of the earlier best known
solution.

Table 6. Global objectives

Problem Objective Problem Objective
arki0001 40.7129 * fac1 160912612.3500
chakra -179.1336 * fac2 331837498.1770
du-opt 3.5563 fac3 31982309.8480
du-opt5 8.0737 gsg 0001 2378.1605 *
elf 0.1917 gtm 543.5651 *
enpro48 187276.7080 himmel16 -0.8660
enpro56 263427.2212 linear 88.9994 *
ex1233 155010.6713 parallel 924.2956
ex5 4 4 10077.7754 * ravem 269589.5584
ex6 2 14 -0.6954 sambal 3.9682
ex8 4 1 0.6185 * spectra2 13.9783
ex8 4 4 0.2125 stockcycle 119948.6883
ex8 4 7 28.6032 †* tls4 8.3000 ¶
†: Infeasible solution point returned.
*: No solutions reported for these problems in globallib and minlplib.
¶: Better solution than the one reported earlier in minlplib.

248 M. Tawarmalani, N. V. Sahinidis

7. Conclusions

This paper demonstrates that the generation of cutting planes from convex constraints or
convex relaxations of nonconvex programs significantly accelerates a branch-and-bound
global optimization algorithm by enhancing its lower bounding capabilities. These cut-
ting planes reduced branch-and-bound solution time and memory requirements by over
93% on a collection of 26 nontrivial problems from globallib and minlplib. Nine
of these problems were not solvable by previous techniques within seven CPU hours.

Outer approximation of a decomposed equivalent automatically exploits convexity
without requiring explicit strategies for identification of convexity. As such decomposi-
tions are becoming commonplace in global optimization systems, exploiting convexity
in the manner described in this paper is natural and rewarding.

The potential impact of the proposed functional decomposition and convexification
strategy on classical convex programming techniques is worth investigating in the future.
Several extensions of this work are possible for nonconvex programming as well. For
instance, much remains to be done to identify the optimal mix of cutting and branching
in terms of frequency and number of generated cutting planes. More important would
be the extension of the branch-and-cut framework to supplement the convexity cuts
used here by additional partial convex hull representations obtained from feasibility and
optimality arguments.

Acknowledgements. The authors would like to thank two anonymous referees for comments and suggestions
that improved the quality of this manuscript.

References

1. Audet, C., Hansen, P., Jaumard, B.,Savard, G. : A branch and cut algorithm for nonconvex quadratically
constrained quadratic programming. Math. Prog. 87, 131–152 (2000)

2. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity. Plenum Press, 1988
3. Böröczky K.Jr., Reitzner,M.: Approximation of smooth convex bodies by random circumscribed poly-

topes. Annals of Applied Probability 14, 239–273 (2004)
4. Bussieck, M.R.: MINLP World. http://www.gamsworld.org/minlp/index.htm 2002
5. Chinneck, J.W.: Discovering the characteristics of mathematical programming via sampling. Optimization

Methods and Software 17, 319–352 (2002)
6. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear

programs. Math. Prog. 36, 307–339 (1986)
7. Fourer, R., Moré, J., Munson, T., Sarich, J.: Next-generation servers for optimization as an internet

resource. Available at http://iems.nwu.edu/∼4er 2004
8. Griewank, A.: Evaluating derivatives. Principles and Techniques of Algorithmic Differentiation, vol 19

of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2000
9. Griffith, R.E., Stewart, R.A.: A nonlinear programming technique for the optimization of continuous

processing systems. Management Science 7, 379–392 (1961)
10. Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum

Mathematicum 5, 521–538 (1993)
11. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer-Verlag,

Berlin, 1993
12. Kelley, J.E.: The cutting plane method for solving convex programs. Journal of the SIAM 8, 703–712

(1960)
13. Maheshwari, C., Neumaier, A., Schichl, H.: Convexity and concavity detection. Available at

http://www.mat.univie.ac.at/∼herman/techreports/D12convconc.ps 2003
14. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex

underestimating problems. Math. Prog. 10, 147–175 (1976)

Polyhedral branch-and-cut for global optimization 249

15. Meeraus, A.: GLOBAL World. http://www.gamsworld.org/global/index.htm 2002
16. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming. Habili-

tation thesis Humboldt-Universität zu Berlin, Germany, 2004
17. Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Computing

48, 337–361 (1992)
18. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel techniques

for constructing convex envelopes of nonlinear functions. Journal of Global Optimization 20, 137–158
(2001)

19. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes of l.s.c. functions. Mathe-
matical Programming 93, 247–263 (2002)

20. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic
Publishers, Dordrecht, 2002

21. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs:A theoretical
and computational study. Math. Prog. 99, 563–591 (2004)

22. Vandenbussche, D.: Polyhedral Approaches to Solving Nonconvex Quadratic Programs. PhD thesis,
Georgia Institute of Technology, Department of Indystrial and Systems Engineering, Atlanta, GA, 2003

23. Zamora, J.M., Grossmann, I.E.: A global MINLP optimization algorithm for the synthesis of heat ex-
changer networks with no stream splits. Computers & Chemical Engineering 22, 367–384 (1998)

24. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate,
bilinear and linear fractional terms. Journal of Global Optimization 14, 217–249 (1999)

